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inequalities for bounded functions by fractional integrals. In addition, we construct some
fractional Newton-type inequalities for Lipschitzian functions. Furthermore, we offer some
Newton-type inequalities by fractional integrals of bounded variation. Finally, we provide
our results by using special cases of theorems and obtained examples.

1. Introduction & Preliminaries

Inequality theory is a crucial subject in many branches of mathematics with numerous number of applications. Many mathematicians have
established the Hermite-Hadamard, Simpson, and Newton-type inequalities and they are very interested in generalizing and extending it to
the case of various classes of functions, including s-convex functions, quasi-convex functions, log-convex functions, etc. In recent years,
fractional calculus has increased interest because of the its demonstrated applications in a range of the inequality theory on convex functions.
It can be obtained the bounds of new formulas by using the Hermite-Hadamard-type, Simpson-type inequality, and Newton-type inequality.
Simpson-type inequalities are derived from Simpson’s rules and take the following form of inequalities:

i. Simpson’s 1/3 rule, or Simpson’s quadrature formula:

[ a2 r@rar (50) 4.

ii. The Simpson’s second formula, often known as the Simpson’s 3/8 rule, or the Newton-Cotes quadrature formula:

/ff(x)dm b;“ {f(a)+3f<2a;b) +3f(“+32b) +f(b)} .

The most popular Newton-Cotes quadrature using a three-point Simpson-type inequality is as follows:

Theorem 1.1. If f : [a,b] — R is a four times differentiable and continuous function on (a,b) , and let Hf(4) H = sup ‘f(4> (x)‘ < oo, then
x€(ab)
the following inequality holds:

'é {f(a)+4f(a;rb) +f(b)} - bia/a.bf(x)dx

According to the Simpson 3/8 inequality, the Simpson 3/8 rule is a classical closed type quadrature rule is as follows:

< g5 [ o=
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Theorem 1.2. Note that [ : [a,b] — R is a four times differentiable and continuous function on (a,b) , and H @ H = sup ) F@ (x)‘ < oo,
*  xe(ab)
Then, one has the inequality

'% {f(a)+3f(2a3+b> +3f(“+32b> +f(b)} - bia/,,bf(x)dx

< gl Le-a"

Definition 1.3 (See [1]). Suppose that I is an interval of real numbers. Then, a function f : 1 — R is said to be convex, if

flx+(1=)y) <tf () +(1=1) f(y)
is valid Vx,y € I and V't € [0,1].

The three-point Newton-Cotes quadrature rule is the basis for Simpson’s second rule. Results for three-step quadratic kernel computations are
commonly referred to as Newton-type results. It is known from the literature that these results are Newton-type inequalities. There have been
several mathematicians who have been considered to Newton-type inequalities. For example, in paper [2], some Newton-type inequalities
are proved for the case of functions whose second derivatives are convex. In paper [3], several Newton-type inequalities are constructed by
post-quantum integrals. Noor et al. proved Newton-type inequalities connected with harmonic convex and p-harmonic convex functions
in [4] and [5], respectively. Moreover, in paper [6], some Newton-type inequalities were considered for the case of quantum-differentiable
convex functions. Furthermore, in paper [7], several error estimates of the Newton-type quadrature formula were presented by bounded
variation and Lipschitzian mappings. For some recent results on Newton-type inequalities, see [8—10] and the references therein.

Definition 1.4 (See [11,12]). Let us consider f € Ly[a,b], a,b € R with a < b. The Riemann-Liouville fractional integrals J, f and J f
of order o0 > 0 are given by

JE f() = ﬁ [ w0 o, x>a
and

b
J;?‘J(X)=ﬁ [ =0 s, x<o,

respectively. Here, I" denotes the Gamma function defined by

F(ot):/o e “u®du.

Note that J., f(x) = Jg,f(x) = f(x).

By means of the well-known Riemann-liouville fractional integrals for differentiable convex functions, some Newton-type inequalities are
given as follows:

Theorem 1.5 (See [13]). Let f : [a,b] — R be an absolutely continuous mapping (a,b) so that f' € Ly ([a,b]). Let us also consider that the
function |f'| is convex on [a,b]. Then, the following inequality holds:

’% {f(a)+3f (2“3*1’) +3f (“321’) +f(b)} - % et f () +J5 £ (a)]

b—a
< 2D 0 (o) +- 0 (00 + 03 (@) |/ @] + 0]
where
1+3
Qi (@) =35 (5)  “+ @riper —
1+1 a
%@ =25 (3) "+ @i -3

2 7 1+1 patl g 3o+l 35
Qs (@) =5 (5) “+ e — -

~ a+1 \8

The popularity of fractional calculus has increased in recent years because of its wide range of applications in various fields of science. Given
the importance of fractional calculus, several operators for fractional integrals can be taken into account. For example, in paper [14], sundry
Newton-type inequalities are acquired for the case of functions whose first derivative in absolute value at certain power are arithmetically-
harmonically convex. In addition, in paper [15], some Newton-type inequalities are proved using Riemann-Liouville fractional integrals for
differentiable convex functions and several Riemann-Liouville fractional Newton-type inequalities are presented for functions of bounded
variation. Please refer to the [16-22] articles for further information and topics that are not explained.

The structure of the paper is divided into four parts, starting with an overview of the introduction and preliminaries. The fundamental
definitions of fractional calculus and other relevant research in this discipline are given above. In Section 2, we will demonstrate an integral
equality that is essential to establish the main findings. The authors of the paper will be presented some Newton-type inequalities for various
function classes using Riemann-Liouville fractional integrals in Section 3. More precisely, in subsection 3.1, some Newton-type inequalities
will be presented for differentiable convex functions by using Riemann-Liouville fractional integrals. Moreover, we will provide several
graphical examples in order to demonstrate the accuracy of the newly established inequalities. In subsection 3.2, we will give several
Newton-type for bounded functions by fractional integrals. In subsection 3.3, some fractional Newton-type inequalities will be established for
Lipschitzian functions. Furthermore, some Newton-type inequalities will be proved by fractional integrals of bounded variation in subsection
3.4. Finally, we will discuss our opinions on Newton-type inequalities and their potential consequences for future research areas in Section 4.
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2. Main Result

In this section, we establish an integral equality involving Riemann-Liouville fractional integrals.

Lemma 2.1. If f : [a,b] — R is an absolutely continuous function (a,b) such that f' € Ly [a, D], then the following equality holds:

s () oo (552 oo g [ (150 o (430)

_b—a I ]
= T[ 1+D].
Here,
1
I :g‘ra [ (16 + 5ta) — 1 (Mta+ 15t) dr,
1
n=[("=3) [/ (o+ 15 a) — 1 (Yta+ 15tb) dr.
1
3

Proof. With the help of the integration by parts, we can quickly acquire
[ 1+1 t I+ 1
11:/t“{f( +b+T)—f (% +—b)}d; @1
0

2 4 1+t 1—¢ 1+t 1—1t
.y {f( b¥ T")”(T“Tbﬂ

1

Wi

1
3

0

o (et )
SHONICSMES)

1

3
200 [ g1 1+1¢ —t I+t 1—t¢
b_ao/t (e S ra) (e ) o

If we apply a similar process above, then we have

o (-3 [ (e ) - (Mt ) 2
“zegr o= ((3) -9 (F) (5]
ST ICERDIRC DIt

1

wl—

If we combine (2.1) and (2.2), then we readily get

1 2a+b a+2b
L+h=——— 3 +3 b 23
b= g [f@+ar (250 43 (52) 4 )] e3)
1
20 a1 1+1 1—1t 1+1 1—1
- —b+— —a+—>» .
bfa/z {f( 2 + 2 a)+f( > a+ 2 )}dt
0
Let us consider the change of the variables x = %b—i— %a andy = % Ttb for 7 € [0, 1]. Then, the equality (2.3) can be rewritten as

follows

I‘HFﬁ {f( )+3f(2a+b)+3f(a—;2b)+f(b)} —m{ a+f(a+b)+1,;’if(a;b)}. Q2.4)

Multiplying both sides of (2.4) by , we arrive the proof of Lemma 2.1. O

3. Inequalities for various function classes

In this section, we prove several Newton-type inequalities for various function classes using Riemann-Liouville fractional integrals. To be
more precise, some Newton-type inequalities established for differentiable convex functions by using Riemann-Liouville fractional integrals.
In addition, we acquire several graphical examples in order to demonstrate the accuracy of the newly established inequalities. Moreover, we
present some Newton-type inequalities for bounded functions by fractional integrals. Afterwards, several fractional Newton-type inequalities
are obtained for Lipschitzian functions. Furthermore, some Newton-type inequalities are proved by fractional integrals of bounded variation.
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3.1. Fractional Newton-type inequalities for convex functions

Theorem 3.1. Assume that the assumptions of Lemma 2.1 hold and the function | f'| is convex on the interval [a,b]. Then, one can prove
fractional Newton-type inequality

s () (42 ] T () ()]

b—a
<
- 4

1
8

(i (o) + () |1 (@] +[ 1 )]

Here,

and
1 1y o+1 1 In(2
L m(“(é) )*77 mg;; <a,
Qz(a):/ ta_Z dr = 1 -
1 33\ 1+4 1yo+1 2
; e ) ] -1 o<as il

Proof. By taking into account the absolute value of Lemma 2.1, we can directly have

!é[ﬂ o (5o (52 o] - EE [ (45) o (477)]) 6
/|t“|{ (EbJr%)‘Jr ’(%aqt%b)udt

1+t t
(THT )'*

141 1—1¢
£ (Hytar )| a

3
4
Since |f’| is convex, we have

s (52 (2 o] e (22 (42

1

Lo (e (e (7)ol
+!,a_3‘[(gﬂ)| ol (S (S ol () el

=P @@ o @) [ @]+ )]

IN

This finishes the proof of Theorem 3.1. O

Remark 3.2. Ifwe choose o0 = 1 in Theorem 3.1, then we can obtain Newton-type inequality

o (22 s (52 ] 5L o)< 282 iyl o),

which is established by Sitthiwirattham et al. in paper [15, Remark 3].
Example 3.3. [fa function f : [a,b] = [0,4] — R is described by f(x) = )‘72 with o € (0,15], then the left-hand side of (3.1) reduces to

s [reear (352) o (52 ) o - EGE R [ (45 (457 o
|3 [roar(5) 37 (3) +rew] - A g s ]| - 515G
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The right hand-side of (3.1) coincides with

bf
o Q@+ @) [f @] +] B)]] = 4(Qi (@) + 02 (@)
_ In(3

it 0<a <.
- 20 (3y!1F& , 2 e+l in(3)

dlatr (@) e ) a1 m(l) <=1

Finally, we have
3
kgl < 2, 0<as i

The left terms === The right terms

1.8
16 b
141 b

121 b

0.8 b

0.6 g o |
The left terms === The right terms

0.4 \ \ \ | ; 02 \ |
0 0.05 0.1 0.15 0.2 0.25 0.3 0 5 10 15
n(3) n(3)
(a) Graph based on the interval 0 < a < ; ( l) . (b) Graph based on the interval ; ( 1) <a<l1s.
n( 3 n(§

Figure 3.1: The left-hand side of (3.1) is consistently below the right-hand side of this inequality for all values of & € (0, 15] in Example 3.3.

Theorem 3.4. Let us consider that the assumptions in Lemma 2.1 hold and the function |f'|%, g > 1 is convex on [a,b]. Then, the Newton-type
inequality

plror (557 war (452 o] 52000 s (57 s (457)]
< (WIH) (é)“”“)” [(ﬂf’ LIRS |f'<a>|‘1)5+ (s (b>|q) é}

| L
1
3

P
is valid. Here, — + - = 1.
P + q

3
t*—=
4

+

i {(5|f’<b>‘19+|f'<a>">3'+<5|f'<a>|‘19+|f'<b>|‘1)q

Proof. By applying Hélder’s inequality to (3.2), we obtain

o (B52) o (452) 0] L (43 (1)

1 1
P 1
3

1 1
P 1 q

1
1 q 1
3 3 3
b— 1+t 1—t \|9 1+t 1—t \|4
< 4“ /\t“|”dr /f’(%quTa) | + /\t“\”dz /f’(%HTb) dt
0 0 0 0
1 1 1 1
1 » P 1 q 1 1 3p p 1 1 1 q 1
I+t 1—t¢ +1t t
o _ - / - - (04 = ! - -
+(/t dt ./f(2b+2)dt +(/t 4dt v/f(2a+2b)dt
1 1 1 1
3 3 3 3
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Taking advantage of the convexity |f/|7, we get

L >+3f(2““’) o (S5 )] G [ (152 s (457)]

: 1 H 1
q P 1
3

b— 1 1—t,, a 1 /
< 4“ O‘I’dt ( —H )|q+Tt|f (“)|q)‘” + /t Pdi /( —2H| |q TIV (b)\")d:
0 0
1 3P 1+1¢ 11—t ‘
i) (s
h 317 1 1—1,, '
+ /r“74 dt /( |f' (@)]? +—f (b)|q)dt
b-a ()“P“ ' (7|f’(b)|”+5|f/(a)|q);+(7|f’(a)|"+5|f/(b)|”)5
T4 (Xp+1 36 36

1

w3 g pKﬂf’(b)qﬂf'(a)")ff+(5|f’<a>|q+|f’<b>|qﬂ |

o/

1
3

4 9 9

which completes the proof of Theorem 3.4.

Corollary 3.5. If we assign & =1 in Theorem 3.4, then we obtain

é{f()%f(z“b) 3f<a+2b)+f } - a/f
<bo (11 [(i)”*l+(]52)”*1b']’ y [<5|f'(b>|q9+|f'<a>|q)é+(sf’(a)ﬂ;f’(b)ﬁﬂ
< =

NN O @I ESIF @I\ (T @51 B ¢ .
+(p+1(3) ) {( 36 ) +< 36 >]

Example 3.6. Let us consider a function f : [a,b] = [0,4] — R given by f(x) = % From Theorem 3.4 with o € (0,15] and p = q =2, the

left-hand side of (3.4) reduces to equality (3.3) and the right hand-side of (3.4) is equal to

1 12a+1%2\ﬁ+2\/§
2a+1(§) }( 3 >+

Consequently, we have the inequality

1 12a+1%2\ﬁ+2ﬁ
2a+1(§) }( 3 >+

1 120‘“+ 1 3,3
20+1\3 20+1 2(a+1) 8

41—«
3|la+2

2(a3+1) <;)a+l

(2+ﬁ).

I

3

3 1 o+l 1 1 2a+1 1 3 2
2(a+1) <§) 20+1 (5) T2l 2(at1) 8

(2+\/§>,

By using MATLAB software, as one can see in Example 3.6, it is easy to confirm that the left-hand side of (3.4) is always lower than the

right-hand side of (3.4) in Figure 3.2 for all values of o € (0, 15].
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3
= The Ie‘ft terms === The right terms

2.5 7

Py 4
15 7

1F i
0.5 7

0 4
0.5 ' !

0 5 10 15

Figure 3.2: MATLAB has been evaluated and ploted the graph of both sides of (3.4) in Example 3.6.

Theorem 3.7. Suppose that the assumptions of Lemma 2.1 hold and the function |f'|?, ¢ > 1 is convex on [a,b]. Then, one can obtain the

Newton-type inequality

sl () o (57 o] S [ (7)o (5] 6

< @@ @l o reu@r @) + [ @] @] + 2@ )

(@ (@) [[szsw) P )]+ 9 () |7 @] +[05 () |f'(a>!"+96<a>|f’<b>\‘f]ﬂ}.

Here, Q1 () and Q (@) are specified in Theorem 3.1 and

1

3

3
(1=t o, 2045 1) %!
94(05)0/(2>t d“mG) ’
ot a+2 In(3
T (1*(%) )+2(a1+2) ((%) ’1)*5’ ln&% =@
1
1+t 3 1+é +1
sty = [ () 2a={ st [ ) 4] @
f o<agizgig.
1+ 2 o+2 ’
ey [ () E () 1] -
a+1 o+2 In(3
@ (1= 0)) —m@m (D7 1) - 1533 =%
1
1 —¢ 3 I+ a+1
Qﬁ(a):/ (T) t“‘—Z dt = 2((x]+1) {2“(%) +(%) +1} N
f 0<a§i:8.
1+2 o+2 ’
ey [ (D) ()] - 4

Proof. When we first apply (3.2) to the power-mean inequality, one can obtain

slrosar () (05 o R s (452) o (5]

1 1= /1
b—a / / 1+t 11
< /wdt /w e 2l
/ / 2 2

q
dt

4
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! s\’
f 1+1¢
+ /\t“|dt /|t“| (i +—b) dt
0
1—1 L
1 (1 q a
3 3 1+1 11—t
“_>\d “_= —b+— d
Al ) (/, 4 (2+2>t)
! !
g q
3 1 1—
+ /r“— ’(%a—o—Ttb) dt
With the help of the convexity of | /|7, we get

1 =4 1
4"’) (/
!é{f o (57 v (557 e Fgmi [ () s (7))

( “dr) ( S)ire )"+(12l>f’(a)q}dt);

1

3

a_7

t
4

1 q

; adf) </ (L) s (12’)‘f/(b)'q}dt)
(fre) (Jh- <u+f>|fw+<t’>'f““)'*”)q
+ jt K ) ( i3 (ur)b‘ )!"+(]z_l>|f/(b)|q}dt)q

{i@@) [l @ 0 -2 @r @) + [0 (@) |7 @] + 04 @) (0]

(@ (@) [[95 (@) £ ()] + Q6 (@) | @]"]7 +[5 () |7 (@] + 26 () |7 B)]] } }

This ends the proof of Theorem 3.7. O

Corollary 3.8. If we select = 1 in Theorem 3.7, then we have the Newton-type inequality
b
= [rwa

—a

{f() 3f(2a+b)+3f<a+2b) f(b)}_
< b { [(n 7o) +717 (a>|‘1) ., (11 s @l 71y (b)w) }

+ (‘87)1 [(973f QIS Ty (a)‘*)5+ gl @ 25117 W);] }

Example 3.9. A function f : [a,b] = [0,4] — R is presented by f(x) = % From Theorem 3.7 with o € (0,15] and g = 2, the left-hand side
of (3.5) reduces to an equality (3.3) and the right hand-side of (3.5) is

0| =

4{ (@1 (@) 19 (@)7 + [ (@)7] + (Q2(0))? (95 ()] + [Q6 ()] ]}

Finally, we have the inequality

1|l-«
3la+2

\ (@1 (@) [193 (@) +[Qu (@)]7] + (R (@) [ (@)]7 +[Q6 (@)]?].
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0.7 T T T

The left terms === The right terms
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The left terms === The right terms
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Figure 3.3: As one can see in Example 3.9 that the left-hand side of (3.5) constantly stays below the right-hand side.

(a) Graph based on the interval 0 < @ <

(b) Graph based on the interval

o=
N

3.2. Fractional Newton-type inequalities for bounded functions

Theorem 3.10. Consider that the conditions of Lemma 2.1 hold. If there exist m,M € R such that m < f'(t) <M fort € [a,D], then it

Sfollows
1 2a+b a+2b 20710 (a4 1) a+b o fa+b
Hf pear (357 oor (457 v =S [ (557) w2 (7))

b

(@) +Q ()} (M —m).

Proof. By using the Lemma 2.1, we have

() () o] Z S () m ()] e
:b;a b/;ta{f (ﬂbJr%t) m;M]dt+/ {JFM f’(%a—k%b)}m

1 1
" 3 141 11—t m+M ' 3\ |m+M 141 1—t
[ - _ [ o _ -
+/(z 4)[(2b+2a) z}m/(t 4)[2 f(2a+2b)}dt
3
When we use the absolute value of (3.7), we have

52 52 S5 )2

]
1 1— M M 1 1-
o (250t o

dt

dt+/|m . .

Z‘ (%b%—T) m+M —f’M—f (Ht +%b) dt
If we use m < f'(t) < M for ¢ € [a,b], then we get
and
SERIEINE e

With the help of (3.8) and (3.9), we obtain
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prarear (52 o (352 ) o - EGEg s (552 )+ (57

§
_ : b—
v —m) /t _o-a
0

0| =

<

(00) +Q; () } (M —m).

Corollary 3.11. If we choose a. = 1 in Theorem 3.10, then one can obtain

s (522) (252 ] - ] 22

Corollary 3.12. Under assumptions of Theorem 3.10, if there exists M € R™ such that |f'(t)| < M for all t € [a,b], then it follows

!é[f“ o () (52 o] GG [ (50 (437
b a

{Q1 () + Q2 ()} M.

Corollary 3.13. Let us consider o =1 in Corollary 3.12. Then, the following inequality holds:

'; {f( >+3f(2““’> +3f("+32”> +f(b)} - abf(t)dt‘ B9y,

Example 3.14. A function f : [a,b] = [0,4] — R is given by f(x) = %2 From Theorem 3.10 with & € (0,15] and 0 < f'(t) < 4, the left-hand
side of (3.6) becomes to equality (3.3) and the right hand-side of (3.6) is

4{Q (a) +Q ()}

2(1-a) In(3)
+1 > O <o S ln(;)7
al2e 3yHa L 2 e+l 1l W(G) s
a1 (3) e (3 tam 1) m(1) <<
2 T T T
The left terms === The right terms

1.8
16 b
141 b

121 b

0.8 b

06 g o |
The left terms === The right terms
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Figure 3.4: Example 3.14 illustrates how the left side of (3.6) consistently remains lower than the right side.

—

(a) Graph based on the interval 0 < o <

In(3
(b) Graph based on the interval - Ef; <a<ls.
"3

3.3. Fractional Newton-type inequalities for Lipschitzian functions

Theorem 3.15. Suppose that the assumptions of Lemma 2.1 are valid. If ' is a L-Lipschitzian function on |a,b], then the following
inequality

e (52) o (452 ]2 e (52) e (5

<

2
O L0y (o) +-05 ()
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is valid. Here,

and
1 1,0+2 1 In 9)
1 5 aTz(l—(i) )—37 0<0‘§1n&)7
Qg((X)Z/l‘ t‘)‘fZ dt =
1 3 l+% 1\0+2 5 In(3
% e @) -4 il <a

Proof. With the help of Lemma 2.1 and since f” is L-Lipschitzian function, we have

[ (52 ) oar (452 o] GG [ (50 (457

3
141t 1—t 141t 1—t
o A - A e -
/|t|f(2b+2a) f(2a+2b)
0

dt

1
3 141 1—1¢ 141 1—1¢
=2 b+ —a)—f | —a+—b)|dt
+/ 4‘f<2+2a>f<2a+2>d
3
b : 1 3
< 4a /taLt(b—a)dl—l—/ta—ZLt(b—a)dt
0 1
3
(b—a)®

= (e (@) +0s (@)}

Corollary 3.16. Consider oo = 1 in Theorem 3.15. Then, the following Newton-type inequality holds:

'zla{f() 3f(2a+b> 3f(a+2b>+ } ! a/f ‘_42525)l7736a)L

3.4. Newton-type inequalities for functions of bounded variation

Theorem 3.17. Let f : [a,b] — R be a function of bounded variation on |a,b]. Then, we obtain

[ (2 sar (S52) rw)] -2 HE D [ (45 e (452))
<amacl[3- (1) 5 () v

a
b
where \/ (f) denotes the total variation of f on |a,b].

Proof. Define the function Ky (x) by
o a
%(b;a) 7<a42fb7x> 7 a<x<2(1+b
atb\ 2a+b at2b
Ka(x) = (x—T> 7 2ath <y < at2b
a a
atb 3 (b=a a+2b
(x T2 > 4 ( 2 ) ’ 3 S . S b

By using the integrating by parts, we have
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b

/ Ka(x)df(x)

a

2a+b a+2b
3

_ /B (bza)a—(a;b—x>a}df(x)+za£ (x—a;rb)adf(X)

3

)25 o

a+2b

:%(b;a)“f(aH% (b;a)af<2a;—b)+% b;a)af(a—g%)_i_%(b;a)af(b)
_aj <a;b—x)a_1f(x)dx—a/h (x—a;rb)a_lf(x)dx

2a+b
3

= (bz;al)aé {f(a)+3f (MTH’) +3f(“+32b) +f(b)] —T(a+1) {Jﬁif(“;b) +J£‘_f(a;b)] :

In other words, one can get

o (22 o (#42) ] R s (212) (12

o—1 b
- (bz_—) [ Katwf ).

b
It is known that if g, f : [a,b] — R are such that g is continuous on [a,b] and f is of bounded variation on [a,b], then [ g(¢)d f(t) exists and
a

b b
[swas)| < sup €01V (3.10)

By using (3.10), it yields
1 2a+b a+2b 20710 (o4 1) [ [a+b o ,fa+b
s (52 v (552 o] S o (57 s (457

b
| [ Kaldf(

201 3/b—a\* [a+b e a+b\* o
RGO G AL AR GO R
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e ) R ) Ve (5 o
) () () ] o
o 3 Q) LAV ()Y o o[- () 4] Vo

Remark 3.18. Let us consider o« = 1 in Theorem 3.17. Then, the following inequality holds:

'é{f()+3f(2a+b)+3f<a+2b)+f }——/f Nds

which is given by Alomari in [23].

Sﬂ\/(f)

4. Conclusion

In this paper, some Newton-type inequalities are establish for various function classes involving Riemann-Liouville fractional integrals. First
of all, we present an integral identity that is necessary in order to prove the main findings of the paper. Subsequently several Newton-type
inequalities are investigated for differentiable convex functions by using the Riemann-Liouville fractional integrals. In addition to this, we
give several examples using graphs in order to show that our main result is correct. Moreover we prove sundry Newton-type for bounded
functions by fractional integrals. Furthermore, several fractional Newton-type inequalities are obtained for Lipschitzian functions. Finally,
some Newton-type inequalities are acquired by fractional integrals of bounded variation.

The concepts and approaches for our findings about Newton-type inequalities using Riemann-Liouville fractional integrals could clear the
way for additional studies in this area in subsequent publications. Improvements or generalizations of our results can be investigated by
using different kinds of convex function classes or other types of fractional integral operators. Finally, one can acquire several Newton-type
inequalities for various function classes with the help of the quantum calculus.
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