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Abstract: Covid-19 is a viral infection that affects the respiratory tract and causes serious
health problems on a global scale. Due to the high contagiousness of the disease, early detection
and accurate classification are of great importance. In this study, a novel orthogonal
regularization method is proposed to improve the detection accuracy of Covid-19 disease from
X-ray images. The proposed regularization method, evaluated using ResNet110, improves the
classification accuracy compared to traditional Orthogonal regularization approaches. In the
experimental studies, the proposed method is compared with various regularization techniques
and the highest classification success rate is achieved by increasing the test accuracy rate to
96.52%. In addition, it is observed that the proposed method optimizes the learning curve of
the model, especially in the later stages of the training process, and increasing the test accuracy.
In addition, compared to the existing orthogonal regularization methods for Covid-19
detection, the proposed approach improved the test classification performance by
approximately 1% in accuracy, F1-score, sensitivity, recall and specificity metrics.

Yeni bir Orthogonal Diizgiinlestirme Kullanan Artik Yapay Sinir Agi ile X-Ray

Goriintiilerinden Covid-19 Tespiti

Anahtar 0Oz: Covid-19, solunum yollarini etkileyen ve kiiresel 6lcekte ciddi saglik sorunlarina neden
Kelimeler olan viral bir enfeksiyondur. Bulasiciligi nedeniyle hastaligin erken teshis ve dogru
Derin 6grenme, siiflandirilmasi bityiik 6nem tasimaktadir. Bu ¢aligmada, X-1g1n1 goriintiilerinden Covid-19
Artik ag, hastaliginin tespit dogrulugunu artirmak icin yeni bir ortogonal diizgiinlestirme yontemi
Ortagonal onerilmistir. ResNet110 agina uygulanan ydntem, geleneksel ortogonal diizgiinlestirme
diizglinlestirme, yaklasimlarina kiyasla siniflandirma dogrulugunu artirilmaktadir. Deneysel c¢aligmalarda,
Covid-19 onerilen yontem ¢esitli diizgiinlestirme teknikleriyle karsilagtirilmig ve test dogruluk oranini
%96,52'ye cikarilarak en yiiksek siniflandirma dogrulugu elde edilmistir. Onerilen yontemin
ozellikle egitim siirecinin sonraki asamalarinda modelin 6grenme egrisini optimize ettigi ve
test dogrulugunu artirdig1 da goriilmistiir. Ayrica, Covid-19 tespiti igin mevcut ortogonal
diizgiinlestirme yoOntemleriyle karsilastirildiginda, oOnerilen yaklagim test siniflandirma
performansini dogruluk, F1 puani, duyarlilik, keskinlik ve 6zgiilliilk metriklerinde yaklasik %1
oraninda iyilesme saglanmistir.
1. INTRODUCTION human-to-human transmission [2]. According to the
report published by the World Health Organization, 776.8
Covid-19 is a new mutated form of coronaviruses, a million confirmed cases and more than 7 million deaths
ribonucleic virus [1]. It, which has affected many have been reported [3]. Patients infected with this new

countries of the world in recent years, spreads rapidly by coronavirus have symptoms such as fever, fatigue,
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headache, shortness of breath [4]. The rapid spread and
progression of the disease increases the importance of
early diagnosis. In advanced stages, it can lead to serious
complications up to pneumonia in the lungs.

Covid-19 is primarily diagnosed using Reverse
Transcription Polymerase Chain Reaction (RT-PCR) test.
However, the PCR test has an accuracy rate of
approximately 70% in correctly identifying the disease
[5]. Therefore, in addition to the RT-PCR test, X-ray and
computed tomography (CT) imaging are commonly
utilized by physicians [6]. CT is a widely used technique
for disease detection; however, obtaining CT images is an
expensive procedure. Given the rapid global spread of the
disecase, particularly in underdeveloped countries, the
implementation of a more cost-effective diagnostic
method is crucial. Although the sensitivity of detecting
COVID-19 from chest X-ray images is below 70%, its
affordability makes it a valuable tool in disease diagnosis
when further developed and optimized [7,8].

Artificial intelligence applications are widely utilized in
the medical field. Narin et al. implemented a hybrid deep
learning approach on X-ray images to detect pneumonia
caused by the Covid-19 [9]. In their study, COVID-19
pneumonia was identified with an accuracy of 98.0%
using the InceptionV3 convolutional neural network,
alongside ResNet50. Another study conducted by Wang
et al. achieved a sensitivity of 91% in detecting COVID-
19 using their proposed deep learning architecture [10].
Similarly, Horry et al. employed CT, X-ray, and
ultrasound imaging for COVID-19 detection. They
applied VGG19, a deep learning architecture, to these
images, achieving a sensitivity of 86% for X-ray images,
100% for ultrasound images, and 84% for CT images [11].
Loey et al. utilized CT images to detect COVID-19. To
enhance the performance of the deep learning
architecture, the dataset containing a limited number of
samples was augmented wusing a Convolutional
Generative Adversarial Network (CGAN). Subsequently,
the architectures were trained on both classical and
CGAN-based augmented data using AlexNet, VGG16,
VGG19, GoogleNet, and ResNet50 networks. Among
these, the ResNet50 architecture achieved the highest
accuracy of 82% with classical data augmentation [12].

In this study, a novel orthogonal regularization (OR)
method is proposed. This method is subsequently applied
to the ResNet110 network for the detection of COVID-19.
The second section of the study outlines the materials and
methods. The third section presents the experimental
results and compares the performance of the proposed
method with existing approaches. Finally, the fourth
section discusses the obtained results and provides
suggestions for future research.

2. MATERIAL AND METHOD

2.1. Covid-19 Dataset

The dataset consists of chest X-ray images of pneumonia
caused by the COVID-19 virus, which has significantly

impacted the world in recent years. It includes a total of
three classes: normal, other pneumonia, and COVID-19

pneumonia [13,14]. The dataset contains 1,200 COVID-
19, 1,341 normal, and 1,345 other pneumonia X-ray
images. A total of 80% of the data was used for training,
while the remaining 20% was allocated for testing. Figure
1 shows sample images of the Covid-19 dataset.

COVID-19

PNEUMONIA NORMAL

Figure 1. Covid-19 dataset X-ray images.
2.2. Residual Neural Network

Residual Neural Network (ResNet) is an architecture
proposed to address the gradient vanishing problem [15].
Residual layers (residual blocks) enhance training
efficiency by utilizing the output of a previous layer as an
input to subsequent layers. The architecture of a residual
layer is illustrated in Figure 2(a). The literature contains
ResNet architectures with varying depths and widths. In
this study, ResNetl10 (Figure 2(b)) is used. This
architecture incorporates bottleneck residual layers, and
its depth is given by the formula p = 9n + 2, where n
represents the total number of convolutions and p denotes
the total depth. Thus, ResNet110 consists of 1.7 million
parameters.

Fix)

1x1,256

(a) {b)

Figure 2. ResNet architectures. (a) Basic residual block, (b) Residual
block used for ResNet110.

2.3. Orthogonal Regularization

Regularization is one of the key elements of deep
learning, a subfield of machine learning. Regularization is
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usually applied as a penalty function added to the loss
function [16]. The penalty function is defined as a method
that aims to reduce the test error in the learning model but
does not reduce the training error [17]. This definition is
a restrictive statement for deep architectures. Because
methods such as weight both training and test error [18].
As a result, all techniques used for better generalization
and test accuracy of the neural network are called
regularization.

One of the most significant challenges in artificial neural
networks (ANN) is the vanishing or exploding gradients
as the depth of the network increases. To address this
issue, it has been proposed that the parameter matrix
should approximate the Gram matrix [19]. While the
stability of forward propagation is achieved through batch
normalization, the uniform distribution of the error cannot
be ensured in the backpropagation process [20]. An
alternative approach to address this issue is the OR
method [21-23]. OR methods in the literature have been
proposed as an alternative to the classical weight decay
regularization approach.

Orthogonality is defined as x, y being two vectors, x,y €
R"™ for x -y =0 - x L y. Unit orthogonality
(orthonormality) forces the vector norms to be equal to
one: [|x|]l=1 and]|lyl| =1. After this a priori
information, it is necessary to mention how orthogonality
is used in the ANN training process. In the feed-forward
algorithm of ANN, kth layer output vector x is
transformed y = WTx while moving to the (k +
1)th layer input.

where W is called the linear transformation matrix
(Equation 1). The condition that the norms of x and y are
equal to each other during this transformation is called
Norm-Preservation and is shown in Equations 1 and 2.

[
W = [wl wnl (1)
o T
Iyl = VyTy = JATWWTx = JxTx @)

= ||x||, eger WWT =1

Orthogonal vectors are needed to preserve vector norm
values. Therefore, the distance of the WWT result to the
unit matrix is obtained as the cost value. Bansal et al.
proposed to classify four different categories of methods
for regularization this cost value [21]. These are Soft
Orthogonal (SO), Double Soft Orthogonal (DSO), Mutual
Coherence (MC) and Spectral Restricted Isometry
Property (SRIP) orthogonal regularization [20,24-27].

SO, the column vectors of the matrix W are required to be
perpendicular to each other and have unit length.
Accordingly, the regularization cost (R) is calculated by
multiplying the distance of the result WTW € R™" from
the unit matrix [I],,,,by a coefficient 1 .The mathematical
form of the SO method is given in Equation 3.

D(W) = MWW —I|I (€)

The cost gradient is calculated as 4AW (WTW —I) and is
used in the back propagation algorithm to update the
parameters. W a matrix with rows m and columns n. The
rank of the matrix is m if it is greater than or equal to m, n.
This situation is called under complete matrix. In such
cases, an orthogonality relation can be established.
However, if it is greater than or equal to n, m, even if the
rank of the matrix is m, this is called an over complete
matrix. WTW € R™" may not be identified from these
matrices. To overcome these shortcomings, approaches
have been developed that divide the weight matrix W into
subspaces such as Stiefel manifold or Jakobi. These
approaches reduce the columns of the over complete W
matrix to lower dimensional subspaces, making the matrix
easier to process and analyze [24].

DSO, the column vectors of the matrix W are required to
be perpendicular to each other in two different vector
spaces (WTW € R™" ve WWT € R™™) and to be of
unit length [21]. Accordingly, the cost function is defined
as follows:

DW) = (IW'W —IlIz + IWWT —I1|7) (4)

where W is weight matrix and has m rows and n
columns. m is greater than n, the regularization loss is
calculated according to the formula A||WTW — I||%, n is
greater than or equal to m, the formula A||WWT — I||2 is
used.

Another OR method is MC. W the MC value between the
column vectors of the parameter matrix is calculated as
shown in Equation 5 [26].

|[{wi, w))|

_ 5
Twill + w] ®

Hw = MaXix; =

For the MC method, w; is the column vector ith of W.
W, 1s seen that in the range [0,1] and in the case of
ortagonality, it approaches 0, and in other cases it
approaches 1. The use of L, is preferred because it is the
vector element with the highest absolute value and plays
the biggest role in increasing the consistency value [26]:

DW) = AWW =l (6)

For MC L, returns the largest value in the vector
elements.

Regularization methods developed using spectral
restricted isometry property (SRIP) give better results in
statistical metrics and execution time than other
methods[27,28].The regularization cost function used in
this approach is as shown in Equation 7.

DW) =2A-a(WTW =) (7)
where 1 is the regularization coefficient.a(WTW —I)

function returns the spectral norm of the WTW — I matrix
and is calculated as shown in Equation 8.
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where v is a vector starting with random values in R™
space. Then the vector u and again v are computed
iteratively. The spectral norm is obtained by the ratio of
both vector norms.

2.4. Proposed Orthogonal Regularization Method

Orthogonal regularization approaches generally aim to
approximate the weight matrix W as a Gram matrix.
However, this approach weakens the regularization effect
in overcomplete cases and negatively impacts the
performance of the network. Furthermore, enforcing all
weights to be orthogonal vectors hinders the model’s
convergence towards an optimal learning curve [27]. The
proposed OR approach is based on enforcing column
vectors to be binary while modulating orthogonality
transitions.

In this context, Figure 3 presents the parameter images
(filter/mask images) in the layers of three different CNN
architectures (AlexNet [29], VGG16 [30], and ResNet50
[15]) trained on the ImageNet dataset. A careful analysis
of the figure reveals that numerous binary images within
the layers are nearly orthogonal to each other. This
observation supports the hypothesis that the training
process inherently seeks orthogonal pairs of binary
images [31].

(@

Figure 3. Hidden layer weight visualization (a) AlexNet,(b) ResNet50,
(c) VGG16.

While classical regularization approaches force all
parameter vectors in the layer to be orthogonal to each
other by WTW — I operation, in the proposed approach,
only binary vector pairs are forced to be orthogonal. The
cost function of the proposed regularization approach is
given below:

D(W) = AZ(WiTle -1,
i€(1,3,5..}

®

where A is the regularization rate and w: is the column
vector i of W. The total loss function observed in the
training/testing activities of the datasets is calculated as
shown in Equation 10.

HW)=a+*K W)+ (1 —a)+*DW)  (10)

K is the loss function and the cross entropy error value. D
is the regularization loss. In the experiments D cost varies
and the effect of regularization is analyzed. H(W) is the
total loss function. The total loss function of the proposed
algorithm contains loop and condition expressions. This
process forces the weights of the network to perform OR
in binary layers, not in general. The main reason for this
is to avoid the overcomplete situation. For these reasons,
the derivative of the proposed method and the loss
function are calculated by automatic derivative methods
[32].

2.5. Performance Evaluation Metrics

In this study, the metrics Acc, Pre, Recall, F1-score and
Spe and the confusion matrix are used to measure the
experimental performance of the proposed models. In the
confusion matrix, TP and TN values indicate the number
of correctly classified samples, FP and FN indicate the
number of incorrect predictions of the model. These
metrics are given mathematically below [33,34].

Acc = (TP + TN)/(TP + TN + FP + FN)

* 100 an

Pre =TP/(TP + FP) (12)

Recall =TP/(TP + FN) (13)

F1 —score = (2 * Pre = Recall) /(Pre (14)
+ Recall)

Spe =TN/(TN + FP) 100 (15)

where Acc, Pre, Recall, Spe and Fl-score are derived
from the confusion matrix. Acc is the ratio of the number
of correctly predicted images for each class to the total
number of images. Pre and Recall are the precision and
sensitivity values of class detection, respectively. The
higher these values are, the better the images belonging to
the class are detected. F1-score is the harmonic mean of
Pre and Recall.

The confusion matrix gives information about the actual
and predicted classes in a classifier. The class
performance of a model is evaluated using the matrix
values in Figure 4 [33,35].

Predicted Class
Positive Class

Negative Class

Actual Positive

Class

Class
Negative
Class

Figure 4. Confusion matrix.
3. EXPERIMENTAL RESULTS

In this section, the effect of regularization on training and
testing using the COVID-19 dataset with the ResNet110
architecture is analyzed. The training parameters utilized
for ResNetl110 are presented in Table 1. The Adam
optimizer is employed, with the learning rate set to
10~2and the number of epochs set to 200. The obtained
results are presented in Table 2.

243




Tr. J. Nature Sci. Volume 14, Issue 2, Page 240-246, 2025

Additionally, Figure 5 presents the accuracy curve of the
proposed approach (ResNetl10+OR) and the ResNet110
architecture during training.

Table 1. Training parameters of ResNet1 10

Parameters ResNet110
Input layer 32x32x3
Intermediate 12 residual blocks and fully connected
layer classifier
Output layer 10
Activation ReLU
Optimization Adam
Package size 128
Epoch 200
Learning rate 0.01
ResNET110_Covid19
Accuracy
Ao o M“W
09 \J :
)}/,‘lef\,'rm"‘
08 ,-'r
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Z f
e |
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Figure 5. ResNet110 accuracy/epoch for Covid-19 dataset.

In Table 2, when the proposed OR method is compared
with orthogonal regularization methods in the literature,
the results indicate that the proposed method
demonstrates an improvement in statistical metrics. While
the accuracy of ResNetll0 (a model without
regularization) is reported as 96.01%, this increases to
96.54% with the proposed OR method. Precision (Pre)

and Recall are measured at 96.52% and 96.51%,
respectively, indicating that the proposed approach
achieves better class discrimination compared to other
methods. Furthermore, a specificity (Spe) of 98.27% was
achieved with the proposed approach, demonstrating
improved performance in reducing false positives.

Table 2. Test results obtained with ResNetl10 architecture using
different OR techniques

Acc Pre  Recall Spe F1
Method ) (%) (%) (%) (%)
ResNet110 96.01 9598 9597 98.01 95.97

ResNet110+SO 96.24 9625 9622  98.13 96.24
ResNet110+DSO ~ 96.14  96.12  96.09  98.07  96.10
ResNet110+MC 96.24  96.25 96.22  98.13 96.24
ResNetl110+SRIP  96.41 9638 9636 98.20  96.37
Proposed OR 96.54 96.52  96.51 98.27 96.51

The proposed OR method provides a significant
improvement in both classification accuracy and other
key performance metrics. Specifically, the test accuracy
improves by approximately 1%.

As shown in Figure 5, the effect of regularization is
limited during the initial 25 iterations. However, after the
50th iteration, the effect of regularization becomes more
pronounced in the model’s test performance. These
findings confirm that the proposed approach enhances
classification accuracy by approximately 1%.

4. DISCUSSION AND CONCLUSION

In this study, the effectiveness of a new orthogonal
regularization method developed for COVID-19 detection
is investigated. The proposed OR method, which is added
to the loss function of the ResNet110 architecture, aims to
optimize the hidden layer weights as binary orthogonal
vectors. Experimental results indicate that the
regularization effect is limited during the first 25
iterations of training, but a significant performance gain
is observed after the 50th iteration. In addition, the
proposed method achieves 96.52% classification accuracy
in detecting COVID-19 from X-ray images,
demonstrating superior performance compared to
orthogonal regularization approaches such as SO, DSO,
MC, and SRIP. It is shown that the unified regularization
approach improves learning efficiency by enhancing the
classification performance of neural networks and can be
utilized in detecting critical diseases such as COVID-19.

In future studies, the applicability of the method for
detecting other diseases will be investigated by testing it
on different deep learning architectures and larger
datasets. Furthermore, by evaluating its performance in
real-time applications within clinical environments, this
study aims to contribute to the broader and more effective
adoption of Al-driven medical imaging technologies for
disease detection.
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