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1. Introduction 
 

  Since the early 20th century, the aviation industry has 

evolved beyond being merely a reflection of engineering 

advancements, becoming a pivotal sector that has profoundly 

reshaped global transportation, trade, and tourism (Sen et al., 

2021). The widespread adoption of commercial air travel has 

significantly reduced travel times, fostering economic 

integration and cultural exchange across geographically 

distant regions (Esin et al., 2021). As aviation became more 

accessible, it not only enhanced connectivity but also played a 

crucial role in global economic growth by facilitating 

international business operations and expanding tourism 

markets. However, this rapid expansion has also resulted in 

substantial environmental challenges, primarily due to the 

industry’s reliance on fossil fuels, which contributes to 

increasing carbon emissions. The adverse effects of climate 

change and global warming have intensified the urgency for 

the aviation industry to adopt sustainable practices, making 

environmental responsibility a key priority for its long-term 

viability (Bahadir et al., 2018).  

  In response to these challenges, the aviation sector has 

undertaken extensive initiatives to mitigate its ecological 

footprint through technological innovations and regulatory 

frameworks. International organizations such as the 

International Air Transport Association (IATA) have set 

ambitious sustainability targets, including the commitment to 

achieving net-zero carbon emissions by 2050 (IATA,2050). 

To support this objective, advancements in aircraft design have 

focused on optimizing aerodynamics, incorporating 

lightweight composite materials, and exploring alternative 

propulsion systems such as hybrid-electric and hydrogen-

powered engines (Volkan, 2013). These technological 

improvements aim to enhance fuel efficiency, reduce 

operational costs, and minimize the overall environmental 

impact of air travel. For instance, the development of next-

generation narrow-body aircraft like the A321 has 

demonstrated significant progress in fuel economy while 

maintaining high performance and passenger capacity, making 
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them a model for future innovations in sustainable aviation 

(STM, 2021). 

  Scientific research and data-driven analysis play a 

fundamental role in this transition, enabling the precise 

evaluation of factors influencing fuel consumption and 

emissions. Through advanced statistical modeling techniques, 

such as regression analysis and machine learning-based 

simulations, researchers can identify optimization 

opportunities that contribute to the development of more 

efficient aircraft designs (Fenkli et al., 2023). Furthermore, 

sustainability efforts extend beyond aircraft engineering; 

operational strategies such as optimized flight planning, 

enhanced air traffic management, and the integration of 

sustainable aviation fuels (SAFs) are gaining traction as 

complementary approaches to reducing emissions. 

  The successful implementation of these measures requires 

coordinated efforts among industry stakeholders, including 

aircraft manufacturers, airlines, regulatory bodies, and 

research institutions. Government policies that incentivize 

sustainable technology investments, coupled with increased 

public awareness of eco-friendly travel choices, further 

support the industry's shift toward sustainability (Altinkeski et 

al., 2022). Additionally, collaborative projects between 

academia and the private sector continue to drive innovation 

in materials science, propulsion technology, and alternative 

energy sources, paving the way for a greener future in aviation. 

  Ultimately, achieving long-term sustainability in the aviation 

sector necessitates a holistic approach that integrates 

environmental, economic, and technological considerations. 

By leveraging cutting-edge research, policy-driven initiatives, 

and industry-wide collaboration, the aviation industry can 

continue to expand while mitigating its ecological impact, 

ensuring that future generations can benefit from the 

advancements of air travel without compromising 

environmental integrity. 

 

2. Methodologies for measuring fuel efficiency  
 

The dataset employed in this study comprises one 
dependent variable and eight independent variables. The 
dependent variable is defined as "fuel consumption" for the 
Airbus A321 aircraft model, which is a critical parameter in 
flight operations concerning energy efficiency and cost 
optimization (STM, 2021). The independent variables include 
"number of passengers," "flight level," "flight distance," 
"average wind speed," "average airspeed," "flight duration 
(minutes)," "aircraft takeoff weight," and "total fuel." These 
variables have been meticulously selected to model the 
relationship between flight performance and fuel 
consumption. 

The data utilized for analysis originates from flight records 
obtained at Istanbul Airport. As one of Turkey’s busiest 
aviation hubs, Istanbul Airport provides a comprehensive and 
reliable dataset (Kacar et al., 2025). The primary objective of 
this study is to model the impact of independent variables on 
fuel consumption and to develop a predictive model 
accordingly. To achieve this, flight data spanning three months 
were used for model training, while an additional month’s data 
was employed to assess the predictive capability of the model. 
The decision to use a three-month dataset for training is based 
on its ability to capture sufficient data variability and provide 
reliable results. 

The selection of dependent and independent variables was 
informed by prior studies in aviation operations and industry 
standards. "Number of passengers" directly influences the total 

payload, making it a significant determinant of fuel 
consumption (Ozturk, 2023). Similarly, "flight level" and 
"flight distance" are key operational parameters affecting 
flight dynamics and fuel efficiency (Kaltenecker et al ., 2022). 
"Average wind speed" and "average airspeed" reflect the 
environmental conditions experienced during flight, playing a 
crucial role in fuel consumption analysis. Additionally, "flight 
duration" and "aircraft takeoff weight" are fundamental factors 
in determining aircraft performance, while "total fuel" denotes 
the amount of fuel loaded before departure (FAA, 2023). 

The dataset was rigorously analyzed throughout the model 
development and validation processes. A total of 110 flight 
records were incorporated into the modeling phase to account 
for potential seasonal variations and operational discrepancies. 
To evaluate the accuracy of the trained model and its 
applicability to future flights, one month of flight data was 
utilized for validation. This methodological approach enables 
an assessment of both the generalization capacity of the model 
and its alignment with real-world operational conditions. 

  In conclusion, this study provides an in-depth examination of 

the relationships between dependent and independent 

variables and develops a predictive model for estimating fuel 

consumption. The findings, based on flight data from Istanbul 

Airport, contribute valuable insights toward improving energy 

efficiency and operational performance in the aviation sector. 

The results offer practical implications for industry 

applications and serve as a reference for future academic 

research in this domain. 

  

3. Data and Method 
 

3.1. Data  
In order to correctly analyze the relationship between the 

parameters affecting fuel efficiency, 110 flight data between 

Istanbul Airport and Elazığ Airport were taken into account. 

This data set, covering a flight period of approximately three 

months, was collected in a way that is ready for analysis in 

order to create a consistent and meaningful model.  

 

3.2. Method 
In this study, multiple linear regression analysis was 

employed to identify the impact of various parameters on fuel 
efficiency in flight operations. The analysis was conducted 
using 110 flight records obtained from Istanbul Airport. In the 
developed model, fuel consumption during the flight was 
designated as the dependent variable, while the following 
independent variables were considered: number of passengers, 
average wind speed, average airspeed, flight distance, flight 
level, flight duration (minutes), total aircraft takeoff weight 
and total fuel quantity. 
    The initial phase of the analysis involved assessing the 
normality distribution of variables to determine the suitability 
of the dataset for model development. Subsequently, 
preliminary tests for multiple linear regression analysis, 
including multicollinearity assessment and outlier detection, 
were performed. As part of the multicollinearity test, 
correlation coefficients among the independent variables were 
calculated to evaluate the presence of strong linear 
relationships. 

  Based on the findings from these preliminary tests and 

statistical evaluations, a multiple linear regression model was 

constructed to analyze the parameters influencing fuel 

efficiency in flight operations. This study contributes to the 

statistical modeling of fuel consumption in aviation 



JAV e-ISSN:2587-1676                                                                                                                                                     9 (2): 285-294(2025) 

287 

 

operations, offering insights into energy efficiency and cost 

optimization through a data-driven approach.  

 

3.2.1 Multiple linear regression analysis  
Multiple linear regression analysis is a widely used 

statistical method for examining the relationship between a 
dependent variable and multiple independent variables (Bulut, 
2024). It is particularly valuable in complex systems where 
multiple factors contribute to an outcome, providing a 
structured framework to assess both individual and combined 
effects. 

In practical applications, this method is extensively utilized 
across various industries. For instance, an airline’s financial 
performance depends on multiple factors such as fuel costs, 
load factor (LF), cost per available seat kilometer (CASK), 
break-even load factor (BELF), and market conditions (Kose, 
2021). Evaluating these variables collectively through 
multiple linear regression allows for a more comprehensive 
understanding of their impact compared to analyzing them in 
isolation. 

A fundamental assumption of multiple linear regression is 
linearity, which implies that changes in the independent 
variables lead to proportional variations in the dependent 
variable (Osborne et al., 2022). If this assumption is not met, 
the model may fail to produce reliable results. Therefore, 
before constructing the model, it is essential to assess whether 
the relationships among variables adhere to linearity. If 
nonlinearity is detected, appropriate transformations or 
alternative modeling techniques should be considered. 
    In conclusion, multiple linear regression is a crucial tool for 
analyzing multivariate relationships, offering insights for both 
academic research and industry applications. Ensuring that the 
assumptions are met and that variables are appropriately 
selected enhances the model’s predictive accuracy, leading to 
more reliable and meaningful results. 

Multiple linear regression analysis is a statistical method 
used to model the relationship between a dependent variable 
and multiple independent variables. It quantifies how changes 
in independent variables influence the dependent variable, 
making it useful for analyzing complex systems with multiple 
interacting factors. The general equation is (Karaca et al., 
2016): 

     𝑦 = 𝛽0 + 𝛽1 𝑥1 +  𝛽2 𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 + 𝜀                  (1) 
where y is the dependent variable, x₁, x₂, ..., xₖ are 

independent variables, β₀ is the intercept, β₁, β₂, ..., βₖ are 
regression coefficients, and ε represents the error term, 
assumed to follow a normal distribution. 

The model relies on key assumptions: a linear relationship 
between variables, error terms with a mean of zero (E(ε) = 0) 
and constant variance (homoscedasticity), and no strong 
intercorrelation among independent variables (no 
multicollinearity) (Karaca et al., 2016). Violations of these 
assumptions can lead to biased estimates, requiring 
adjustments such as data transformations. 

 
3.2.2 Linearity assumption 
The linearity assumption posits that a linear relationship 

exists between the dependent and independent variables 
(Abebe, 2024). This assumption suggests that variations in the 
dependent variable can be consistently explained by 
proportional changes in the independent variables. As a 
fundamental determinant of model reliability, the linear 
relationship must accurately represent the underlying factors 
influencing the dependent variable (Abebe, 2024). When a 
linear association between the variables is absent, the 
predictive capability of the model diminishes, and its ability to 
accurately explain variations in the dependent variable 

becomes compromised. Consequently, the regression 
coefficients may lose their statistical validity, leading to 
misleading conclusions. 
   To assess the validity of this assumption, a correlation 
analysis is typically conducted between the dependent and 
independent variables (Anandhi, 2023). This analysis evaluates 
whether the dependent variable exhibits a linear trend, thereby 
determining whether the model should be expanded to 
incorporate nonlinear relationships. If no linear relationship is 
observed, logarithmic, polynomial, or other nonlinear 
transformations can be applied to better capture the association 
between variables (Anandhi, 2023). Such transformations 
enhance the model's predictive accuracy, ensuring more 
reliable and robust results. 

3.2.3 Independence Assumption 
The independence assumption states that independent 

variables should not exhibit intercorrelations (Chung, 2023). 
This assumption ensures that the effect of each independent 
variable on the dependent variable is evaluated separately, 
thereby preserving the accuracy and reliability of the model. If 
strong correlations exist among independent variables, a 
phenomenon known as multicollinearity arises. 
Multicollinearity reduces the reliability of regression 
coefficients, leading to inaccuracies in prediction and 
diminishing the explanatory power of the model (Chung, 
2023). This issue complicates the differentiation of individual 
effects among independent variables, ultimately weakening 
the model’s predictive capability. 

Several statistical techniques are employed to detect 
multicollinearity, one of the most widely used being the 
Variance Inflation Factor (VIF). The VIF value measures the 
degree to which an independent variable is correlated with 
other independent variables in the model (Reid, 2020). If the 
VIF exceeds 10, it indicates a severe multicollinearity issue 
that can compromise the validity of the model’s results. To 
address this problem, some independent variables may be 
removed, transformations may be applied, or alternative 
statistical methods may be considered (Reid, 2020). 
Implementing these adjustments helps maintain the 
independence assumption, thereby enhancing the model’s 
statistical validity and predictive accuracy. 

 
3.2.3 Normality Assumption of Error Terms  

    The normality assumption of error terms is a fundamental 
requirement for ensuring the reliability of regression models. 
This assumption states that error terms should follow a normal 
distribution, allowing predicted values to be symmetrically 
and consistently distributed (Schisterman et al., 2006). A 
violation of this assumption can reduce the predictive 
performance of the model and undermine the statistical 
validity of regression coefficients. Since this assumption is 
crucial for hypothesis testing, it is commonly evaluated using 
Shapiro-Wilk and Kolmogorov-Smirnov tests (Schisterman et 

al., 2006). If error terms deviate from normality, appropriate 
data transformations or non-parametric alternatives can be 
applied to enhance the model’s accuracy.  

 
3.2.4 Homoscedasticity Assumption of Error Terms 

  The homoscedasticity assumption requires that error terms 
exhibit constant variance across all levels of independent 
variables (Sahinler, 2020). When this assumption holds, the 
distribution of errors remains stable, ensuring consistent 
prediction accuracy. However, if error variance varies across 
different values of the independent variables, 
heteroscedasticity arises, which can distort regression 
estimates and reduce the model’s reliability (Kilic, 2013). 
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Breusch-Pagan and White tests are commonly used to detect 
heteroscedasticity. If detected, corrective measures such as 
Weighted Least Squares (WLS) estimation or appropriate data 
transformations can be employed to stabilize error variance 
and improve model performance.  

3.2.5 Advantages and Limitations of Multiple Linear 
Regression Analysis  

Multiple Linear Regression (MLR) analysis is a robust 
statistical method that models the relationship between a 
dependent variable and multiple independent variables. This 
technique is widely used to quantify relationships between 
variables, make predictions, and provide a scientific basis for 
decision-making processes. 

One of the primary advantages of MLR is its high predictive 
power. Incorporating multiple independent variables into the 
model enhances its ability to explain variations in the 
dependent variable, leading to more accurate predictions 
compared to univariate models (Karaca et al., 2016). This 
feature makes MLR particularly valuable in disciplines such 
as economics, engineering, and social sciences, where multiple 
factors influence the dependent variable (Kardes et al., 2024). 

Furthermore, MLR enables the assessment of individual 
effects of independent variables. Through regression 
coefficients, the model quantifies the impact of each 
independent variable on the dependent variable, allowing 
researchers to determine which factors exert a more significant 
influence. This capability is crucial for strategic decision-
making, particularly in fields where understanding variable 
interactions is essential (Li, 2014). 

Additionally, MLR facilitates the evaluation of inter-
variable relationships and statistical significance within the 
model. For instance, the Variance Inflation Factor (VIF) can 
be employed to detect multicollinearity among independent 
variables, ensuring that redundant predictors do not distort 
model accuracy (Kardes et al., 2024). This process enhances 
the reliability of the model by eliminating potential distortions 
caused by correlated predictors.  

Multiple linear regression (MLR) was selected due to its 
suitability for interpreting linear relationships among multiple 
predictors and its transparent mathematical structure (Tranmer 
et al., 2020). Compared to more complex models such as 
support vector regression (SVR), decision trees, or neural 
networks, MLR provides interpretable coefficients, making it 
ideal for identifying the relative importance of operational 
variables like aircraft weight or flight duration (Tranmer et al., 
2020). Additionally, MLR requires fewer computational 
resources and is less sensitive to overfitting when assumptions 
are met (Kang & Hansen, 2018). While advanced models can 
capture nonlinear dynamics, the current dataset exhibited 
linear tendencies, justifying the use of MLR for predictive 
modeling and hypothesis testing. 
    Finally, MLR is widely applicable across diverse research 
fields and industries. Its effectiveness has been demonstrated 
in various applications, from forecasting electricity 
consumption (Karaca et al., 2016) to predicting tourism 
demand. The adaptability of the model across different 
datasets enables its integration into decision support 
mechanisms in multiple domains.  

The reliability of the Multiple Linear Regression (MLR) 
model depends on the fulfillment of fundamental assumptions. 
Violations of conditions such as the linear relationship 
between independent and dependent variables, the normal 
distribution of error terms, homoscedasticity, and the absence 
of high correlations among independent variables can 
negatively affect the validity of the model (Olden et al., 2000). 
In particular, when nonlinear relationships exist, the MLR 

model may fail to provide sufficient explanatory power and 
may not accurately capture the relationships between variables 
(Dinev et al., 2004). 

High correlations among independent variables can lead to 
multicollinearity, a major issue that reduces the reliability of 
regression coefficients and weakens the model’s predictive 
capacity (Daoud, 2017). In the presence of multicollinearity, 
the individual effects of independent variables cannot be 
accurately distinguished, resulting in a decline in the model’s 
predictive performance. Although statistical measures such as 
the Variance Inflation Factor (VIF) are commonly used to 
detect multicollinearity, in some cases, it may not be possible 
to eliminate this issue entirely (Maxwell, 1975). 

MLR analysis is also limited in modeling nonlinear 
relationships. If the relationship between the dependent and 
independent variables is not linear, the model may fail to 
adequately represent these associations, leading to reduced 
predictive accuracy. In such cases, alternative approaches such 
as nonlinear regression models or machine learning-based 
methods may be required to achieve more reliable results 
(Tezcan, 2011). 
     In conclusion, while MLR analysis is a powerful statistical 
tool, it has several limitations that must be carefully 
considered. To ensure reliable results, assumptions should be 
rigorously tested, relationships between independent variables 
should be thoroughly examined, and alternative methods 
should be employed when nonlinear patterns are detected. 
Failure to address these factors may negatively impact the 
predictive power and statistical validity of the model. 

4. Results  
 

 In this study, multiple linear regression analysis (MLR) 

was employed to estimate fuel consumption during flight 

operations. To assess the robustness of the model, various 

statistical tests were conducted, including normality 

distribution, linearity, multicollinearity, correlation analysis, 

outlier detection, skewness, and kurtosis measures. These 

preliminary tests ensure the validity and reliability of the 

regression model. 

     The general mathematical expression of the multiple linear 

regression model is formulated as follows (Sezgin, 2013):  

 
     𝑦 = 𝛽0 + 𝛽1 𝑥1 +  𝛽2 𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜀                          (2)        

 
where: 

y represents the dependent variable, 

x₁, x₂, ..., xₚ denote the independent variables, 

β₀ is the intercept term, 

β₁, β₂, ..., βₚ are the regression coefficients, indicating the 
effect of each independent variable on the dependent variable, 

ε represents the error term.  

The regression model, adapted to the dataset used in this 

study, is expressed as follows:  

 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 +  𝛽5𝑥5 + 𝛽6𝑥6 +
𝛽7𝑥7 + 𝛽8𝑥8 + 𝜀                                                                     (3) 

 
In this model, the dependent variable fuel consumption (y) 

is analyzed in relation to the following independent variables: 

x₁: Number of passengers 

x₂: Flight level 
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x₃: Flight distance 

x₄: Average wind speed 

x₅: Average airspeed 

x₆: Flight duration (minutes) 

x₇: Aircraft takeoff weight 

x₈: Total fuel load 

     The H₁ hypothesis tested in this study posits that fuel 

consumption during flight is influenced by operational 

efficiency factors. These factors include the number of 

passengers, flight level, flight distance, average wind speed, 

average airspeed, flight duration, aircraft takeoff weight, and 

total fuel load. The significance level of the model was set at 

0.05, and statistical analyses were performed within this 

confidence interval to evaluate the model's validity. The 

skewness and kurtosis values of the model are given in Table 

1 and Table 2: 

Table 1. 
 Fuel 

Consumption 

Number of 

Passengers 

Flight 

Distance 

Average 

Wind 

Speed 

Skewness 1.14 0.27 0.94 0.94 

Kurtosis 0.69 -0.34 1.15 1.37 

 

Table 2. Skewness - Kurtosis values 
 Average 

Speed 

Flight 

Duration 

(Minutes) 

Aircraft 

Takeoff 

Weight 

Total 

Fuel Load 

Skewness 0.22 0.65 0.59 0.94 

Kurtosis -0.81 0.33 -0.74 0.27 

 

 

    When the skewness and kurtosis values of the variables 

shown in Table 1 and Table 2 were examined, it was seen that 

all values were between -2 and +2 and were suitable for normal 

distribution.  

 

 

 

Figure 1. Statistical Distribution of Flight Parameters 

 

    Figure 1 illustrates the statistical distribution of various 

flight parameters, including fuel consumption, using both 

histograms and Kernel Density Estimation (KDE) curves. The 

visualization effectively compares the frequency distribution 

of multiple aviation-related parameters on a single plot, 

facilitating a detailed statistical assessment of flight 

performance and operational efficiency. The x-axis represents 

the values of different flight parameters, while the y-axis 

denotes their frequency, indicating how often specific ranges 

of values occur in the dataset. Each flight parameter is color-

coded distinctly, with both its histogram and corresponding 

KDE curve displayed to enhance interpretability. 

The y-axis represents frequency, indicating how often 

specific value ranges appear within each parameter’s dataset. 

Higher bars correspond to more frequently observed values, 

while lower bars signify less common occurrences. The x-axis 

denotes the numerical range of different flight parameters, 

reflecting variations in flight performance. These values differ 

based on the parameter measured, such as distance in 

kilometers, speed in knots, or fuel consumption in kilograms, 

providing insight into the distribution and operational 

characteristics of each variable. 

    Number of Passengers (Blue): The number of passengers 

onboard an aircraft significantly affects operational efficiency 

and economic viability. As represented in the graph, variations 

in passenger load influence aircraft weight, fuel consumption, 

and overall performance. A higher passenger count increases 

the total weight, leading to greater fuel requirements, 

particularly during takeoff and climb phases. However, at 

optimal load factors, fuel efficiency per passenger improves, 

making load management a critical factor in airline 

profitability and environmental sustainability.  

   Flight Distance (Orange): Flight distance determines the 

total range covered from departure to arrival, directly 

impacting fuel consumption and operational planning. The 

graph indicates a distribution encompassing short-haul, 

medium-haul, and long-haul flights, each with distinct fuel 

efficiency characteristics. Short-haul flights experience higher 

per-kilometer fuel consumption due to the increased influence 

of takeoff and climb phases, while long-haul flights benefit 
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from prolonged cruise efficiency. Route optimization plays a 

crucial role in minimizing unnecessary fuel burn. 

   Average Wind Speed (Green): Wind conditions encountered 

during flight play a crucial role in determining fuel efficiency 

and flight time. The distribution in the graph highlights 

variations in wind speeds, where stronger headwinds result in 

increased fuel consumption and extended flight durations, 

while favorable tailwinds contribute to reduced fuel burn and 

shorter travel times. Effective wind management through 

flight planning and real-time route adjustments can mitigate 

adverse effects and enhance operational efficiency.  

   Average Speed (Red): The average speed of an aircraft 

influences both fuel consumption and overall flight 

performance. The graph depicts a normal distribution, 

indicating a standard operational range. Higher speeds 

increase aerodynamic drag, necessitating greater thrust and 

fuel expenditure, whereas lower speeds may extend flight 

duration and reduce efficiency. Optimal cruise speed selection 

is essential to balance fuel efficiency with operational 

timelines, ensuring cost-effective and environmentally 

responsible flight operations.  

   Flight Duration (Purple): Total flight duration, from takeoff 

to landing, is a key parameter affecting airline scheduling, fuel 

efficiency, and passenger experience. The graphical 

representation (Fig.1) suggests variations in flight lengths, 

influenced by factors such as air traffic congestion, routing 

constraints, and weather conditions. Longer flights require 

careful fuel management and optimized altitude profiles to 

enhance efficiency, while shorter flights face proportionally 

higher fuel burn due to frequent altitude changes.  

   Aircraft Takeoff Weight (Brown): The total weight of an 
aircraft at departure, including passengers, cargo, and fuel, 
directly affects performance and efficiency. The graph 
illustrates a distribution that reflects variations in takeoff 
conditions across different flights. Higher takeoff weight 
demands increased thrust, leading to higher fuel consumption 
and potential performance limitations, particularly in high-
altitude or short-runway airports. Effective weight 
management and fuel load optimization contribute to 
improved operational efficiency and safety.  
   Total Fuel Consumption (Teal): Fuel consumption is a 
fundamental parameter in aviation economics and 
environmental impact assessment. The graph’s distribution 
reveals fluctuations in fuel burn across different flight 
operations, emphasizing the importance of fuel-efficient 
practices. Factors such as aircraft type, route length, wind 
conditions, and weight contribute to variations in total fuel 
usage. Airlines prioritize fuel efficiency strategies, including 
optimized routing, weight reduction, and aerodynamic 
improvements, to minimize operational costs and carbon 
emissions.  
    Fuel Consumption (Yellow-Green): The specific fuel 
consumption pattern in the graph provides insights into fuel 
burn trends under varying operational conditions. This 
parameter highlights the influence of different flight phases, 
including takeoff, cruise, and descent, on overall fuel 
efficiency. By analyzing these trends, aviation professionals 
can implement data-driven strategies to enhance performance, 
reduce environmental impact, and optimize fuel expenditure 
without compromising safety and reliability.  

 

 
 

Figure 2. Kolmogorov-Smirnov and Correlation Analysis 

  Figure 2 provides a detailed statistical evaluation of key flight 

parameters using the Kolmogorov-Smirnov (K-S) test and 

correlation analysis with fuel consumption. The x-axis 

represents different flight parameters, including fuel 

consumption, number of passengers, flight distance, wind 

speed, average speed, flight duration, aircraft takeoff weight, 

and total fuel consumption, while the y-axis quantifies their 

respective Kolmogorov-Smirnov p-values and correlation 

coefficients. The Kolmogorov-Smirnov test assesses the 

normality of each parameter’s distribution, depicted in blue 

bars, with higher values indicating stronger adherence to a 

normal distribution and lower values suggesting significant 

deviations. The correlation coefficients, illustrated in orange 

bars, represent the statistical relationship between each flight 

parameter and fuel consumption, providing insights into how 

these variables interact with operational efficiency. A red 

dashed line marks the statistical significance threshold of p = 

0.05, below which a parameter’s distribution significantly 

deviates from normality. The fuel consumption parameter 

serves as a benchmark for evaluating fuel efficiency, where a 

strong correlation with other parameters suggests key 

operational dependencies.  

The results of the correlation analysis indicate that the number 

of passengers, flight distance, and takeoff weight exhibit a 
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strong relationship with fuel consumption, highlighting the 

critical role of these variables in operational planning. The 

findings of the Kolmogorov-Smirnov (K-S) test further reveal 

that many variables do not follow a normal distribution, 

suggesting that operational factors do not fully conform to 

standard statistical models. Consequently, the prediction of 

fuel consumption requires the use of more flexible, data-driven 

approaches instead of strictly linear models. In conclusion, 

enhancing fuel efficiency in aviation operations necessitates 

careful management of weight optimization, flight duration, 

and speed control. Based on the results of the Kolmogorov-

Smirnov test and correlation analysis, the following 

conclusions can be drawn:  

   Variables with a p-value ≥ 0.05: The null hypothesis cannot 

be rejected for these variables, implying that their distributions 

conform to normality. For instance, the p-value for "Fuel 

Consumption" is 0.533, indicating that it follows a normal 

distribution. 

   Variables with a p-value < 0.05: The null hypothesis is 

rejected for these variables, signifying that their distributions 

deviate from normality. For example, the p-values for "Flight 

Distance" and "Average Wind Speed" are both <0.001, 

suggesting that they do not follow a normal distribution. 

The correlation analysis leads to the following interpretations: 

Variables exhibiting a strong correlation with fuel 

consumption: 

"Number of Passengers" (0.77) 

"Aircraft Takeoff Weight" (0.85) 

  Since these correlation coefficients exceed 0.5 in absolute 

value, they suggest a strong association between fuel 

consumption and these parameters. Variable exhibiting a weak 

correlation with fuel consumption: 

"Average Wind Speed" (0.26) 

  This low correlation value suggests that "Average Wind 

Speed" has no significant impact on fuel consumption. 

  For variables that do not conform to normality ("Flight 

Distance" and "Average Wind Speed"), data transformation 

techniques such as logarithmic transformation are 

recommended to approximate normal distribution.  

 

Variables with strong correlations with fuel consumption 

should be considered in multiple linear regression models; 

however, potential multicollinearity issues among highly 

correlated independent variables must also be examined. 

  Including weakly correlated variables in the model may not 

enhance explanatory power, and therefore, careful assessment 

is required to determine their relevance. To achieve the most 

accurate predictions of fuel consumption, a comprehensive 

evaluation of the interactions among independent variables, 

their distribution properties, and potential multicollinearity 

issues is essential. 

4.1 Multiple Linear Regression Analysis Test Results  
  The regression analysis results presented in Table 3 are 

utilized to assess the explanatory power and accuracy of the 
model in predicting the dependent variable. The multiple R 
value (0.92) indicates a strong positive correlation between the 
dependent variable and the independent variables, 
demonstrating a substantial linear relationship. The R² value 
(0.86) suggests that the model accounts for 86% of the total 
variance in the dependent variable, highlighting its strong 
predictive capability. The adjusted R² value (0.84), which 
considers the number of predictors in the model, implies a 
slight reduction in explanatory power due to model 
complexity; however, it still reflects a highly reliable and 
robust model. These findings indicate that the model is capable 
of accurately predicting operational variables such as fuel 
consumption, making it a valuable tool for decision-making in 
aviation management and fuel optimization strategies. 
Nevertheless, the standard error value (12.17) suggests that 
while the model demonstrates high accuracy, further 
refinements and additional predictor variables may enhance its 
predictive performance, reducing uncertainty and improving 
overall reliability. 

 

Table 3. Regression Statistics  

 Quantity  Values 

 Multiple R 0.92 

 R Square 0.86 

 Adjusted R Square 0.84 

 Standard Error 12.17 

 Observation 110.00 

———————————————————————— 
 

 
Figure 3.  Regression Coefficients With 95% Confidence Intervals 

Figure 3 visualizes the regression coefficients along with their 

95% confidence intervals, providing insights into the influence 

of each independent variable on the dependent variable. The 

y-axis represents the coefficient values, while the x-axis lists 

the independent variables used in the regression model. 

  In Fig. 3. the intercept (-243.11) has the most substantial 

magnitude, with a wide confidence interval, indicating its 
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significant role in baseline calculations. Among the 

independent variables, flight duration (X5, 4.37) and aircraft 

takeoff weight (X6, 0.01) exhibit positive coefficients, 

suggesting that an increase in these parameters leads to a rise 

in the dependent variable. Conversely, flight distance (X2, -

0.69), average wind speed (X3, -0.18), and total fuel (X7, -

0.01) have negative coefficients, indicating an inverse 

relationship with the dependent variable. 

   The red dashed reference line at zero is crucial for statistical 

interpretation. Variables with confidence intervals that do not 

cross this line are statistically significant, meaning their 

influence on the dependent variable is strong and reliable. In 

this case, flight duration (X5), aircraft takeoff weight (X6), and 

total fuel (X7) are statistically significant predictors, while 

flight level (X1) and average speed (X4) show negligible 

effects with high p-values, implying weak or no impact on the 

model. 

  Overall, the model demonstrates strong predictive capacity, 

with key variables like flight distance, flight duration, and 

takeoff weight significantly influencing the dependent 

variable. However, refinements, such as excluding 

insignificant predictors or adjusting for multicollinearity, 

could further enhance the model’s explanatory power. 

4.2 Model Performance Metrics 

To further evaluate the accuracy and predictive capability of 

the multiple linear regression model, three commonly used 

error metrics were computed: Mean Squared Error (MSE), 

Mean Absolute Error (MAE), and Root Mean Square Error 

(RMSE). These metrics help quantify the magnitude of 

prediction errors and validate the model’s generalization 

performance (Chai & Draxler, 2014). The values are presented 

in Table 4: 

Table 4. Model Performance Metrics 

 Metric Values 

 MSE (Mean Squared 

Error) 

 

148.25 

 MAE (Mean Absolute 

Error) 

9.65 

 RMSE (Root Mean Square 

Error) 

12.17 

 

———————————————————————— 
 

The MSE represents the average of the squared differences 

between predicted and actual values, serving as a general 

indicator of overall prediction error. A lower MSE indicates a 

more accurate model. 

The MAE reflects the mean of the absolute differences 

between predicted and observed values, offering a direct 

measure of average prediction error magnitude. It is 

particularly useful for operational decision-making due to its 

intuitive interpretation. 

The RMSE, which is the square root of MSE, illustrates the 

standard deviation of prediction errors in the same units as the 

dependent variable—fuel consumption (kg). The value of 

12.17 closely aligns with the model’s reported standard error, 

confirming the consistency and reliability of the regression 

output. 

Together, these metrics affirm the robustness of the model in 

estimating fuel consumption. The relatively low error values 

support the validity of the regression approach in practical 

aviation scenarios, particularly for route optimization and load 

management strategies.  

 

5. Discussion 
 

The findings of this study underscore the multifaceted nature 

of aircraft fuel efficiency and its dependency on operational 

and environmental parameters. Among the variables analyzed 

through multiple linear regression, flight duration, aircraft 

takeoff weight, and total fuel load were identified as 

statistically significant contributors to fuel consumption. 

These findings are consistent with prior studies that have 

demonstrated the critical role of weight management and flight 

planning in fuel efficiency (Seymour et al., 2020). 

Notably, the inverse relationship between total fuel load and 

actual fuel consumption highlights an operational paradox: 

overfilling fuel tanks increases aircraft weight, thereby raising 

consumption levels during takeoff and climb. This observation 

aligns with the concept of "fuel penalty" found in airline 

operations literature, where carrying excess fuel to ensure 

safety margins leads to additional burn (Tabernier et al., 2021). 

The model's finding that average wind speed and flight level 

are not statistically significant suggests that environmental 

conditions may have a more complex or nonlinear relationship 

with fuel consumption. This contrasts with findings from 

studies on transatlantic and intercontinental routes, where 

wind optimization has shown significant fuel savings, 

especially in operations from major hubs such as JFK (USA), 

Heathrow (UK), and Frankfurt (Germany) (Hamdan et al., 

2022). 

Furthermore, the correlation between the number of 

passengers and fuel consumption emphasizes the importance 

of load factor optimization (He & Zhou, 2016). Higher 

passenger counts can improve per-passenger fuel efficiency if 

managed appropriately, as supported by empirical findings 

from studies on Lufthansa (Germany), Emirates (UAE), and 

Delta Airlines (USA) (Pinchemel et al., 2022).  

Compared to previous works focused primarily on aircraft 

design and propulsion improvements, this study adds value by 

providing empirical evidence from operational data collected 

at Istanbul Airport. By integrating statistical modeling with 

practical performance indicators, the study offers actionable 

insights for both airline managers and policy makers 

concerned with reducing carbon emissions in domestic 

aviation. 

 

Nevertheless, the study is not without limitations. The data is 

limited to one aircraft type (Airbus A321) and one route 

(Istanbul to Elazığ), which may affect the generalizability of 

the results. Future research could incorporate diverse aircraft 

models and a wider range of domestic and international routes 

to develop a more comprehensive model of fuel efficiency. 

 

6. Conclusion  
   

This regression analysis provides critical strategic insights 

into improving operational efficiency and reducing costs in the 

aviation industry. The impact of key variables such as fuel 

consumption, flight duration, takeoff weight, and flight 

distance on operational processes has been clearly identified. 

Notably, the significant positive effect of flight duration and 

aircraft takeoff weight on the dependent variable underscores 

the necessity of optimizing flight planning and load 
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management. The negative coefficient of flight distance 

suggests that long-haul flights may offer operational 

advantages, while the negative coefficient of total fuel 

consumption highlights the adverse impact of excessive fuel 

loading on aircraft performance, emphasizing the need for 

more efficient fuel management strategies. 

Furthermore, the lack of statistical significance for flight level, 

average wind speed, and average speed indicates that these 

factors may allow for greater flexibility in operational 

decision-making. These findings can support airlines in 

developing more data-driven strategies for air traffic 

management, fuel policies, and route optimization. 

In conclusion, this study emphasizes the importance of 

science-based decision-making in enhancing fuel efficiency 

and promoting environmental sustainability in the aviation 

sector. The findings from this regression analysis serve as a 

foundation for minimizing the environmental impact of airline 

operations and optimizing costs. When supplemented with 

advanced analyses, these results will facilitate the 

development of comprehensive sustainability policies, guiding 

the aviation industry toward a more efficient and 

environmentally responsible future. 
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