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Scheduling tasks on cloud systems is a critical optimization problem that aims to distribute tasks among
available resources in the most effective way. This issue falls under the category of NP-hard problems and
generating exact and deterministic solutions requires high computational costs. Metaheuristic approaches
have proven to provide successful results in solving such problems. Particle Swarm Optimization (PSO),
one of these algorithms, is a widely used method in the literature due to its advantages, such as fast
convergence, simple applicability, and low computational cost. In this study, a hybrid heuristic-based
Particle Swarm Optimization approach is proposed to improve task scheduling efficiency. The proposed
approach improves the solution quality by integrating a heuristic mechanism into the random population
generation process of PSO. In comparison to First Come First Serve, Ant Colony Optimization (ACO),
and conventional PSO, the suggested approach delivers better makespan and reduced energy consumption,
according to the simulation analysis carried out in the CloudSim simulation environment. According to
simulations, Heuristic PSO outperforms traditional PSO and ACO methods in terms of makespan time,
reducing it by an average of 61.42% and 62.84%, respectively. It also uses 26.18% less energy than PSO
and 27.33% less than ACO, according to its energy consumption data. The results show that the suggested
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method offers a more effective substitute for scheduling tasks in cloud computing systems.

Introduction

The architecture of cloud services, which are becoming
an essential part of the modern digital world, is extremely
complicated. These systems can consist of a variety of
components, ranging from network servers to personal
computers, and are built by integrating numerous computers
with advanced engineering techniques [1]. They can react
quickly to different user task demands because of their large
resource pool [2].

In terms of their vast hardware infrastructure and
services, cloud systems are complicated, and managing
them can be difficult [3]. Task scheduling is a crucial
procedure in these systems that guarantees that tasks are
assigned to the best available resources [4]. Task scheduling
is made considerably more difficult by the cloud
environment's abundance of large-scale resources. By
guaranteeing effective resource utilization, an efficient task
scheduling system maximizes workloads. By taking into
account various user requests, it simultaneously enhances
resource management, boosts performance, lowers
expenses, and greatly improves Quality of Service (QoS).
For this reason, the task scheduling procedure is crucial to
the efficacy and durability of cloud systems. Because task
scheduling in cloud systems is a complicated problem that

needs to be optimized, numerous approaches have been put
out in the literature to address this issue [5]. Metaheuristic
approaches are widely employed in task scheduling
problems because they can produce efficient solutions by
conducting effective searches in a vast solution space.
These techniques can, however, occasionally have
drawbacks such becoming trapped in local minima, slow
convergence, and high processing costs. The mixed usage
of heuristic approaches and metaheuristics gives substantial
advantages to overcome these issues and obtain more
effective solutions. By employing strategies unique to the
problem's structure, heuristic approaches can generate
quick and effective first solutions; however, metaheuristic
methods optimize these answers and arrive at the global
optimum more quickly. This hybrid strategy can offer high
efficiency in task scheduling processes and has the ability
to lower computing costs while improving the quality of the
solutions.

This work proposes a heuristic approach to a hybridized
version of Particle Swarm Optimization (PSO) [6], a
metaheuristic method commonly employed in cloud system
task scheduling research. Below is a list of the suggested
method's most inventive features:
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* Heuristic approaches reduce the propensity of
conventional PSO to become trapped in local minima,
leading to quicker and more effective solutions.

* In certain applications, PSO’s poor convergence speed
is a drawback. The suggested approach strengthens with
heuristic elements to achieve faster convergence.

* By improving both makespan (completion time) and
total energy consumption, the suggested approach helps
cloud systems become more sustainable.

* The addition of heuristic components to the PSO
algorithm yields more reliable and superior results when
compared to First Come First Server (FCFS), ACO, and
PSO methods.

The remaining of the paper is organized as follows: Section
2 presents the literature review. Section 3 describes the
problem definition and methodology. Section 4 presents
and discusses the experimental results. Finally, Section 5
concludes the paper by highlighting the main findings.

Literature Research

Real-time computing capabilities can be unilaterally
provided and managed by cloud computing without the
need for human contact[7]. It uses task scheduling to
perform these operations. Task scheduling is the procedure
used in cloud systems [8]. Of allocating user tasks to the
best virtual machines based on a predetermined plan. The
cloud system's dynamic and multifaceted structure must be
considered in the task scheduling method. The goal for
which the task scheduling technique is employed is also
crucial. Scheduling tasks on cloud systems can be designed
to include one or more of these factors, including makespan,
energy consumption, and financial cost. The task requested
by the users can be completely allocated to the virtual
machines or the tasks can be assigned to the servers in parts.
In this case, it is necessary to consider the interdependencies
of the parts within the task. In general, task scheduling
methods used in cloud systems can be shown in Fig.1.

Task
Scheduler

Heuristic Hybrid

Hybrid PSO-
GA

Min-Min

Max-Min

PSO-ACO
GA-ACO

Figure 1. Task categories and the nature of the suggested.

Heuristic algorithms offer an effective solution for low-
complexity and static systems [9]. The algorithms are easy
to implement and have low computational cost. However,
they give low performance to dynamic systems such as
clouds and edges. Since heuristic methods are designed for
a specific problem, they are difficult to apply directly to
different problems. In the literature, Min-Min, Max-Min,
Round Robin (RR), Shortest Job First (SJF), FCFS and Best
Fit (BF) are the main heuristic methods. A modified round-
robin (MRR) algorithm, an improved version of RR, is
proposed [10]. The proposed method gave better results in
terms of average waiting time and turnaround time. An
improved Min-Min method that maximizes the total
execution time and resource utilization of tasks is proposed
[11]. Experimental results show that the proposed method
achieves the best makespan values compared to the
Sufferage and Min-Min algorithms.

Metaheuristic methods generally provide -effective
solutions for complex and dynamic task scheduling
problems in cloud environments [12]. Numerous NP-hard
problems can be effectively solved using metaheuristic
techniques, which have also been successfully adapted for
use in cloud systems. Metaheuristic algorithms used in the
literature can be modified to address issues with task
scheduling, with appropriate representation. PSO [13],
Grey Wolf Algorithm (GWO) [14], Firefly Algorithm [15],
ACO [16], Whale Optimization algorithm (WOA) [17], and
Jellyfish Search Optimizer (JSO) [18] have been effectively
modified to address issues with cloud work scheduling.
PSO has been used for task scheduling in a cloud
environment [19]. This research compares the work plans
produced using techniques such as the Genetic Algorithm
(GA), Brute Force (BF), First-In-First-Out (FIFO), and
Delay Scheduling Policy (DSP). According to the
experimental results, the PSO algorithm offers a more
effective way to schedule tasks in a cloud environment than
other approaches. It also gives notable benefits when it
comes to optimizing the makespan value. An enhanced
variant of Henry Gas Resolution Optimization, the Henry
Gas-Harris Hawks-Comprehensive Contrast (HGHHC)
approach, is suggested in [20]. The values of 34.30, 72.95
and 28.67 are for makespan and 16.92, 28.72 and 25.58 for
resource utilization, respectively. Experimental results
show that the HGHHC algorithm provides better simulated
makespan and resource utilization compared to previous
approaches. An adapted Chimpanzee Optimization
Algorithm with improved exploration and exploitation
stages is proposed to solve the task scheduling problem in
cloud systems [21]. The success of the proposed method is
tested for different simulation scenarios and the proposed
method achieves a makespan improvement of
approximately 30% compared to standard task scheduling
algorithms. A method based on the Cloneable Jellyfish
Algorithm is proposed for optimal task allocation in
metaheuristic cloud environments [18]. The suggested
algorithm’s most innovative feature is its regulated dynamic
population expansion, which helps to prevent local minima
during the exploration stage. It also has a distinct cloning
method to minimize the similarity between candidates in
population growth. The experiments performed on the
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Cloudsim simulator proved the success of the suggested
approach in compared to traditional scheduling techniques.

Hybrid methods are used by combining different
optimization techniques to provide more effective solutions
addressing issues with cloud computing task scheduling
[22]. These techniques, which are usually a combination of
metaheuristic (e.g. GA, PSO, ACO, SA) and heuristic (e.g.
RR, SJF) methods, provide higher efficiency and accuracy
by utilizing the strengths of both methods. While some
algorithms (e.g., SA and ACO) can get stuck in local
minima, hybrid approaches minimize this problem by
integrating multiple strategies [23]. Since cloud
environments are dynamic, classical methods may not be
able to adapt to changing workloads. However, hybrid
algorithms can better adapt to this dynamism by combining
metaheuristic and heuristic techniques [24]. A hybrid
method is proposed using the Heterogeneous Earliest Finish
Time(HEFT) algorithm [25]. According to simulation data,
the suggested approach performs better in terms of
makespan on random Direct Acyclic Graphs (DAG) than
three heuristic and genetic algorithms. An approach to task
scheduling that uses a hybrid optimization technique is
presented [26]. The method considers other parameters such
as minimum waiting time, overall production time,
execution time, productivity and utilization in the
scheduling of tasks. Results from simulations indicate that
the suggested approach outperforms the traditional ACO
and PSO-based scheduling algorithms in terms of
performance. A hybrid algorithm is proposed by combining
the ACO algorithm with the concept of gravitational search
[27]. Simulation results performed with the CloudSim tool
show that the proposed method outperforms ACO and the
basic Gravitational Search Algorithm (GSA) [28].

The issue of task scheduling in cloud systems has garnered
the interest of many researchers in the literature. A
technique for building the PSO's initial population using
heuristic methods is presented [29]. The authors use the
Longest Job to Fastest Processor (LJFP) and Minimum
Completion Time (MCT) to build the PSO population. The
makespan, total execution time, degree of imbalance, and
total energy consumption are used to assess the
effectiveness of the suggested approaches. According on
experimental  findings, the suggested approaches
outperform the conventional PSO. The drawbacks of PSO,
including early convergence issues during the optimization
process and becoming trapped in local minima, are
addressed by using a Simulated Annealing approach [30].
According to experimental findings, the suggested
approach can improve the ratio of average runtime to
resource availability. A mathematical model known as the
Load Balancing Mutation (LBMPSO), which considers
availability and dependability, is proposed [31]. This model
is a cloud computing particle swarm optimization
(LBMPSO) scheduling technique that takes dependability,
round-trip time, creation interval, execution time,
transmission time, and load balancing between tasks and
virtual machines into account. LBMPSO can improve the
cloud computing environment's dependability by taking
into account the resources that are available and delaying

jobs that haven't been assigned yet. LBMPSO is contrasted
with the randomized approach, standard PSO, and the
Longest Cloud to Fastest Processor (LCFP) algorithm.
Experimental results show that LBMPSO can lower
execution times, round-trip times, and transmission costs.

Problem Definition and Methodology

Before being allocated to cloud virtual machines, user-
submitted tasks are first put in the task queue. The task
scheduler (TS) retrieves the specified number of tasks from
the task queue and allocates them to the virtual machines
according to the working principle. Tabular, matrix, graph,
list, and coding techniques are commonly used in
optimization methods. This study adopts the tabular
method, illustrated in Fig.2, where tasks and virtual
machines are represented. Here, the case of allocating 10
tasks to 3 wvirtual machines is represented. The tabular
representation shown in Figure 2 represents a solution to be
optimized. Fig. 3 shows a visualization of the execution of
this representative solution on virtual machines. The
makespan value is expressed as the highest of the amount
of time needed for the tasks assigned to the servers to
complete.

VM/Tasks T, T, Ts Ty Ts Te T» Ta To Tio
Vi 1 0 0 0 1 0 0 0 0 1
Vs o o0 1 0 0 1 0 1 0 0
Vs o 1 0 1 0 0 1 0 1 0

Figure 2. Solution Representation of A Task Scheduling.

Ty

Figure 3. Makespan Representation.

Each task in the work queue is distinct and independent of
the others. Each time a predetermined quantity of tasks are
pulled from the queue of tasks and the tasks to be assigned
are denoted byT ={Ty,T,,..,T;..,T,}. Here, ¢,
represents the quantity of instructions contained in the i’th
task and n represents the number of tasks. The active
virtual machines in the cloud to which the tasks will be
assigned have different command processing capacities,
and the total number of m active virtual machines in the
denoted byl = {vl,vz,..,vj,..,vm}.
v; indicates how many million instructions per second
(MIPS) that thel’th virtual machine processes.
Consequently, the time of execution (ETy;) of the k th task

system s
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on the I’st virtual machine is calculated by Equation (1). It
is not necessary to allocate every task in the task queue to
a separate machine. If whether the k’th task is allocated to
the I’st virtual machine is expressed by a boolean
parameter ey, then the entire amount of time needed to
complete all tasks allocated to the j th virtual machine (&)
is found by Equation (2). When scheduling tasks in cloud
systems, makespan is optimized by considering various
objectives such as energy, cost, user service quality, task
priority. In this study, optimization of the makespan value
is performed. When using cloud systems, makespan (MS)
expresses the greatest amount of time needed to complete
a set of tasks across a collection of virtual machines and is
represented by Equation (3).

—
ETy =, (1)
& = ZII:!:O ey * ETy,

{ 1,if k'th task was agined to l'th VM )
tke 0, otherwise

MS = ;™ max(E)) 3)

Particle Swarm Optimization

PSO is inspired by nature, in particular the collective
movements of flocks of birds and groups of fish. The
algorithm works by modelling the interactive movement of
particles to scan a solution space. PSO uses a randomly
initialized particle swarm to solve optimization problems.
Each particle represents a point in the solution space and
has two basic properties: position and velocity. Each
particle moves by being influenced both by its own past
experience (Pp.s:) and by the best experience of other
particles in the swarm (Gpes: ) [1]. In this way, both
exploration and exploitation processes are balanced.
Equation (4-5) computes these particle movements.
Here X,, and V,, are the particle's location and velocity
values. rand; and rand, are the random coefficients. W is
the particle's coefficient of inertia, which establishes the
ratio of exploration to exploitation. ¢;, ¢, are the particle
motion's acceleration coefficients. In the representation
form used for task scheduling, every vector index denotes a
task, and the value contained within it corresponds to the
VM's ID. The floating values' counterparts in integers were
found by Equation (6) are considered since the VM ID is an
integer. The scheduling vector is also these values (S, ).
Algorithm 1 provides the PSO pseudo-code that was
utilized in this investigation and modified for the task-
scheduling issue. If any of the S,,’s constituent parts value
is greater than the upper and lower bound values, the
appropriate component then selects an integer value
between the lower and higher bounds that is created at
random.

V, =W =V, + ¢, xrand, * (Pbest_i - Xi) +c, 4
* Tandz * (Pgbest - Xi)

XpneW = Xp + Vp %)

S, = round(X,"") (6)

Algorithm 1 The task-scheduling pseudo code of PSO

Initialize parameters
Initialize population
It1y,4, € maximum iteration number
Npop € Population size
For i=0 to Ny,

F; €< Calculate Fitness Value P;

If Fi> Pbest

Ppese=F;

Gpest € Particles with the highest fitness value overall
For itr=0 to Itr;,,,

For i=0 to Ny,
Determine the particle velocity using Equation 4.
Particle position should be updated using Eq. 5.

The position of particle is rounded to the closest
value
If (Xp < XLower ) or (Xp > XUpper)
Xp = Random(XLower:XUpper)

Initialize population

Population generation in PSO is usually performed in a
randomized manner. However, when the initially generated
solutions are far from the optimum solution, this adversely
affects the performance of the optimization process. The
randomly generated solutions may be very similar to each
other and may fall into undesired regions of the search
space. This situation negatively affects the optimization
process [22]. The heuristic method proposed in this study is
realized by considering the population initially generated by
PSO with various criteria. Firstly, the method calculates a
load coefficient (LC) with Equation (7). This load factor is
then multiplied by the capacities of the active virtual
machines in the cloud and the amount of load that each
server can take is calculated. This is as shown in Equation

®).

_ YRTk 7
LC = S,
LDk = Vk XLC Vk € {1,2,3, ,m} 8

After determining the amount of load that can be assigned
to all virtual machines, the tasks that will be subjected to
scheduling are sorted from biggest to smallest based on
how many instructions there are and allocated to virtual
machines respectively. The reason for this is to reduce the
makespan by prioritizing tasks with a high number of
commands. When a task is assigned to a virtual machine,
the current task load of the virtual machine must be greater
than the time it takes to execute this task on this machine
Equation (1). Ifthe load of a virtual machine is greater than
the time taken to execute a task, the task is allocated to this
virtual machine and the new load of the virtual machine is
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updated. If a task is not allocated to any virtual machine (if
the current load of the virtual machines is less than the time
it takes to execute the task), the task is allocated to the
virtual machine with the minimum impact on the makespan
time. Algorithm 2 displays the algorithm's pseudo code.

Algorithm 2 The pseudo-code of Heuristic approach for
task-scheduling
Calculate Load Coefficient according to Eq7
LD< Calculate the workload that each virtual machine
can take according to Eq.8
T4 Sort tasks from largest to smallest by command
V<& CPU capacities of all VM's
For i to Size(T)
IsAssign=False
For j to Size(V)
ET< Calculate according to Eq.1
If (LD(1)>ET)
Assign task i to VM j
LDi- LD;-ET
IsAssign=True
If (!IsAssign)
Assign task to Vm according to minimum
makespan

Results and Discussion

The success of the proposed method is tested in the
CloudSim environment considering different scenarios
[32]. In the simulations, the performance of Heuristic PSO
is presented comparatively with FCFS, ACO, and PSO in
terms of makespan and energy consumption. To evaluate
the performance of proposed method used scenarios with
varying quantities of tasks and virtual machines (VMs). The
computational capacity of each VM is randomly assigned
to reflect the heterogeneity of real cloud environments.
Similarly, the quantity of task instructions was also
randomized to simulate loads of different complexity.

Two main performance metrics were considered:
Makespan

The overall task completion times were measured to
assess scheduling efficiency. The results indicate that
Heuristic-PSO consistently achieved a shorter makespan
compared to FCFS, ACO, and standard PSO. This
demonstrates its ability to allocate tasks more effectively
across available resources, leading to balanced load
distribution and improved scheduling efficiency.

Energy Consumption

Energy usage was analyzed by calculating the power
consumed by VMs during both idle and active states. The
findings show that Heuristic-PSO reduced total energy
consumption more effectively than the benchmark
algorithms. This improvement highlights the capability of
the proposed method to minimize energy expenditure while
maintaining scheduling performance.

Overall, the experimental results confirm that
integrating heuristic strategies into PSO not only enhances
task scheduling efficiency but also improves energy
awareness in cloud environments.The number of
instructions and virtual machine processor capacities of the
tasks used in each scenario were performed randomly. The
amount of energy spent for instruction execution was
assigned in proportion to the processor capacity of each
virtual machine. In addition, the amount of energy
consumed by the virtual machines when idle was taken as
30% of the amount of energy at load. Thus, the amount of
energy consumed by the servers when they are idle is also
taken into account in a task scheduling. In this study, the
results obtained for each scenario are averaged over 100
independent simulations. The simulations were run on a
machine with an Intel(R) Core(TM) i5-10400 CPU running
at 2.90 GHz and 8.00 GB of RAM. Table 1 lists other
simulation parameters.

Table 1 The simulations parameters

Number of tasks 100-250-500
Number of task 4.000-6.000
commands
. VM numbers 5-10-20
CloudSim —\ /1pg 1 000-20 000
Maximum Iteration 100
Number of Particles 20
and Ant
Ci 1
C2 2
PSO w 0.5
Maximum Iteration 100
Ant Numbers 20
o 1
ACO B 3
o 0.1

In the simulations, the first performance evaluation was
carried out in terms of makespan. The average makespan
findings from 100 separate simulations are displayed in Fig.
4, and the statistical summaries of these experimental data
are displayed in Table 2. The results shown in Fig. 4 and
Table 2 indicate that Heuristic PSO produces lower
makespan values compared to FCFS, ACO and PSO
algorithms. Especially in scenarios where the number of
virtual machines and the amount of tasks increases,
Heuristic PSO provides more stable and lower makespan
times. In the five virtual machine scenarios, Heuristic PSO
produced shorter makespan values than FCFS, ACO and
PSO for all task numbers. The most significant difference
was observed in the scenario with 500 tasks. In scenarios
with 5 virtual machines, the average makespan value of
Heuristic PSO was 168.63, while that of standard PSO was
301, ACO was 312.03 and FCFS was 419.07. In scenarios
with 10 virtual machines, Heuristic PSO achieved very
good results in terms of makespan. In scenarios with 20
virtual machines, the average makespan value of Heuristic
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PSO was determined as 47.01, while it was calculated as
127.66 for standard PSO. In the 20 virtual machine
scenarios, increasing the number of virtual machines
generally decreased the makespan times, but Heuristic PSO
again achieved better results compared to FCFS, ACO and
PSO. In the 500 task scenario, the average makespan value
of Heuristic PSO was 12.26, while standard PSO was 53.63.
These results show that Heuristic PSO can significantly
reduce the makespan time by distributing the tasks more
evenly. Especially in large-scale systems, the proposed
method minimizes the early convergence problem and
achieves a better scheduling success.

500
400
300
200
100 I I
o ml l
100 250 500

m Proposed Method ®PSO ®mACO ®=FCFS

A. Average makespan results for scenarios with 5

VMs
250
200
150
100
50
o  wemil | I I
100 250 500

B Proposed Method ®PSO ®mACO =FCFS

B.  Average makespan results for scenarios with 10
VMs

120
100
80
60
40
20

P— - l |

100 250 500

B Proposed Method ®PSO ®mACO =FCFS

C. Average makespan results for scenarios with 20
VMs

Figure 4. Average makespan outcomes across all techniques
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Table 2. Statistical results of makespan simulations

Scenarios Heuristic PSO PSO ACO FCFS

VM | Task Mean Min Max | Median | Mean | Min Max | Median | Mean | Min Max | Median | Mean | Min Max | Median
100 35.80 23.77 |84.25 |33.56 50.71 2541 93.40 149.93 48.79 24.01 |88.52 [46.25 85.06 32.11 ]105.89 [99.97

5 250 86.49 52.32 |182.87]83.70 140.59 |53.69 252.851143.65 |144.85 |53.55 |227.93 ]149.52 [207.12 |61.99 |261.64 |247.98
500 168.63 108.91 1250.32 | 165.90 [301.00 [122.40 |496.25|301.59 [312.03 |116.57 |473.23 1350.04 |419.07 |128.04|513.84 |497.82
100 9.80 7.30 17.53 19.38 18.62 8.62 38.70 |17.10 18.09 8.59 36.40 |16.64 40.48 15.35 |54.28 [49.71

10 | 250 24.05 16.60 [42.62 |23.39 57.33 21.86 99.41 |59.09 58.22 19.93 [105.62 |57.78 102.79 124.77 |132.65 |123.52
500 47.01 34.51 [97.53 144.10 127.66 |48.77 227.60 1 128.73 |134.09 [48.59 |226.55[140.29 [198.49 |64.97 |259.04 |248.42
100 2.74 2.03 4.07 2.67 7.13 2.96 16.58 |6.59 6.89 3.23 15.70 16.41 19.85 5.44 28.30 ]24.02

20 250 6.18 4.62 8.14 6.09 22.52 8.14 51.76 [19.93 22.46 7.79 51.13 119.92 50.72 13.53 |68.15 |60.34
500 12.26 8.77 16.52 |12.32 53.63 14.1 108.76 |49.45 54.83 14.21 [105.22 149.34 99.73 24.98 |133.61 | 124.00

Table 3. Statistical results of energy consumption (joules) simulations

Scenarios Heuristic PSO PSO ACO FCFS

VM | Task | Mean Min Max Median Mean Min Max Median Mean Min Max Median Mean Min Max Median
100 |18 690.3 6919.7 24654.0 |19333.1 [194954 |6784.5 28 578.1 196255 [19163.7 [6771.3 27700.8 19674.1 [23871.1 |6618.8 422954 224344

5 250 1481157 210813 |63845.6 [49025.6 |51481.5 |20850.6 |76778.8 52200.0 |51678.7 [21001.8 |78312.0 51636.8 | 60201.6 [21018.8 | 104409.7 |59 685.3
500 | 954755 625674 |124900.5|95743.1 [ 106651.4 657943 |171799.0 |105962.7]|107530.3 | 65453.6 |162155.4 105 187.1 | 122 945.9 | 70 608.8 | 194 945.4 117 098.1
100 | 36847.2 227063 |48263.5 |37372.1 [42167.0 [23520.3 |68351.5 40709.3 |41517.2 |23269.0 |60734.8 400129 |64761.8 |35269.4 |110941.8 |60742.9

10 250 | 90759.4 56760.2 | 117986.3 [90927.7 | 113509.2 |58428.5 |[187464.5 [106698.0 | 114175.9|57483.5 | 182402.6 107 246.9 | 161 196.2 | 744954 | 318 193.7 152 883.4
500 | 184656.9 |99382.6 |220893.9 | 186 892.5 | 245 162.9 | 113312.2 | 404 191.6 | 236 176.3 | 252 298.6 | 110292.4 | 438 957.3 | 240 085.4 | 323 368.8 | 120371.3 | 581 132.8 | 304 918.5
100 | 74 632.7 52081.0 | 114731.7 [ 74655.6 | 100427.9162762.8 [177449.2 [94736.1 |98650.4 | 62458.4 | 1675599 [94229.7 |205792.7]|76528.7 |368780.9 |[207398.9

20 250 | 1826572 147394.1 [ 219206.7 | 184 468.2 | 291 055.9 | 155 899.2 | 52 6540.8 | 279 832.3 |289231.4| 160443.7 | 508 569.9 [285331.8|531021.1|197144.0|845138.7 |517731.8
500 | 363 855, 286 992.2 |1 430 766.6 | 363 908.9 | 643 860.2 | 351 918.9 | 126 7283.0 | 615 555.9 | 650 094.9 | 364 609.0 | 1 285109.0 | 612 781.6 | 1 028 482 | 463 413.9 | 1 677 298.0 | 1 065 899.0
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The second performance evaluation was conducted by
looking at how much energy the cloud environment’s
virtual machines used. The average energy consumption
findings from the separate tests are displayed in Fig. 5, and
the statistical summaries of these experimental results are
displayed in Table 3. Fig. 5 and Table 3 show that Heuristic
PSO is more efficient in terms of energy consumption
compared to FCFS, ACO and PSO. In the 5 virtual
machine scenarios, Heuristic PSO achieved lower energy
consumption at all task numbers. For example, in the
scenario with 500 tasks, the average energy consumption
of Heuristic PSO was calculated as 95475.49 units, while
the consumption of standard PSO was 106651.44 units. In
10 virtual machine scenarios, energy consumption
decreased with increasing the number of virtual machines.
The energy consumption of Heuristic PSO in the scenario
with 500 tasks was 184656.92 units, while the standard
PSO, which is the closest algorithm, showed a
consumption of 245162.91 units. In the 20 virtual machine
scenarios, the presence of more virtual machines further
increased the efficiency of Heuristic PSO. In the case with
500 tasks, the energy consumption of Heuristic PSO was
calculated as 363855.14 units, while the consumption of
standard PSO reached 643860.2 units. These results show
that Heuristic PSO optimizes not only the makespan time
but also the energy consumption by distributing the tasks
more evenly. Especially in large-scale systems, the
proposed method achieves a more efficient scheduling
success by minimizing the problem of excessive energy
consumption compared to other algorithms.
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Figure 5. Average energy consumption outcomes across all
techniques

Conclusion

In this study, a heuristic PSO-based approach is proposed
to solve the task scheduling problem in cloud
environments. The proposed method provides a more
balanced task distribution by improving the initial
population of PSO with a heuristic mechanism. The
extensive simulations show that the heuristic PSO reduces
the makespan time by 61.42% and 62.84% on average
compared to the standard PSO and ACO algorithms. It was
also found to consume 26.18% less energy than PSO and
27.33% less energy than ACO. Especially in large systems,
heuristic PSO provides a more balanced distribution of
tasks by minimizing the early convergence problem. The
results show that the proposed method offers a more
efficient, scalable and energy-saving alternative for task
scheduling in cloud computing. In the future, it is planned
to further develop the method with multi-objective
optimization approaches, to integrate it with dynamic load
balancing strategies and to test it in large-scale applications
such as big data processing.
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