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Introduction 

The architecture of cloud services, which are becoming 

an essential part of the modern digital world, is extremely 

complicated. These systems can consist of a variety of 

components, ranging from network servers to personal 

computers, and are built by integrating numerous computers 

with advanced engineering techniques [1]. They can react 

quickly to different user task demands because of their large 

resource pool [2].  

In terms of their vast hardware infrastructure and 

services, cloud systems are complicated, and managing 

them can be difficult [3]. Task scheduling is a crucial 

procedure in these systems that guarantees that tasks are 

assigned to the best available resources [4]. Task scheduling 

is made considerably more difficult by the cloud 

environment's abundance of large-scale resources. By 

guaranteeing effective resource utilization, an efficient task 

scheduling system maximizes workloads. By taking into 

account various user requests, it simultaneously enhances 

resource management, boosts performance, lowers 

expenses, and greatly improves Quality of Service (QoS). 

For this reason, the task scheduling procedure is crucial to 

the efficacy and durability of cloud systems. Because task 

scheduling in cloud systems is a complicated problem that 

needs to be optimized, numerous approaches have been put 

out in the literature to address this issue [5]. Metaheuristic 

approaches are widely employed in task scheduling 

problems because they can produce efficient solutions by 

conducting effective searches in a vast solution space. 

These techniques can, however, occasionally have 

drawbacks such becoming trapped in local minima, slow 

convergence, and high processing costs. The mixed usage 

of heuristic approaches and metaheuristics gives substantial 

advantages to overcome these issues and obtain more 

effective solutions. By employing strategies unique to the 

problem's structure, heuristic approaches can generate 

quick and effective first solutions; however, metaheuristic 

methods optimize these answers and arrive at the global 

optimum more quickly. This hybrid strategy can offer high 

efficiency in task scheduling processes and has the ability 

to lower computing costs while improving the quality of the 

solutions. 

This work proposes a heuristic approach to a hybridized 

version of Particle Swarm Optimization (PSO) [6], a 

metaheuristic method commonly employed in cloud system 

task scheduling research. Below is a list of the suggested 

method's most inventive features: 
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ABSTRACT 

 
 

Scheduling tasks on cloud systems is a critical optimization problem that aims to distribute tasks among 

available resources in the most effective way. This issue falls under the category of NP-hard problems and 
generating exact and deterministic solutions requires high computational costs. Metaheuristic approaches 

have proven to provide successful results in solving such problems. Particle Swarm Optimization (PSO), 

one of these algorithms, is a widely used method in the literature due to its advantages, such as fast 
convergence, simple applicability, and low computational cost. In this study, a hybrid heuristic-based 

Particle Swarm Optimization approach is proposed to improve task scheduling efficiency. The proposed 

approach improves the solution quality by integrating a heuristic mechanism into the random population 
generation process of PSO. In comparison to First Come First Serve, Ant Colony Optimization (ACO), 

and conventional PSO, the suggested approach delivers better makespan and reduced energy consumption, 

according to the simulation analysis carried out in the CloudSim simulation environment. According to 
simulations, Heuristic PSO outperforms traditional PSO and ACO methods in terms of makespan time, 

reducing it by an average of 61.42% and 62.84%, respectively. It also uses 26.18% less energy than PSO 

and 27.33% less than ACO, according to its energy consumption data. The results show that the suggested 
method offers a more effective substitute for scheduling tasks in cloud computing systems. 
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• Heuristic approaches reduce the propensity of 

conventional PSO to become trapped in local minima, 

leading to quicker and more effective solutions.   

• In certain applications, PSO’s poor convergence speed 

is a drawback. The suggested approach strengthens with 

heuristic elements to achieve faster convergence.   

• By improving both makespan (completion time) and 

total energy consumption, the suggested approach helps 

cloud systems become more sustainable.  

• The addition of heuristic components to the PSO 

algorithm yields more reliable and superior results when 

compared to First Come First Server (FCFS), ACO, and 

PSO methods.   

The remaining of the paper is organized as follows: Section 

2 presents the literature review. Section 3 describes the 

problem definition and methodology. Section 4 presents 

and discusses the experimental results. Finally, Section 5 

concludes the paper by highlighting the main findings. 

Literature Research 

Real-time computing capabilities can be unilaterally 

provided and managed by cloud computing without the 

need for human contact[7]. It uses task scheduling to 

perform these operations. Task scheduling is the procedure 

used in cloud systems [8]. Of allocating user tasks to the 

best virtual machines based on a predetermined plan. The 

cloud system's dynamic and multifaceted structure must be 

considered in the task scheduling method. The goal for 

which the task scheduling technique is employed is also 

crucial. Scheduling tasks on cloud systems can be designed 

to include one or more of these factors, including makespan, 

energy consumption, and financial cost. The task requested 

by the users can be completely allocated to the virtual 

machines or the tasks can be assigned to the servers in parts. 

In this case, it is necessary to consider the interdependencies 

of the parts within the task. In general, task scheduling 

methods used in cloud systems can be shown in Fig.1. 

 

 

Figure 1. Task categories and the nature of the suggested.  

Heuristic algorithms offer an effective solution for low-

complexity and static systems [9]. The algorithms are easy 

to implement and have low computational cost. However, 

they give low performance to dynamic systems such as 

clouds and edges. Since heuristic methods are designed for 

a specific problem, they are difficult to apply directly to 

different problems. In the literature, Min-Min, Max-Min, 

Round Robin (RR), Shortest Job First (SJF), FCFS and Best 

Fit (BF) are the main heuristic methods. A modified round-

robin (MRR) algorithm, an improved version of RR, is 

proposed [10]. The proposed method gave better results in 

terms of average waiting time and turnaround time.  An 

improved Min-Min method that maximizes the total 

execution time and resource utilization of tasks is proposed 

[11]. Experimental results show that the proposed method 

achieves the best makespan values compared to the 

Sufferage and Min-Min algorithms. 

Metaheuristic methods generally provide effective 

solutions for complex and dynamic task scheduling 

problems in cloud environments [12]. Numerous NP-hard 

problems can be effectively solved using metaheuristic 

techniques, which have also been successfully adapted for 

use in cloud systems. Metaheuristic algorithms used in the 

literature can be modified to address issues with task 

scheduling, with appropriate representation.  PSO [13], 

Grey Wolf Algorithm (GWO) [14], Firefly Algorithm [15], 

ACO [16], Whale Optimization algorithm (WOA) [17], and 

Jellyfish Search Optimizer (JSO) [18] have been effectively 

modified to address issues with cloud work scheduling. 

PSO has been used for task scheduling in a cloud 

environment  [19].  This research compares the work plans 

produced using techniques such as the Genetic Algorithm 

(GA), Brute Force (BF), First-In-First-Out (FIFO), and 

Delay Scheduling Policy (DSP). According to the 

experimental results, the PSO algorithm offers a more 

effective way to schedule tasks in a cloud environment than 

other approaches. It also gives notable benefits when it 

comes to optimizing the makespan value. An enhanced 

variant of Henry Gas Resolution Optimization, the Henry 

Gas-Harris Hawks-Comprehensive Contrast (HGHHC) 

approach, is suggested in [20]. The values of 34.30, 72.95 

and 28.67 are for makespan and 16.92, 28.72 and 25.58 for 

resource utilization, respectively. Experimental results 

show that the HGHHC algorithm provides better simulated 

makespan and resource utilization compared to previous 

approaches. An adapted Chimpanzee Optimization 

Algorithm with improved exploration and exploitation 

stages is proposed to solve the task scheduling problem in 

cloud systems [21]. The success of the proposed method is 

tested for different simulation scenarios and the proposed 

method achieves a makespan improvement of 

approximately 30% compared to standard task scheduling 

algorithms. A method based on the Cloneable Jellyfish 

Algorithm is proposed for optimal task allocation in 

metaheuristic cloud environments [18]. The suggested 

algorithm’s most innovative feature is its regulated dynamic 

population expansion, which helps to prevent local minima 

during the exploration stage. It also has a distinct cloning 

method to minimize the similarity between candidates in 

population growth. The experiments performed on the 
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Cloudsim simulator proved the success of the suggested 

approach in compared to traditional scheduling techniques. 

Hybrid methods are used by combining different 

optimization techniques to provide more effective solutions 

addressing issues with cloud computing task scheduling 

[22]. These techniques, which are usually a combination of 

metaheuristic (e.g. GA, PSO, ACO, SA) and heuristic (e.g. 

RR, SJF) methods, provide higher efficiency and accuracy 

by utilizing the strengths of both methods.  While some 

algorithms (e.g., SA and ACO) can get stuck in local 

minima, hybrid approaches minimize this problem by 

integrating multiple strategies [23]. Since cloud 

environments are dynamic, classical methods may not be 

able to adapt to changing workloads. However, hybrid 

algorithms can better adapt to this dynamism by combining 

metaheuristic and heuristic techniques [24]. A hybrid 

method is proposed using the Heterogeneous Earliest Finish 

Time(HEFT) algorithm [25]. According to simulation data, 

the suggested approach performs better in terms of 

makespan on random Direct Acyclic Graphs (DAG) than 

three heuristic and genetic algorithms.  An approach to task 

scheduling that uses a hybrid optimization technique is 

presented [26]. The method considers other parameters such 

as minimum waiting time, overall production time, 

execution time, productivity and utilization in the 

scheduling of tasks. Results from simulations indicate that 

the suggested approach outperforms the traditional ACO 

and PSO-based scheduling algorithms in terms of 

performance. A hybrid algorithm is proposed by combining 

the ACO algorithm with the concept of gravitational search 

[27]. Simulation results performed with the CloudSim tool 

show that the proposed method outperforms ACO and the 

basic Gravitational Search Algorithm (GSA) [28]. 

The issue of task scheduling in cloud systems has garnered 

the interest of many researchers in the literature. A 

technique for building the PSO's initial population using 

heuristic methods is presented  [29]. The authors use the 

Longest Job to Fastest Processor (LJFP) and Minimum 

Completion Time (MCT) to build the PSO population. The 

makespan, total execution time, degree of imbalance, and 

total energy consumption are used to assess the 

effectiveness of the suggested approaches. According on 

experimental findings, the suggested approaches 

outperform the conventional PSO. The drawbacks of PSO, 

including early convergence issues during the optimization 

process and becoming trapped in local minima, are 

addressed  by using a Simulated Annealing approach [30]. 

According to experimental findings, the suggested 

approach can improve the ratio of average runtime to 

resource availability. A mathematical model known as the 

Load Balancing Mutation (LBMPSO), which considers 

availability and dependability, is proposed [31]. This model 

is a cloud computing particle swarm optimization 

(LBMPSO) scheduling technique that takes dependability, 

round-trip time, creation interval, execution time, 

transmission time, and load balancing between tasks and 

virtual machines into account. LBMPSO can improve the 

cloud computing environment's dependability by taking 

into account the resources that are available and delaying 

jobs that haven't been assigned yet. LBMPSO is contrasted 

with the randomized approach, standard PSO, and the 

Longest Cloud to Fastest Processor (LCFP) algorithm. 

Experimental results show that LBMPSO can lower 

execution times, round-trip times, and transmission costs. 

Problem Definition and Methodology 

Before being allocated to cloud virtual machines, user-

submitted tasks are first put in the task queue. The task 

scheduler (TS) retrieves the specified number of tasks from 

the task queue and allocates them to the virtual machines 

according to the working principle. Tabular, matrix, graph, 

list, and coding techniques are commonly used in 

optimization methods. This study adopts the tabular 

method, illustrated in Fig.2, where tasks and virtual 

machines are represented. Here, the case of allocating 10 

tasks to 3 virtual machines is represented. The tabular 

representation shown in Figure 2 represents a solution to be 

optimized. Fig. 3 shows a visualization of the execution of 

this representative solution on virtual machines. The 

makespan value is expressed as the highest of the amount 

of time needed for the tasks assigned to the servers to 

complete. 

 

Figure 2. Solution Representation of A Task Scheduling. 

T1 T5 T10

T3 T6 T8

T2 T4 T7 T9

Makespan  

Figure 3. Makespan Representation. 

Each task in the work queue is distinct and independent of 

the others. Each time a predetermined quantity of tasks are 

pulled from the queue of tasks and the tasks to be assigned 

are denoted by 𝑇 = {𝑇1, 𝑇2, . . , 𝑇𝑖 , . . , 𝑇𝑛}. Here, 𝑡𝑘 

represents the quantity of instructions contained in the 𝑖’th 

task and 𝑛 represents the number of tasks. The active 

virtual machines in the cloud to which the tasks will be 

assigned have different command processing capacities, 

and the total number of 𝑚 active virtual machines in the 

system is denoted by 𝑉 = {𝑣1, 𝑣2, . . , 𝑣𝑗 , . . , 𝑣𝑚}.  

𝑣𝑙  indicates how many million instructions per second 

(MIPS) that the 𝑙’th virtual machine processes. 

Consequently, the time of execution (𝐸𝑇𝑙𝑘) of the 𝑘 th task 
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on the 𝑙’st virtual machine is calculated by Equation (1). It 

is not necessary to allocate every task in the task queue to 

a separate machine. If whether the 𝑘’th task is allocated to 

the 𝑙’st virtual machine is expressed by a boolean 

parameter 𝑒𝑙𝑘, then the entire amount of time needed to 

complete all tasks allocated to the 𝑗 th virtual machine (ℰ𝑙) 

is found by Equation (2). When scheduling tasks in cloud 

systems, makespan is optimized by considering various 

objectives such as energy, cost, user service quality, task 

priority. In this study, optimization of the makespan value 

is performed. When using cloud systems, makespan (𝑀𝑆) 

expresses the greatest amount of time needed to complete 

a set of tasks across a collection of virtual machines and is 

represented by Equation (3). 

𝐸𝑇𝑙𝑘 =
𝑡𝑘

𝑣𝑙
  (1) 

ℰ𝑙 = ∑ 𝑒𝑙𝑘 ∗ 𝐸𝑇𝑙𝑘
𝑁
𝑘=0               

 

𝑒𝑙𝑘 {
1, 𝑖𝑓 𝑘′𝑡ℎ 𝑡𝑎𝑠𝑘  𝑤𝑎𝑠 𝑎𝑔𝑖𝑛𝑒𝑑 𝑡𝑜 𝑙′𝑡ℎ 𝑉𝑀       

   0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                      
 

 

(2) 

𝑀𝑆 =  𝑚𝑎𝑥(ℰ𝑙)𝑙=1
𝑚   (3) 

 

Particle Swarm Optimization  

PSO is inspired by nature, in particular the collective 

movements of flocks of birds and groups of fish. The 

algorithm works by modelling the interactive movement of 

particles to scan a solution space. PSO uses a randomly 

initialized particle swarm to solve optimization problems. 

Each particle represents a point in the solution space and 

has two basic properties: position and velocity. Each 

particle moves by being influenced both by its own past 

experience (𝑃𝑏𝑒𝑠𝑡) and by the best experience of other 

particles in the swarm  (𝐺𝑏𝑒𝑠𝑡  ) [1]. In this way, both 

exploration and exploitation processes are balanced.  

Equation (4-5) computes these particle movements. 

Here 𝑋𝑝 and 𝑉𝑝  are the particle's location and velocity 

values. 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are the random coefficients. 𝑊 is 

the particle's coefficient of inertia, which establishes the 

ratio of exploration to exploitation. 𝑐1, 𝑐2 are the particle 

motion's acceleration coefficients. In the representation 

form used for task scheduling, every vector index denotes a 

task, and the value contained within it corresponds to the 

VM's ID. The floating values' counterparts in integers were 

found by Equation (6) are considered since the VM ID is an 

integer. The scheduling vector is also these values (𝑆𝑣 ). 

Algorithm 1 provides the PSO pseudo-code that was 

utilized in this investigation and modified for the task-

scheduling issue. If any of the 𝑆𝑣’s constituent parts value 

is greater than the upper and lower bound values, the 

appropriate component then selects an integer value 

between the lower and higher bounds that is created at 

random. 

𝑉𝑝 = 𝑊 ∗ 𝑉𝑝 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑1 ∗ (𝑃𝑏𝑒𝑠𝑡,𝑖 − 𝑋𝑖) + 𝑐2

∗ 𝑟𝑎𝑛𝑑2 ∗ (𝑃𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑖) 

(4) 

𝑋𝑝
𝑛𝑒𝑤 = 𝑋𝑝 + 𝑉𝑝   (5) 

𝑆𝑣 =  𝑟𝑜𝑢𝑛𝑑(𝑋𝑝
𝑛𝑒𝑤) (6) 

 

Algorithm 1 The task-scheduling pseudo code of PSO 

Initialize parameters 

Initialize population 

𝐼𝑡𝑟𝑚𝑎𝑥    maximum iteration number 

𝑁𝑝𝑜𝑝 Population size 

For i=0 to 𝑁𝑝𝑜𝑝 

𝐹𝑖Calculate Fitness Value 𝑃𝑖  

 If 𝐹𝑖> 𝑃𝑏𝑒𝑠𝑡  

     𝑃𝑏𝑒𝑠𝑡=𝐹𝑖 

𝐺𝑏𝑒𝑠𝑡 Particles with the highest fitness value overall 

For itr=0  to 𝐼𝑡𝑟𝑚𝑎𝑥    
    For i=0 to 𝑁𝑝𝑜𝑝 

       Determine the particle velocity using Equation 4. 

       Particle position should be updated using Eq. 5. 

The position of particle is rounded to the closest             

value 

        If (𝑋𝑝 < 𝑋𝐿𝑜𝑤𝑒𝑟  ) or (𝑋𝑝 > 𝑋𝑈𝑝𝑝𝑒𝑟) 

          𝑋𝑝 = 𝑅𝑎𝑛𝑑𝑜𝑚(𝑋𝐿𝑜𝑤𝑒𝑟 , 𝑋𝑈𝑝𝑝𝑒𝑟) 

 

Initialize population 

Population generation in PSO is usually performed in a 

randomized manner. However, when the initially generated 

solutions are far from the optimum solution, this adversely 

affects the performance of the optimization process. The 

randomly generated solutions may be very similar to each 

other and may fall into undesired regions of the search 

space. This situation negatively affects the optimization 

process [22]. The heuristic method proposed in this study is 

realized by considering the population initially generated by 

PSO with various criteria. Firstly, the method calculates a 

load coefficient (𝐿𝐶) with Equation (7). This load factor is 

then multiplied by the capacities of the active virtual 

machines in the cloud and the amount of load that each 

server can take is calculated. This is as shown in Equation 

(8). 

𝐿𝐶 =
∑ 𝑇𝑘

𝑛
𝑘

∑ 𝑉𝑙
𝑚
𝑙

  
7 

𝐿𝐷𝑘 = 𝑉𝑘 × 𝐿𝐶   ∀ 𝑘 ∈ {1,2,3, … , 𝑚}  8 

After determining the amount of load that can be assigned 

to all virtual machines, the tasks that will be subjected to 

scheduling are sorted from biggest to smallest based on 

how many instructions there are and allocated to virtual 

machines respectively. The reason for this is to reduce the 

makespan by prioritizing tasks with a high number of 

commands. When a task is assigned to a virtual machine, 

the current task load of the virtual machine must be greater 

than the time it takes to execute this task on this machine 

Equation (1).  If the load of a virtual machine is greater than 

the time taken to execute a task, the task is allocated to this 

virtual machine and the new load of the virtual machine is 
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updated. If a task is not allocated to any virtual machine (if 

the current load of the virtual machines is less than the time 

it takes to execute the task), the task is allocated to the 

virtual machine with the minimum impact on the makespan 

time. Algorithm 2 displays the algorithm's pseudo code. 

Algorithm 2 The pseudo-code of Heuristic approach for 

task-scheduling 

Calculate Load Coefficient according to Eq7 

LD Calculate the workload that each virtual machine 

can take according to Eq.8 

T Sort tasks from largest to smallest by command  

V CPU capacities of all VM's 

For i to Size(T) 

IsAssign=False 

For j to Size(V) 

     ET Calculate according to Eq.1 

     If (LD(i)>ET) 

        Assign task i to VM j 

         LDi= LDi -ET 

         IsAssign=True 

 If (!IsAssign) 

Assign task to Vm according to minimum 

makespan 

 

Results and Discussion 

The success of the proposed method is tested in the 

CloudSim environment considering different scenarios 

[32]. In the simulations, the performance of Heuristic PSO 

is presented comparatively with FCFS, ACO, and PSO in 

terms of makespan and energy consumption.  To evaluate 

the performance of proposed method used scenarios with 

varying quantities of tasks and virtual machines (VMs). The 

computational capacity of each VM is randomly assigned 

to reflect the heterogeneity of real cloud environments. 

Similarly, the quantity of task instructions was also 

randomized to simulate loads of different complexity.  

Two main performance metrics were considered: 

Makespan 

The overall task completion times were measured to 

assess scheduling efficiency. The results indicate that 

Heuristic-PSO consistently achieved a shorter makespan 

compared to FCFS, ACO, and standard PSO. This 

demonstrates its ability to allocate tasks more effectively 

across available resources, leading to balanced load 

distribution and improved scheduling efficiency. 

Energy Consumption 

Energy usage was analyzed by calculating the power 

consumed by VMs during both idle and active states. The 

findings show that Heuristic-PSO reduced total energy 

consumption more effectively than the benchmark 

algorithms. This improvement highlights the capability of 

the proposed method to minimize energy expenditure while 

maintaining scheduling performance. 

Overall, the experimental results confirm that 

integrating heuristic strategies into PSO not only enhances 

task scheduling efficiency but also improves energy 

awareness in cloud environments.The number of 

instructions and virtual machine processor capacities of the 

tasks used in each scenario were performed randomly. The 

amount of energy spent for instruction execution was 

assigned in proportion to the processor capacity of each 

virtual machine. In addition, the amount of energy 

consumed by the virtual machines when idle was taken as 

30% of the amount of energy at load. Thus, the amount of 

energy consumed by the servers when they are idle is also 

taken into account in a task scheduling. In this study, the 

results obtained for each scenario are averaged over 100 

independent simulations. The simulations were run on a 

machine with an Intel(R) Core(TM) i5-10400 CPU running 

at 2.90 GHz and 8.00 GB of RAM.  Table 1 lists other 

simulation parameters.   

Table 1 The simulations parameters 

  

CloudSim 

Number of tasks 100-250-500 

Number of task 

commands 

4.000-6.000 

VM numbers 5-10-20 

MIPS 1 000-20 000 

Maximum Iteration 100 

Number of Particles 

and Ant 

20 

PSO 

c1 1 

c2 2 

w 0.5 

Maximum Iteration 100 

ACO 

Ant Numbers 20 

α 1 

β 2 

σ 0.1 

 

In the simulations, the first performance evaluation was 

carried out in terms of makespan. The average makespan 

findings from 100 separate simulations are displayed in Fig. 

4, and the statistical summaries of these experimental data 

are displayed in Table 2. The results shown in Fig. 4 and 

Table 2 indicate that Heuristic PSO produces lower 

makespan values compared to FCFS, ACO and PSO 

algorithms. Especially in scenarios where the number of 

virtual machines and the amount of tasks increases, 

Heuristic PSO provides more stable and lower makespan 

times. In the five virtual machine scenarios, Heuristic PSO 

produced shorter makespan values than FCFS, ACO and 

PSO for all task numbers. The most significant difference 

was observed in the scenario with 500 tasks. In scenarios 

with 5 virtual machines, the average makespan value of 

Heuristic PSO was 168.63, while that of standard PSO was 

301, ACO was 312.03 and FCFS was 419.07. In scenarios 

with 10 virtual machines, Heuristic PSO achieved very 

good results in terms of makespan. In scenarios with 20 

virtual machines, the average makespan value of Heuristic 
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PSO was determined as 47.01, while it was calculated as 

127.66 for standard PSO.  In the 20 virtual machine 

scenarios, increasing the number of virtual machines 

generally decreased the makespan times, but Heuristic PSO 

again achieved better results compared to FCFS, ACO and 

PSO. In the 500 task scenario, the average makespan value 

of Heuristic PSO was 12.26, while standard PSO was 53.63. 

These results show that Heuristic PSO can significantly 

reduce the makespan time by distributing the tasks more 

evenly. Especially in large-scale systems, the proposed 

method minimizes the early convergence problem and 

achieves a better scheduling success. 

 

A. Average makespan results for scenarios with 5 

VMs 

 

B. Average makespan results for scenarios with 10 

VMs 

 

C. Average makespan results for scenarios with 20 

VMs 

Figure 4. Average makespan outcomes across all techniques 
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Table 2. Statistical results of makespan simulations 

Scenarios Heuristic PSO  PSO ACO FCFS 

VM Task Mean Min Max Median Mean Min Max Median Mean Min Max Median Mean Min Max Median 

5 

100 35.80 23.77 84.25 33.56 50.71 25.41 93.40 49.93 48.79 24.01 88.52 46.25 85.06 32.11 105.89 99.97 

250 86.49 52.32 182.87 83.70 140.59 53.69 252.85 143.65 144.85 53.55 227.93 149.52 207.12 61.99 261.64 247.98 

500 168.63 108.91 250.32 165.90 301.00 122.40 496.25 301.59 312.03 116.57 473.23 350.04 419.07 128.04 513.84 497.82 

10 

100 9.80 7.30 17.53 9.38 18.62 8.62 38.70 17.10 18.09 8.59 36.40 16.64 40.48 15.35 54.28 49.71 

250 24.05 16.60 42.62 23.39 57.33 21.86 99.41 59.09 58.22 19.93 105.62 57.78 102.79 24.77 132.65 123.52 

500 47.01 34.51 97.53 44.10 127.66 48.77 227.60 128.73 134.09 48.59 226.55 140.29 198.49 64.97 259.04 248.42 

20 

100 2.74 2.03 4.07 2.67 7.13 2.96 16.58 6.59 6.89 3.23 15.70 6.41 19.85 5.44 28.30 24.02 

250 6.18 4.62 8.14 6.09 22.52 8.14 51.76 19.93 22.46 7.79 51.13 19.92 50.72 13.53 68.15 60.34 

500 12.26 8.77 16.52 12.32 53.63 14.1 108.76 49.45 54.83 14.21 105.22 49.34 99.73 24.98 133.61 124.00 

 

Table 3. Statistical results of energy consumption (joules) simulations 

Scenarios Heuristic PSO  PSO ACO FCFS 

VM Task Mean Min Max Median Mean Min Max Median Mean Min Max Median Mean Min Max Median 

5 

100 18 690.3 6 919.7 2 4654.0 19 333.1 19 495.4 6 784.5 28 578.1 19 625.5 19 163.7 6 771.3 27 700.8 19 674.1 23 871.1 6 618.8 42 295.4 22 434.4 

250 48 115.7 21 081.3 63 845.6 49 025.6 51 481.5 20 850.6 76 778.8 52 200.0 51 678.7 21 001.8 78 312.0 51 636.8 60 201.6 21 018.8 104 409.7 59 685.3 

500 95 475.5 62 567.4 124 900.5 95 743.1 106 651.4 65 794.3 171 799.0 105 962.7 107 530.3 65 453.6 162 155.4 105 187.1 122 945.9 70 608.8 194 945.4 117 098.1 

10 

100 36 847.2 22 706.3 48 263.5 37 372.1 42 167.0 23 520.3 68 351.5 40 709.3 41 517.2 23 269.0 60 734.8 40 012.9 64 761.8 35 269.4 110 941.8 60 742.9 

250 90 759.4 56 760.2 117 986.3 90 927.7 113 509.2 58 428.5 187 464.5 106 698.0 114 175.9 57 483.5 182 402.6 107 246.9 161 196.2 74 495.4 318 193.7 152 883.4 

500 184 656.9 99 382.6 220 893.9 186 892.5 245 162.9 113 312.2 404 191.6 236 176.3 252 298.6 110 292.4 438 957.3 240 085.4 323 368.8 120 371.3 581 132.8 304 918.5 

20 

100 74 632.7 52 081.0 114 731.7 74 655.6 100 427.9 62 762.8 177 449.2 94 736.1 98 650.4 62 458.4 167 559.9 94 229.7 205 792.7 76 528.7 368 780.9 207 398.9 

250 182 657.2 147 394.1 219 206.7 184 468.2 291 055.9 155 899.2 52 6540.8 279 832.3 289 231.4 160 443.7 508 569.9 285 331.8 531 021.1 197 144.0 845 138.7 517 731.8 

500 363 855.1 286 992.2 430 766.6 363 908.9 643 860.2 351 918.9 126 7283.0 615 555.9 650 094.9 364 609.0 1 285 109.0 612 781.6 1 028 482 463 413.9 1 677 298.0 1 065 899.0 
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The second performance evaluation was conducted by 

looking at how much energy the cloud environment’s 

virtual machines used. The average energy consumption 

findings from the separate tests are displayed in Fig. 5, and 

the statistical summaries of these experimental results are 

displayed in Table 3. Fig. 5 and Table 3 show that Heuristic 

PSO is more efficient in terms of energy consumption 

compared to FCFS, ACO and PSO.  In the 5 virtual 

machine scenarios, Heuristic PSO achieved lower energy 

consumption at all task numbers. For example, in the 

scenario with 500 tasks, the average energy consumption 

of Heuristic PSO was calculated as 95475.49 units, while 

the consumption of standard PSO was 106651.44 units.  In 

10 virtual machine scenarios, energy consumption 

decreased with increasing the number of virtual machines. 

The energy consumption of Heuristic PSO in the scenario 

with 500 tasks was 184656.92 units, while the standard 

PSO, which is the closest algorithm, showed a 

consumption of 245162.91 units.  In the 20 virtual machine 

scenarios, the presence of more virtual machines further 

increased the efficiency of Heuristic PSO. In the case with 

500 tasks, the energy consumption of Heuristic PSO was 

calculated as 363855.14 units, while the consumption of 

standard PSO reached 643860.2 units.  These results show 

that Heuristic PSO optimizes not only the makespan time 

but also the energy consumption by distributing the tasks 

more evenly. Especially in large-scale systems, the 

proposed method achieves a more efficient scheduling 

success by minimizing the problem of excessive energy 

consumption compared to other algorithms. 

 

A. Average energy consumption results for scenarios 

with 5 VMs 

 
B. Average energy consumption results for scenarios 

with 10 VMs 

 
C. Average energy consumption results for scenarios 

with 20 VMs 

Figure 5. Average energy consumption outcomes across all 

techniques 

 

Conclusion 

In this study, a heuristic PSO-based approach is proposed 

to solve the task scheduling problem in cloud 

environments. The proposed method provides a more 

balanced task distribution by improving the initial 

population of PSO with a heuristic mechanism. The 

extensive simulations show that the heuristic PSO reduces 

the makespan time by 61.42% and 62.84% on average 

compared to the standard PSO and ACO algorithms. It was 

also found to consume 26.18% less energy than PSO and 

27.33% less energy than ACO. Especially in large systems, 

heuristic PSO provides a more balanced distribution of 

tasks by minimizing the early convergence problem. The 

results show that the proposed method offers a more 

efficient, scalable and energy-saving alternative for task 

scheduling in cloud computing. In the future, it is planned 

to further develop the method with multi-objective 

optimization approaches, to integrate it with dynamic load 

balancing strategies and to test it in large-scale applications 

such as big data processing. 
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