
DUJE (Dicle University Journal of Engineering) 16:3 (2025) Page 549-558

Hybrid Heuristic and Particle Swarm Optimization Approach to Cloud Task

Scheduling

 Cebrail BARUT1*, Kazım FIRILDAK2
1 Firat University, Continuing Education Center, cbarut@firat.edu.tr, Orcid No: 000-0003-2756-5434
2 Firat University, Department of Computer Technology, kfirildak@firat.edu.tr, Orcid No: 0000-0002-1958-3627

Introduction

The architecture of cloud services, which are becoming

an essential part of the modern digital world, is extremely

complicated. These systems can consist of a variety of

components, ranging from network servers to personal

computers, and are built by integrating numerous computers

with advanced engineering techniques [1]. They can react

quickly to different user task demands because of their large

resource pool [2].

In terms of their vast hardware infrastructure and

services, cloud systems are complicated, and managing

them can be difficult [3]. Task scheduling is a crucial

procedure in these systems that guarantees that tasks are

assigned to the best available resources [4]. Task scheduling

is made considerably more difficult by the cloud

environment's abundance of large-scale resources. By

guaranteeing effective resource utilization, an efficient task

scheduling system maximizes workloads. By taking into

account various user requests, it simultaneously enhances

resource management, boosts performance, lowers

expenses, and greatly improves Quality of Service (QoS).

For this reason, the task scheduling procedure is crucial to

the efficacy and durability of cloud systems. Because task

scheduling in cloud systems is a complicated problem that

needs to be optimized, numerous approaches have been put

out in the literature to address this issue [5]. Metaheuristic

approaches are widely employed in task scheduling

problems because they can produce efficient solutions by

conducting effective searches in a vast solution space.

These techniques can, however, occasionally have

drawbacks such becoming trapped in local minima, slow

convergence, and high processing costs. The mixed usage

of heuristic approaches and metaheuristics gives substantial

advantages to overcome these issues and obtain more

effective solutions. By employing strategies unique to the

problem's structure, heuristic approaches can generate

quick and effective first solutions; however, metaheuristic

methods optimize these answers and arrive at the global

optimum more quickly. This hybrid strategy can offer high

efficiency in task scheduling processes and has the ability

to lower computing costs while improving the quality of the

solutions.

This work proposes a heuristic approach to a hybridized

version of Particle Swarm Optimization (PSO) [6], a

metaheuristic method commonly employed in cloud system

task scheduling research. Below is a list of the suggested

method's most inventive features:

 Research Article

ARTICLE INFO

Article history:

Received 20 March 2025

Received in revised form 8 May 2025

Accepted 31 July 2025

Available online 30 September 2025

 Keywords:

Cloud Computing, Task Scheduling,

Heuristic Particle Swarm

Optimization

ABSTRACT

Scheduling tasks on cloud systems is a critical optimization problem that aims to distribute tasks among

available resources in the most effective way. This issue falls under the category of NP-hard problems and
generating exact and deterministic solutions requires high computational costs. Metaheuristic approaches

have proven to provide successful results in solving such problems. Particle Swarm Optimization (PSO),

one of these algorithms, is a widely used method in the literature due to its advantages, such as fast
convergence, simple applicability, and low computational cost. In this study, a hybrid heuristic-based

Particle Swarm Optimization approach is proposed to improve task scheduling efficiency. The proposed

approach improves the solution quality by integrating a heuristic mechanism into the random population
generation process of PSO. In comparison to First Come First Serve, Ant Colony Optimization (ACO),

and conventional PSO, the suggested approach delivers better makespan and reduced energy consumption,

according to the simulation analysis carried out in the CloudSim simulation environment. According to
simulations, Heuristic PSO outperforms traditional PSO and ACO methods in terms of makespan time,

reducing it by an average of 61.42% and 62.84%, respectively. It also uses 26.18% less energy than PSO

and 27.33% less than ACO, according to its energy consumption data. The results show that the suggested
method offers a more effective substitute for scheduling tasks in cloud computing systems.

Doi: 10.24012/dumf.1662221

* Corresponding author

DUJE (Dicle University Journal of Engineering) 16:3 (2025) Page 549-558

550

• Heuristic approaches reduce the propensity of

conventional PSO to become trapped in local minima,

leading to quicker and more effective solutions.

• In certain applications, PSO’s poor convergence speed

is a drawback. The suggested approach strengthens with

heuristic elements to achieve faster convergence.

• By improving both makespan (completion time) and

total energy consumption, the suggested approach helps

cloud systems become more sustainable.

• The addition of heuristic components to the PSO

algorithm yields more reliable and superior results when

compared to First Come First Server (FCFS), ACO, and

PSO methods.

The remaining of the paper is organized as follows: Section

2 presents the literature review. Section 3 describes the

problem definition and methodology. Section 4 presents

and discusses the experimental results. Finally, Section 5

concludes the paper by highlighting the main findings.

Literature Research

Real-time computing capabilities can be unilaterally

provided and managed by cloud computing without the

need for human contact[7]. It uses task scheduling to

perform these operations. Task scheduling is the procedure

used in cloud systems [8]. Of allocating user tasks to the

best virtual machines based on a predetermined plan. The

cloud system's dynamic and multifaceted structure must be

considered in the task scheduling method. The goal for

which the task scheduling technique is employed is also

crucial. Scheduling tasks on cloud systems can be designed

to include one or more of these factors, including makespan,

energy consumption, and financial cost. The task requested

by the users can be completely allocated to the virtual

machines or the tasks can be assigned to the servers in parts.

In this case, it is necessary to consider the interdependencies

of the parts within the task. In general, task scheduling

methods used in cloud systems can be shown in Fig.1.

Figure 1. Task categories and the nature of the suggested.

Heuristic algorithms offer an effective solution for low-

complexity and static systems [9]. The algorithms are easy

to implement and have low computational cost. However,

they give low performance to dynamic systems such as

clouds and edges. Since heuristic methods are designed for

a specific problem, they are difficult to apply directly to

different problems. In the literature, Min-Min, Max-Min,

Round Robin (RR), Shortest Job First (SJF), FCFS and Best

Fit (BF) are the main heuristic methods. A modified round-

robin (MRR) algorithm, an improved version of RR, is

proposed [10]. The proposed method gave better results in

terms of average waiting time and turnaround time. An

improved Min-Min method that maximizes the total

execution time and resource utilization of tasks is proposed

[11]. Experimental results show that the proposed method

achieves the best makespan values compared to the

Sufferage and Min-Min algorithms.

Metaheuristic methods generally provide effective

solutions for complex and dynamic task scheduling

problems in cloud environments [12]. Numerous NP-hard

problems can be effectively solved using metaheuristic

techniques, which have also been successfully adapted for

use in cloud systems. Metaheuristic algorithms used in the

literature can be modified to address issues with task

scheduling, with appropriate representation. PSO [13],

Grey Wolf Algorithm (GWO) [14], Firefly Algorithm [15],

ACO [16], Whale Optimization algorithm (WOA) [17], and

Jellyfish Search Optimizer (JSO) [18] have been effectively

modified to address issues with cloud work scheduling.

PSO has been used for task scheduling in a cloud

environment [19]. This research compares the work plans

produced using techniques such as the Genetic Algorithm

(GA), Brute Force (BF), First-In-First-Out (FIFO), and

Delay Scheduling Policy (DSP). According to the

experimental results, the PSO algorithm offers a more

effective way to schedule tasks in a cloud environment than

other approaches. It also gives notable benefits when it

comes to optimizing the makespan value. An enhanced

variant of Henry Gas Resolution Optimization, the Henry

Gas-Harris Hawks-Comprehensive Contrast (HGHHC)

approach, is suggested in [20]. The values of 34.30, 72.95

and 28.67 are for makespan and 16.92, 28.72 and 25.58 for

resource utilization, respectively. Experimental results

show that the HGHHC algorithm provides better simulated

makespan and resource utilization compared to previous

approaches. An adapted Chimpanzee Optimization

Algorithm with improved exploration and exploitation

stages is proposed to solve the task scheduling problem in

cloud systems [21]. The success of the proposed method is

tested for different simulation scenarios and the proposed

method achieves a makespan improvement of

approximately 30% compared to standard task scheduling

algorithms. A method based on the Cloneable Jellyfish

Algorithm is proposed for optimal task allocation in

metaheuristic cloud environments [18]. The suggested

algorithm’s most innovative feature is its regulated dynamic

population expansion, which helps to prevent local minima

during the exploration stage. It also has a distinct cloning

method to minimize the similarity between candidates in

population growth. The experiments performed on the

Task
Scheduler

Heuristic

Min-Min

Max-Min

RR

SJF

FCFS

BF

Metaheuristic

PSO

GA

ACO

SA

ABC

FA

GWO

WOA

Hybrid

Hybrid PSO-
GA

PSO-ACO

GA-ACO

HPSO

DUJE (Dicle University Journal of Engineering) 16:3 (2025) Page 549-558

551

Cloudsim simulator proved the success of the suggested

approach in compared to traditional scheduling techniques.

Hybrid methods are used by combining different

optimization techniques to provide more effective solutions

addressing issues with cloud computing task scheduling

[22]. These techniques, which are usually a combination of

metaheuristic (e.g. GA, PSO, ACO, SA) and heuristic (e.g.

RR, SJF) methods, provide higher efficiency and accuracy

by utilizing the strengths of both methods. While some

algorithms (e.g., SA and ACO) can get stuck in local

minima, hybrid approaches minimize this problem by

integrating multiple strategies [23]. Since cloud

environments are dynamic, classical methods may not be

able to adapt to changing workloads. However, hybrid

algorithms can better adapt to this dynamism by combining

metaheuristic and heuristic techniques [24]. A hybrid

method is proposed using the Heterogeneous Earliest Finish

Time(HEFT) algorithm [25]. According to simulation data,

the suggested approach performs better in terms of

makespan on random Direct Acyclic Graphs (DAG) than

three heuristic and genetic algorithms. An approach to task

scheduling that uses a hybrid optimization technique is

presented [26]. The method considers other parameters such

as minimum waiting time, overall production time,

execution time, productivity and utilization in the

scheduling of tasks. Results from simulations indicate that

the suggested approach outperforms the traditional ACO

and PSO-based scheduling algorithms in terms of

performance. A hybrid algorithm is proposed by combining

the ACO algorithm with the concept of gravitational search

[27]. Simulation results performed with the CloudSim tool

show that the proposed method outperforms ACO and the

basic Gravitational Search Algorithm (GSA) [28].

The issue of task scheduling in cloud systems has garnered

the interest of many researchers in the literature. A

technique for building the PSO's initial population using

heuristic methods is presented [29]. The authors use the

Longest Job to Fastest Processor (LJFP) and Minimum

Completion Time (MCT) to build the PSO population. The

makespan, total execution time, degree of imbalance, and

total energy consumption are used to assess the

effectiveness of the suggested approaches. According on

experimental findings, the suggested approaches

outperform the conventional PSO. The drawbacks of PSO,

including early convergence issues during the optimization

process and becoming trapped in local minima, are

addressed by using a Simulated Annealing approach [30].

According to experimental findings, the suggested

approach can improve the ratio of average runtime to

resource availability. A mathematical model known as the

Load Balancing Mutation (LBMPSO), which considers

availability and dependability, is proposed [31]. This model

is a cloud computing particle swarm optimization

(LBMPSO) scheduling technique that takes dependability,

round-trip time, creation interval, execution time,

transmission time, and load balancing between tasks and

virtual machines into account. LBMPSO can improve the

cloud computing environment's dependability by taking

into account the resources that are available and delaying

jobs that haven't been assigned yet. LBMPSO is contrasted

with the randomized approach, standard PSO, and the

Longest Cloud to Fastest Processor (LCFP) algorithm.

Experimental results show that LBMPSO can lower

execution times, round-trip times, and transmission costs.

Problem Definition and Methodology

Before being allocated to cloud virtual machines, user-

submitted tasks are first put in the task queue. The task

scheduler (TS) retrieves the specified number of tasks from

the task queue and allocates them to the virtual machines

according to the working principle. Tabular, matrix, graph,

list, and coding techniques are commonly used in

optimization methods. This study adopts the tabular

method, illustrated in Fig.2, where tasks and virtual

machines are represented. Here, the case of allocating 10

tasks to 3 virtual machines is represented. The tabular

representation shown in Figure 2 represents a solution to be

optimized. Fig. 3 shows a visualization of the execution of

this representative solution on virtual machines. The

makespan value is expressed as the highest of the amount

of time needed for the tasks assigned to the servers to

complete.

Figure 2. Solution Representation of A Task Scheduling.

T1 T5 T10

T3 T6 T8

T2 T4 T7 T9

Makespan

Figure 3. Makespan Representation.

Each task in the work queue is distinct and independent of

the others. Each time a predetermined quantity of tasks are

pulled from the queue of tasks and the tasks to be assigned

are denoted by 𝑇 = {𝑇1, 𝑇2, . . , 𝑇𝑖 , . . , 𝑇𝑛}. Here, 𝑡𝑘

represents the quantity of instructions contained in the 𝑖’th

task and 𝑛 represents the number of tasks. The active

virtual machines in the cloud to which the tasks will be

assigned have different command processing capacities,

and the total number of 𝑚 active virtual machines in the

system is denoted by 𝑉 = {𝑣1, 𝑣2, . . , 𝑣𝑗 , . . , 𝑣𝑚}.

𝑣𝑙 indicates how many million instructions per second

(MIPS) that the 𝑙’th virtual machine processes.

Consequently, the time of execution (𝐸𝑇𝑙𝑘) of the 𝑘 th task

DUJE (Dicle University Journal of Engineering) 16:3 (2025) Page 549-558

552

on the 𝑙’st virtual machine is calculated by Equation (1). It

is not necessary to allocate every task in the task queue to

a separate machine. If whether the 𝑘’th task is allocated to

the 𝑙’st virtual machine is expressed by a boolean

parameter 𝑒𝑙𝑘, then the entire amount of time needed to

complete all tasks allocated to the 𝑗 th virtual machine (ℰ𝑙)

is found by Equation (2). When scheduling tasks in cloud

systems, makespan is optimized by considering various

objectives such as energy, cost, user service quality, task

priority. In this study, optimization of the makespan value

is performed. When using cloud systems, makespan (𝑀𝑆)

expresses the greatest amount of time needed to complete

a set of tasks across a collection of virtual machines and is

represented by Equation (3).

𝐸𝑇𝑙𝑘 =
𝑡𝑘

𝑣𝑙
 (1)

ℰ𝑙 = ∑ 𝑒𝑙𝑘 ∗ 𝐸𝑇𝑙𝑘
𝑁
𝑘=0

𝑒𝑙𝑘 {
1, 𝑖𝑓 𝑘′𝑡ℎ 𝑡𝑎𝑠𝑘 𝑤𝑎𝑠 𝑎𝑔𝑖𝑛𝑒𝑑 𝑡𝑜 𝑙′𝑡ℎ 𝑉𝑀

 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

𝑀𝑆 = 𝑚𝑎𝑥(ℰ𝑙)𝑙=1
𝑚 (3)

Particle Swarm Optimization

PSO is inspired by nature, in particular the collective

movements of flocks of birds and groups of fish. The

algorithm works by modelling the interactive movement of

particles to scan a solution space. PSO uses a randomly

initialized particle swarm to solve optimization problems.

Each particle represents a point in the solution space and

has two basic properties: position and velocity. Each

particle moves by being influenced both by its own past

experience (𝑃𝑏𝑒𝑠𝑡) and by the best experience of other

particles in the swarm (𝐺𝑏𝑒𝑠𝑡) [1]. In this way, both

exploration and exploitation processes are balanced.

Equation (4-5) computes these particle movements.

Here 𝑋𝑝 and 𝑉𝑝 are the particle's location and velocity

values. 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are the random coefficients. 𝑊 is

the particle's coefficient of inertia, which establishes the

ratio of exploration to exploitation. 𝑐1, 𝑐2 are the particle

motion's acceleration coefficients. In the representation

form used for task scheduling, every vector index denotes a

task, and the value contained within it corresponds to the

VM's ID. The floating values' counterparts in integers were

found by Equation (6) are considered since the VM ID is an

integer. The scheduling vector is also these values (𝑆𝑣).

Algorithm 1 provides the PSO pseudo-code that was

utilized in this investigation and modified for the task-

scheduling issue. If any of the 𝑆𝑣’s constituent parts value

is greater than the upper and lower bound values, the

appropriate component then selects an integer value

between the lower and higher bounds that is created at

random.

𝑉𝑝 = 𝑊 ∗ 𝑉𝑝 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑1 ∗ (𝑃𝑏𝑒𝑠𝑡,𝑖 − 𝑋𝑖) + 𝑐2

∗ 𝑟𝑎𝑛𝑑2 ∗ (𝑃𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑖)

(4)

𝑋𝑝
𝑛𝑒𝑤 = 𝑋𝑝 + 𝑉𝑝 (5)

𝑆𝑣 = 𝑟𝑜𝑢𝑛𝑑(𝑋𝑝
𝑛𝑒𝑤) (6)

Algorithm 1 The task-scheduling pseudo code of PSO

Initialize parameters

Initialize population

𝐼𝑡𝑟𝑚𝑎𝑥  maximum iteration number

𝑁𝑝𝑜𝑝 Population size

For i=0 to 𝑁𝑝𝑜𝑝

𝐹𝑖Calculate Fitness Value 𝑃𝑖

 If 𝐹𝑖> 𝑃𝑏𝑒𝑠𝑡

 𝑃𝑏𝑒𝑠𝑡=𝐹𝑖

𝐺𝑏𝑒𝑠𝑡 Particles with the highest fitness value overall

For itr=0 to 𝐼𝑡𝑟𝑚𝑎𝑥
 For i=0 to 𝑁𝑝𝑜𝑝

 Determine the particle velocity using Equation 4.

 Particle position should be updated using Eq. 5.

The position of particle is rounded to the closest

value

 If (𝑋𝑝 < 𝑋𝐿𝑜𝑤𝑒𝑟) or (𝑋𝑝 > 𝑋𝑈𝑝𝑝𝑒𝑟)

 𝑋𝑝 = 𝑅𝑎𝑛𝑑𝑜𝑚(𝑋𝐿𝑜𝑤𝑒𝑟 , 𝑋𝑈𝑝𝑝𝑒𝑟)

Initialize population

Population generation in PSO is usually performed in a

randomized manner. However, when the initially generated

solutions are far from the optimum solution, this adversely

affects the performance of the optimization process. The

randomly generated solutions may be very similar to each

other and may fall into undesired regions of the search

space. This situation negatively affects the optimization

process [22]. The heuristic method proposed in this study is

realized by considering the population initially generated by

PSO with various criteria. Firstly, the method calculates a

load coefficient (𝐿𝐶) with Equation (7). This load factor is

then multiplied by the capacities of the active virtual

machines in the cloud and the amount of load that each

server can take is calculated. This is as shown in Equation

(8).

𝐿𝐶 =
∑ 𝑇𝑘

𝑛
𝑘

∑ 𝑉𝑙
𝑚
𝑙

7

𝐿𝐷𝑘 = 𝑉𝑘 × 𝐿𝐶 ∀ 𝑘 ∈ {1,2,3, … , 𝑚} 8

After determining the amount of load that can be assigned

to all virtual machines, the tasks that will be subjected to

scheduling are sorted from biggest to smallest based on

how many instructions there are and allocated to virtual

machines respectively. The reason for this is to reduce the

makespan by prioritizing tasks with a high number of

commands. When a task is assigned to a virtual machine,

the current task load of the virtual machine must be greater

than the time it takes to execute this task on this machine

Equation (1). If the load of a virtual machine is greater than

the time taken to execute a task, the task is allocated to this

virtual machine and the new load of the virtual machine is

DUJE (Dicle University Journal of Engineering) 16:3 (2025) Page 549-558

553

updated. If a task is not allocated to any virtual machine (if

the current load of the virtual machines is less than the time

it takes to execute the task), the task is allocated to the

virtual machine with the minimum impact on the makespan

time. Algorithm 2 displays the algorithm's pseudo code.

Algorithm 2 The pseudo-code of Heuristic approach for

task-scheduling

Calculate Load Coefficient according to Eq7

LD Calculate the workload that each virtual machine

can take according to Eq.8

T Sort tasks from largest to smallest by command

V CPU capacities of all VM's

For i to Size(T)

IsAssign=False

For j to Size(V)

 ET Calculate according to Eq.1

 If (LD(i)>ET)

 Assign task i to VM j

 LDi= LDi -ET

 IsAssign=True

 If (!IsAssign)

Assign task to Vm according to minimum

makespan

Results and Discussion

The success of the proposed method is tested in the

CloudSim environment considering different scenarios

[32]. In the simulations, the performance of Heuristic PSO

is presented comparatively with FCFS, ACO, and PSO in

terms of makespan and energy consumption. To evaluate

the performance of proposed method used scenarios with

varying quantities of tasks and virtual machines (VMs). The

computational capacity of each VM is randomly assigned

to reflect the heterogeneity of real cloud environments.

Similarly, the quantity of task instructions was also

randomized to simulate loads of different complexity.

Two main performance metrics were considered:

Makespan

The overall task completion times were measured to

assess scheduling efficiency. The results indicate that

Heuristic-PSO consistently achieved a shorter makespan

compared to FCFS, ACO, and standard PSO. This

demonstrates its ability to allocate tasks more effectively

across available resources, leading to balanced load

distribution and improved scheduling efficiency.

Energy Consumption

Energy usage was analyzed by calculating the power

consumed by VMs during both idle and active states. The

findings show that Heuristic-PSO reduced total energy

consumption more effectively than the benchmark

algorithms. This improvement highlights the capability of

the proposed method to minimize energy expenditure while

maintaining scheduling performance.

Overall, the experimental results confirm that

integrating heuristic strategies into PSO not only enhances

task scheduling efficiency but also improves energy

awareness in cloud environments.The number of

instructions and virtual machine processor capacities of the

tasks used in each scenario were performed randomly. The

amount of energy spent for instruction execution was

assigned in proportion to the processor capacity of each

virtual machine. In addition, the amount of energy

consumed by the virtual machines when idle was taken as

30% of the amount of energy at load. Thus, the amount of

energy consumed by the servers when they are idle is also

taken into account in a task scheduling. In this study, the

results obtained for each scenario are averaged over 100

independent simulations. The simulations were run on a

machine with an Intel(R) Core(TM) i5-10400 CPU running

at 2.90 GHz and 8.00 GB of RAM. Table 1 lists other

simulation parameters.

Table 1 The simulations parameters

CloudSim

Number of tasks 100-250-500

Number of task

commands

4.000-6.000

VM numbers 5-10-20

MIPS 1 000-20 000

Maximum Iteration 100

Number of Particles

and Ant

20

PSO

c1 1

c2 2

w 0.5

Maximum Iteration 100

ACO

Ant Numbers 20

α 1

β 2

σ 0.1

In the simulations, the first performance evaluation was

carried out in terms of makespan. The average makespan

findings from 100 separate simulations are displayed in Fig.

4, and the statistical summaries of these experimental data

are displayed in Table 2. The results shown in Fig. 4 and

Table 2 indicate that Heuristic PSO produces lower

makespan values compared to FCFS, ACO and PSO

algorithms. Especially in scenarios where the number of

virtual machines and the amount of tasks increases,

Heuristic PSO provides more stable and lower makespan

times. In the five virtual machine scenarios, Heuristic PSO

produced shorter makespan values than FCFS, ACO and

PSO for all task numbers. The most significant difference

was observed in the scenario with 500 tasks. In scenarios

with 5 virtual machines, the average makespan value of

Heuristic PSO was 168.63, while that of standard PSO was

301, ACO was 312.03 and FCFS was 419.07. In scenarios

with 10 virtual machines, Heuristic PSO achieved very

good results in terms of makespan. In scenarios with 20

virtual machines, the average makespan value of Heuristic

DUJE (Dicle University Journal of Engineering) 16:3 (2025) Page 549-558

554

PSO was determined as 47.01, while it was calculated as

127.66 for standard PSO. In the 20 virtual machine

scenarios, increasing the number of virtual machines

generally decreased the makespan times, but Heuristic PSO

again achieved better results compared to FCFS, ACO and

PSO. In the 500 task scenario, the average makespan value

of Heuristic PSO was 12.26, while standard PSO was 53.63.

These results show that Heuristic PSO can significantly

reduce the makespan time by distributing the tasks more

evenly. Especially in large-scale systems, the proposed

method minimizes the early convergence problem and

achieves a better scheduling success.

A. Average makespan results for scenarios with 5

VMs

B. Average makespan results for scenarios with 10

VMs

C. Average makespan results for scenarios with 20

VMs

Figure 4. Average makespan outcomes across all techniques

0

100

200

300

400

500

100 250 500

Proposed Method PSO ACO FCFS

0

50

100

150

200

250

100 250 500

Proposed Method PSO ACO FCFS

0

20

40

60

80

100

120

100 250 500

Proposed Method PSO ACO FCFS

DUJE (Dicle University Journal of Engineering) 16:3 (2025) Page 549-558

555

Table 2. Statistical results of makespan simulations

Scenarios Heuristic PSO PSO ACO FCFS

VM Task Mean Min Max Median Mean Min Max Median Mean Min Max Median Mean Min Max Median

5

100 35.80 23.77 84.25 33.56 50.71 25.41 93.40 49.93 48.79 24.01 88.52 46.25 85.06 32.11 105.89 99.97

250 86.49 52.32 182.87 83.70 140.59 53.69 252.85 143.65 144.85 53.55 227.93 149.52 207.12 61.99 261.64 247.98

500 168.63 108.91 250.32 165.90 301.00 122.40 496.25 301.59 312.03 116.57 473.23 350.04 419.07 128.04 513.84 497.82

10

100 9.80 7.30 17.53 9.38 18.62 8.62 38.70 17.10 18.09 8.59 36.40 16.64 40.48 15.35 54.28 49.71

250 24.05 16.60 42.62 23.39 57.33 21.86 99.41 59.09 58.22 19.93 105.62 57.78 102.79 24.77 132.65 123.52

500 47.01 34.51 97.53 44.10 127.66 48.77 227.60 128.73 134.09 48.59 226.55 140.29 198.49 64.97 259.04 248.42

20

100 2.74 2.03 4.07 2.67 7.13 2.96 16.58 6.59 6.89 3.23 15.70 6.41 19.85 5.44 28.30 24.02

250 6.18 4.62 8.14 6.09 22.52 8.14 51.76 19.93 22.46 7.79 51.13 19.92 50.72 13.53 68.15 60.34

500 12.26 8.77 16.52 12.32 53.63 14.1 108.76 49.45 54.83 14.21 105.22 49.34 99.73 24.98 133.61 124.00

Table 3. Statistical results of energy consumption (joules) simulations

Scenarios Heuristic PSO PSO ACO FCFS

VM Task Mean Min Max Median Mean Min Max Median Mean Min Max Median Mean Min Max Median

5

100 18 690.3 6 919.7 2 4654.0 19 333.1 19 495.4 6 784.5 28 578.1 19 625.5 19 163.7 6 771.3 27 700.8 19 674.1 23 871.1 6 618.8 42 295.4 22 434.4

250 48 115.7 21 081.3 63 845.6 49 025.6 51 481.5 20 850.6 76 778.8 52 200.0 51 678.7 21 001.8 78 312.0 51 636.8 60 201.6 21 018.8 104 409.7 59 685.3

500 95 475.5 62 567.4 124 900.5 95 743.1 106 651.4 65 794.3 171 799.0 105 962.7 107 530.3 65 453.6 162 155.4 105 187.1 122 945.9 70 608.8 194 945.4 117 098.1

10

100 36 847.2 22 706.3 48 263.5 37 372.1 42 167.0 23 520.3 68 351.5 40 709.3 41 517.2 23 269.0 60 734.8 40 012.9 64 761.8 35 269.4 110 941.8 60 742.9

250 90 759.4 56 760.2 117 986.3 90 927.7 113 509.2 58 428.5 187 464.5 106 698.0 114 175.9 57 483.5 182 402.6 107 246.9 161 196.2 74 495.4 318 193.7 152 883.4

500 184 656.9 99 382.6 220 893.9 186 892.5 245 162.9 113 312.2 404 191.6 236 176.3 252 298.6 110 292.4 438 957.3 240 085.4 323 368.8 120 371.3 581 132.8 304 918.5

20

100 74 632.7 52 081.0 114 731.7 74 655.6 100 427.9 62 762.8 177 449.2 94 736.1 98 650.4 62 458.4 167 559.9 94 229.7 205 792.7 76 528.7 368 780.9 207 398.9

250 182 657.2 147 394.1 219 206.7 184 468.2 291 055.9 155 899.2 52 6540.8 279 832.3 289 231.4 160 443.7 508 569.9 285 331.8 531 021.1 197 144.0 845 138.7 517 731.8

500 363 855.1 286 992.2 430 766.6 363 908.9 643 860.2 351 918.9 126 7283.0 615 555.9 650 094.9 364 609.0 1 285 109.0 612 781.6 1 028 482 463 413.9 1 677 298.0 1 065 899.0

DUJE (Dicle University Journal of Engineering) 16:3 (2025) Page 549-558

556

The second performance evaluation was conducted by

looking at how much energy the cloud environment’s

virtual machines used. The average energy consumption

findings from the separate tests are displayed in Fig. 5, and

the statistical summaries of these experimental results are

displayed in Table 3. Fig. 5 and Table 3 show that Heuristic

PSO is more efficient in terms of energy consumption

compared to FCFS, ACO and PSO. In the 5 virtual

machine scenarios, Heuristic PSO achieved lower energy

consumption at all task numbers. For example, in the

scenario with 500 tasks, the average energy consumption

of Heuristic PSO was calculated as 95475.49 units, while

the consumption of standard PSO was 106651.44 units. In

10 virtual machine scenarios, energy consumption

decreased with increasing the number of virtual machines.

The energy consumption of Heuristic PSO in the scenario

with 500 tasks was 184656.92 units, while the standard

PSO, which is the closest algorithm, showed a

consumption of 245162.91 units. In the 20 virtual machine

scenarios, the presence of more virtual machines further

increased the efficiency of Heuristic PSO. In the case with

500 tasks, the energy consumption of Heuristic PSO was

calculated as 363855.14 units, while the consumption of

standard PSO reached 643860.2 units. These results show

that Heuristic PSO optimizes not only the makespan time

but also the energy consumption by distributing the tasks

more evenly. Especially in large-scale systems, the

proposed method achieves a more efficient scheduling

success by minimizing the problem of excessive energy

consumption compared to other algorithms.

A. Average energy consumption results for scenarios

with 5 VMs

B. Average energy consumption results for scenarios

with 10 VMs

C. Average energy consumption results for scenarios

with 20 VMs

Figure 5. Average energy consumption outcomes across all

techniques

Conclusion

In this study, a heuristic PSO-based approach is proposed

to solve the task scheduling problem in cloud

environments. The proposed method provides a more

balanced task distribution by improving the initial

population of PSO with a heuristic mechanism. The

extensive simulations show that the heuristic PSO reduces

the makespan time by 61.42% and 62.84% on average

compared to the standard PSO and ACO algorithms. It was

also found to consume 26.18% less energy than PSO and

27.33% less energy than ACO. Especially in large systems,

heuristic PSO provides a more balanced distribution of

tasks by minimizing the early convergence problem. The

results show that the proposed method offers a more

efficient, scalable and energy-saving alternative for task

scheduling in cloud computing. In the future, it is planned

to further develop the method with multi-objective

optimization approaches, to integrate it with dynamic load

balancing strategies and to test it in large-scale applications

such as big data processing.

Ethics committee approval and conflict of interest

statement

0

20000

40000

60000

80000

100000

120000

140000

100 250 500

Proposed Method PSO ACO FCFS

0

50000

100000

150000

200000

250000

300000

350000

100 250 500

Proposed Method PSO ACO FCFS

0

200000

400000

600000

800000

1000000

1200000

100 250 500

Proposed Method PSO ACO FCFS

DUJE (Dicle University Journal of Engineering) 16:3 (2025) Page 549-558

557

There is no need to obtain permission from the ethics

committee for the article prepared

There is no conflict of interest with any person / institution

in the article prepared

Authors’ Contributions

Barut Cebrail: Study conception and design, visualization,

analysis, and interpretation of data, drafting of manuscript

Firildak Kazım: conceived the original idea, supervised the

project, critical revision

References

[1] C. Barut, G. Yildirim, and Y. Tatar, “An

intelligent and interpretable rule-based

metaheuristic approach to task scheduling in

cloud systems,” Knowledge-Based Syst., vol. 284,

no. December 2023, p. 111241, 2024, doi:

10.1016/j.knosys.2023.111241.

[2] G. Boss, P. Malladini, D. Quan, L. Legregni, and

H. Hall, “Cloud Computing Authors:,” Cloud

Comput., vol. 17, no. 1, pp. 111–136, 2012.

[3] Y. Pachipala, K. S. Sureddy, A. B. S. Sriya

Kaitepalli, N. Pagadala, S. S. Nalabothu, and M.

Iniganti, “Optimizing Task Scheduling in Cloud

Computing: An Enhanced Shortest Job First

Algorithm,” Procedia Comput. Sci., vol. 233, no.

2023, pp. 604–613, 2024, doi:

10.1016/j.procs.2024.03.250.

[4] A. Keivani and J. R. Tapamo, “Task scheduling in

cloud computing: A review,” icABCD 2019 - 2nd

Int. Conf. Adv. Big Data, Comput. Data Commun.

Syst., pp. 1–6, 2019, doi:

10.1109/ICABCD.2019.8851045.

[5] A. R. Arunarani, D. Manjula, and V. Sugumaran,

“Task scheduling techniques in cloud computing:

A literature survey,” Futur. Gener. Comput. Syst.,

vol. 91, pp. 407–415, 2019, doi:

10.1016/j.future.2018.09.014.

[6] J. Kennedy and R. Eberhart, “Particle Swarm

Optimization,” Ind. Electron. Handb. - Five Vol.

Set, pp. 1942–1948, 2011, doi: 10.1007/978-3-

319-46173-1_2.

[7] A. S. Abohamama, A. El-Ghamry, and E.

Hamouda, Real-Time Task Scheduling Algorithm

for IoT-Based Applications in the Cloud–Fog

Environment, vol. 30, no. 4. Springer US, 2022.

doi: 10.1007/s10922-022-09664-6.

[8] P. Y. Zhang and M. C. Zhou, “Dynamic Cloud

Task Scheduling Based on a Two-Stage

Strategy,” IEEE Trans. Autom. Sci. Eng., vol. 15,

no. 2, pp. 772–783, 2018, doi:

10.1109/TASE.2017.2693688.

[9] C. Barut, G. Yildirim, and Y. Tatar, “An

intelligent and interpretable rule-based

metaheuristic approach to task scheduling in

cloud systems,” KNOWLEDGE-BASED Syst.,

vol. 284, 2024, doi:

10.1016/j.knosys.2023.111241.

[10] H. Jin et al., “A survey of energy efficient

methods for UAV communication,” Veh.

Commun., vol. 41, p. 100594, 2023, doi:

10.1016/j.vehcom.2023.100594.

[11] P. Banerjee, A. Tiwari, B. Kumar, K. Thakur, A.

Singh, and M. Kumar Dehury, “Task Scheduling

in cloud using Heuristic Technique,” 7th Int.

Conf. Trends Electron. Informatics, ICOEI 2023 -

Proc., no. Icoei, pp. 709–716, 2023, doi:

10.1109/ICOEI56765.2023.10126030.

[12] K. Beghdad Bey, F. Benhammadi, and R.

Benaissa, “Balancing heuristic for independent

task scheduling in cloud computing,” 12th Int.

Symp. Program. Syst. ISPS 2015, pp. 7–12, 2015,

doi: 10.1109/ISPS.2015.7244959.

[13] S. Nabi, M. Ahmad, M. Ibrahim, and H. Hamam,

“AdPSO: Adaptive PSO-Based Task Scheduling

Approach for Cloud Computing,” Sensors, vol.

22, no. 3, pp. 1–22, 2022, doi:

10.3390/s22030920.

[14] N. Bacanin, T. Bezdan, E. Tuba, I. Strumberger,

M. Tuba, and M. Zivkovic, “Task Scheduling in

Cloud Computing Environment by Grey Wolf

Optimizer,” 27th Telecommun. Forum, TELFOR

2019, no. June 2020, 2019, doi:

10.1109/TELFOR48224.2019.8971223.

[15] S. Mangalampalli, G. R. Karri, and A. A. Elngar,

“An Efficient Trust-Aware Task Scheduling

Algorithm in Cloud Computing Using Firefly

Optimization,” Sensors, vol. 23, no. 3, 2023, doi:

10.3390/s23031384.

[16] S. Asghari and N. J. Navimipour, “Cloud service

composition using an inverted ant colony

optimisation algorithm,” Int. J. Bio-Inspired

Comput., vol. 13, no. 4, p. 257, 2019, doi:

10.1504/IJBIC.2019.100139.

[17] X. Chen et al., “A WOA-Based Optimization

Approach for Task Scheduling in Cloud

Computing Systems,” IEEE Syst. J., vol. 14, no.

3, pp. 3117–3128, 2020, doi:

10.1109/JSYST.2019.2960088.

[18] M. Bürkük and G. Yıldırım, “Cloneable Jellyfish

Search Optimizer Based Task Scheduling in

Cloud Environments,” Türk Doğa ve Fen Derg.,

vol. 11, no. 3, pp. 35–43, 2022, doi:

10.46810/tdfd.1123962.

[19] S. H. Adil, K. Raza, U. Ahmed, S. S. A. Ali, and

DUJE (Dicle University Journal of Engineering) 16:3 (2025) Page 549-558

558

M. Hashmani, “Cloud task scheduling using

nature inspired meta-heuristic algorithm,”

ICOSST 2015 - 2015 Int. Conf. Open Source Syst.

Technol. Proc., pp. 158–164, 2016, doi:

10.1109/ICOSST.2015.7396420.

[20] N. O. Alkaam, A. B. M. Sultan, M. B. Hussin,

and K. Y. Sharif, “Hybrid Henry Gas-Harris

Hawks Comprehensive-Opposition Algorithm for

Task Scheduling in Cloud Computing,” IEEE

Access, vol. 13, no. January, pp. 12956–12965,

2025, doi: 10.1109/ACCESS.2025.3530860.

[21] E. GÜNDÜZALP, G. YILDIRIM, and Y.

TATAR, “Efficient Task Scheduling in Cloud

Systems with Adaptive Discrete Chimp

Algorithm,” Balk. J. Electr. Comput. Eng., vol.

10, no. 3, pp. 328–336, 2022, doi:

10.17694/bajece.989467.

[22] B. F. Azevedo, A. M. A. C. Rocha, and A. I.

Pereira, Hybrid approaches to optimization and

machine learning methods: a systematic literature

review, vol. 113, no. 7. Springer US, 2024. doi:

10.1007/s10994-023-06467-x.

[23] N. Mansouri, B. Mohammad Hasani Zade, and M.

M. Javidi, “Hybrid task scheduling strategy for

cloud computing by modified particle swarm

optimization and fuzzy theory,” Comput. Ind.

Eng., vol. 130, no. July 2018, pp. 597–633, 2019,

doi: 10.1016/j.cie.2019.03.006.

[24] Sandeep Kumar Patel and Avtar Singh, “Task

scheduling in cloud computing using hybrid

optimization algorithm,” Soft Comput., vol. 26,

no. 23, pp. 13069–13079, 2022, doi:

10.1007/s00500-021-06488-5.

[25] A. Kamalinia and A. Ghaffari, “Hybrid Task

Scheduling Method for Cloud Computing by

Genetic and DE Algorithms,” Wirel. Pers.

Commun., vol. 97, no. 4, pp. 6301–6323, 2017,

doi: 10.1007/s11277-017-4839-2.

[26] M. S. A. Khan and R. Santhosh, “Task scheduling

in cloud computing using hybrid optimization

algorithm,” Soft Comput., vol. 26, no. 23, pp.

13069–13079, 2022, doi: 10.1007/s00500-021-

06488-5.

[27] S. Rani and P. K. Suri, “An efficient and scalable

hybrid task scheduling approach for cloud

environment,” Int. J. Inf. Technol., vol. 12, no. 4,

pp. 1451–1457, 2020, doi: 10.1007/s41870-018-

0175-3.

[28] E. Rashedi, H. Nezamabadi-pour, and S.

Saryazdi, “GSA: A Gravitational Search

Algorithm,” Inf. Sci. (Ny)., vol. 179, no. 13, pp.

2232–2248, 2009, doi: 10.1016/j.ins.2009.03.004.

[29] S. A. Alsaidy, A. D. Abbood, and M. A. Sahib,

“Heuristic initialization of PSO task scheduling

algorithm in cloud computing,” J. King Saud

Univ. - Comput. Inf. Sci., vol. 34, no. 6, pp. 2370–

2382, 2022, doi: 10.1016/j.jksuci.2020.11.002.

[30] S. Zhan and H. Huo, “Improved PSO-based task

scheduling algorithm in cloud computing,” J. Inf.

Comput. Sci., vol. 9, no. 13, pp. 3821–3829, 2012.

[31] A. I. Awad, N. A. El-Hefnawy, and H. M. Abdel-

Kader, “Enhanced Particle Swarm Optimization

for Task Scheduling in Cloud Computing

Environments,” Procedia Comput. Sci., vol. 65,

no. Iccmit, pp. 920–929, 2015, doi:

10.1016/j.procs.2015.09.064.

[32] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A.

F. De Rose, and Rajkumar Buyya, “CloudSim: a

toolkit for modeling and simulation of cloud

computing environments and evaluation of

resource provisioning algorithms Rodrigo,” Softw.

- Pract. Exp., vol. 39, no. 7, pp. 701–736, 2009,

doi: 10.1002/spe.

