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Abstract  Öz 

In this study, a novel integration of PushPull-Convolutional 

Layers into the YOLOv11 object detection model is 

proposed to enhance robustness against diverse image 

corruptions. The PushPull-Conv layer is designed based on 

biological mechanisms of the primary visual cortex, where 

complementary push and pull kernels are utilized to 

improve selectivity by amplifying relevant stimuli and 

suppressing irrelevant noise. The initial convolutional layer 

of YOLOv11 is replaced by this modification, and 

performance is evaluated on the COCO dataset across 15 

corruption types (e.g., noise, blur, weather, digital artifacts) 

with five severity levels. Improved robustness metrics are 

achieved by the PushPull-enhanced YOLOv11 compared 

to the baseline. Detection performance under challenging 

conditions, including brightness variation, motion blur, and 

contrast changes, is enhanced. A link is established between 

biologically inspired design and deep learning, positioning 

PushPull-YOLO as a promising solution for real-time 

object detection in dynamic environments, with potential 

extensions to segmentation and keypoint detection. 

 Bu çalışmada, YOLOv11 nesne tespit modeline PushPull 

Konvolüsyon Katmanlarının özgün bir entegrasyonu 

önerilerek görüntü bozulmalarına karşı dayanıklılığın 

artırılması amaçlanmıştır. PushPull-Conv katmanı, birincil 

görsel korteksin biyolojik mekanizmalarından esinlenerek 

tasarlanmış ve tamamlayıcı push ve pull çekirdekleri 

kullanılarak ilgili uyaranların güçlendirilmesi ve ilgisiz 

gürültünün bastırılması yoluyla seçiciliğin artırılması 

sağlanmıştır. YOLOv11’in ilk konvolüsyon katmanı bu 

değişiklik ile değiştirilmiş ve performans, COCO veri 

kümesi üzerinde 15 farklı bozulma türü (ör. gürültü, 

bulanıklık, hava koşulları ve dijital bozulmalar) ve beş 

şiddet düzeyinde değerlendirilmiştir. PushPull ile 

güçlendirilmiş YOLOv11’in, temel modele kıyasla üstün 

dayanıklılık metrikleri elde ettiği gösterilmiştir. Parlaklık 

değişimi, hareket bulanıklığı ve kontrast farklılıkları gibi 

zorlu koşullar altında tespit performansı iyileştirilmiştir. 

Biyolojik esinli tasarım ile derin öğrenme arasında bir 

bağlantı kurulmuş ve PushPull-YOLO’nun dinamik 

ortamlarda gerçek zamanlı nesne tespiti için umut verici bir 

çözüm sunduğu ortaya konulmuştur. Ayrıca yöntemin 

gelecekte segmentasyon ve anahtar nokta tespiti gibi diğer 

bilgisayarla görme görevlerine de uygulanabileceği 

düşünülmektedir. 

Keywords: Convolutional layers, Deep learning, Image 

corruption, Object detection, PushPull, YOLO 
 Anahtar kelimeler: Evrişimsel katmanlar, Derin öğrenme, 

Görüntü bozulması, Nesne algılama, PushPull, YOLO 

1 Introduction 

Object detection stands as a pivotal domain within 

modern computer vision, underpinning a diverse range of 

applications such as autonomous vehicles [1], surveillance 

systems [2], healthcare diagnostics [3, 4], and industrial 

automation [5]. Among the numerous inventions in this field, 

the YOLO series has proved to be the cornerstone innovation 

for object detection [6]. In fact, YOLO redefined object 

detection as a single-shot regression problem, which gave it 

unrivaled real-time performance [6, 7]. From 2015 onwards, 

the series has undergone continuous refinement and now 

includes an improved version called YOLOv11, with state-

of-the-art improvements in precision and efficiency [8]. 

However, despite these advancements, object detection 

in real-world scenarios remains fraught with challenges [9]. 

Image corruptions, arising from noise, blurring effects, 

weather-induced distortions, or digital artifacts, significantly 

degrade model performance [10]. Addressing these 

adversities requires architectural innovations that bolster 

robustness while ensuring computational efficiency. This 

study integrates the PushPull convolutional methodology 

into YOLOv11, presenting a novel approach inspired by the 

selective inhibition mechanisms observed in the primary 

visual cortex. These PushPull-Conv units emulate the neural 

process of emphasizing relevant stimuli while suppressing 

non-preferred features, thus enhancing the model's resilience 

against diverse corruption types [11]. 

Such robust systems are essentially needed since the 

deployment of object detection models has been increasing 

in high-stake environments. For instance, autonomous 
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driving operates under dynamic conditions, where different 

light and weather conditions create different artifacts. 

Similarly, medical imaging should also perform well which 

might contain different visual or processing artifacts [1, 9, 

10]. This study tries to bridge these gaps by introducing 

PushPull convolution into YOLOv11 and hence creates a 

system which is not only state-of-the-art on benchmark 

datasets but also highly robust against real-world 

perturbations [11]. 

This study provides a systematic investigation of the 

integration of PushPull and its implications on robustness 

metrics and general performance. Training and analysis will 

be done on COCO using different corruption types, from 

simple Gaussian noise to complex ones like JPEG 

compression artifacts [12]. The biologically inspired origin 

of the methodology will ensure enhancements that are 

effective yet computationally efficient, maintaining the real-

time performance hallmark of YOLOv11. Insights from this 

research go on to underline the potential in marrying 

biologically inspired principles with advanced deep learning 

architectures toward the creation of future innovations in 

robust computer vision systems [13-15]. 

The integration of biologically inspired methodologies, 

like PushPull convolutions, in state-of-the-art deep learning 

models like YOLOv11 signifies a movement toward hybrid 

architectures, which will offer computational efficiency 

together with adaptability [16]. The PushPull mechanism, 

which was originally developed to enhance the robustness in 

convolutional networks, suppresses the effects of high-

frequency and structural image corruptions through selective 

inhibition. This is related to principles in the mammalian 

visual cortex, where inhibitory mechanisms sharpen 

perceptual selectivity and reduce noise interference [11]. 

The PushPull mechanism is inspired by the selective 

inhibition properties observed in the primary visual cortex, 

where excitatory and inhibitory receptive fields jointly 

enhance edge detection and noise suppression. In biological 

vision systems, neurons in the early stages of the visual 

hierarchy—particularly in the V1 area—are organized to 

respond to specific spatial and orientation patterns through a 

balance of excitatory and suppressive inputs. This 

organization allows the system to amplify salient features, 

such as edges and contours, while simultaneously 

attenuating irrelevant background noise and artifacts. The 

push (excitatory) and pull (inhibitory) interactions observed 

in these receptive fields serve as a biologically efficient 

filtering strategy, enabling robust perception even under 

visually challenging conditions. Emulating this principle in 

artificial networks, PushPull convolutions seek to replicate 

the dual response mechanism, promoting enhanced feature 

selectivity and greater robustness to image corruptions such 

as blur, noise, and occlusion [17-20]. 

Real-world applications, ranging from critical medical 

imaging diagnostics to autonomous navigation, demand such 

robustness [3, 21]. These systems often encounter 

unpredictable image distortions, ranging from environmental 

factors like low-light conditions and atmospheric 

disturbances to synthetic alterations such as lossy 

compression artifacts. Traditional object detection 

architectures, even with advanced data augmentation 

techniques, struggle to sustain high performance under these 

challenges [22-24]. By embedding PushPull convolutions at 

strategic points within the YOLOv11 pipeline, this research 

addresses these gaps, potentially elevating both detection 

accuracy and model stability [11]. 

YOLOv11, the latest version in the YOLO family, 

integrates several novel components such as the C3k2 block, 

the spatial attention-based C2PSA module, and an improved 

neck-head pipeline, making it particularly efficient and 

accurate for real-time object detection [8, 25]. To the best of 

our knowledge, this study represents the first integration of 

biologically inspired PushPull convolutional units into the 

YOLOv11 architecture to enhance robustness against 

corrupted visual input. 

Moreover, this study offers a comparative evaluation 

between the standard YOLOv11 architecture and its 

enhanced variant employing PushPull layers. This involves 

a meticulous analysis of performance metrics on corruption-

focused datasets such as COCO-C [10], examining both 

accuracy and robustness across diverse scenarios. The results 

aim to provide actionable insights into the practicality of 

incorporating biologically inspired mechanisms into cutting-

edge computer vision frameworks. 

2 Related work 

The YOLO series has consistently improved object 

detection capabilities through architectural enhancements. 

YOLOv11 introduces key features such as the C3k2 block, 

Spatial Pyramid Pooling-Fast (SPPF), and Cross-Stage 

Partial with Spatial Attention (C2PSA), delivering 

significant gains in accuracy and computational efficiency 

[6, 26]. Additionally, architectural improvements, such as 

the incorporation of the C3k2 block and the C2PSA attention 

module, further enhance the model's ability to process spatial 

information and focus on critical regions within images. 

These modules play a pivotal role in ensuring efficient and 

accurate object detection across various visual scenarios 

[27]. The architecture of YOLOv11 is shown in Figure 1. 

PushPull convolution is inspired by the antiphase 

inhibition phenomenon in the primary visual cortex, 

PushPull convolution utilizes complementary push and pull 

kernels. These kernels enhance stimulus selectivity by 

amplifying preferred features while inhibiting non-preferred 

ones. Previous studies have demonstrated its effectiveness in 

ResNet architectures, particularly for tasks requiring 

robustness to image corruptions [11]. Robustness to image 

corruptions is a critical challenge in computer vision. 

Techniques such as data augmentation and adversarial 

training have shown promise, but architectural 

modifications, such as PushPull-Conv, provide a 

complementary approach by inherently improving model 

resilience [11, 28]. 
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Figure 1. Architecture of YOLOv11 

 

3 Materials and methods 

3.1 Architectural modifications 

The integration of PushPull convolution into YOLOv11 

involves replacing the first convolutional layer with a 

specialized PushPull-Conv unit. This unique unit introduces 

complementary kernels, designed to mimic biological 

mechanisms observed in the primary visual cortex. Push 

kernel is trained to respond to specific stimuli, effectively 

enhancing its ability to detect preferred patterns in images. 

Pull kernel acts as the complementary counterpart to the 

Push Kernel, this kernel inhibits responses to non-preferred 

stimuli by producing opposing activations. Together, these 

kernels ensure that the network selectively amplifies 

meaningful signals while suppressing noise. The 

combination of these kernels is inspired by antiphase 

inhibition mechanisms, which enhance the network's 

robustness and improve its capacity to handle corrupted 

inputs without a significant computational overhead [11]. 

The PushPull-Conv computational unit is shown in Figure 2. 

 

 

Figure 2. PushPull-Conv computational unit 

 

By embedding this mechanism within the YOLOv11 

architecture, the model achieves better feature extraction and 

suppression of irrelevant patterns [11, 26]. The architecture 

of PushPull-YOLO is shown in Figure 3. 

 

 

Figure 3. Architecture of PushPull-YOLO 

 

3.2 Dataset and corruption types 

To evaluate the effectiveness of the enhanced YOLOv11, 

the COCO dataset is employed as the primary benchmark. 

This widely recognized dataset enables comprehensive 

training and testing, covering both original images and 

corrupted variations. The corruptions applied are categorized 

into four primary types, each representing real-world image 

degradation scenarios [10, 12, 29, 30]: 

Noise: Includes Gaussian noise, Shot noise, and Impulse 

noise, which introduce random pixel-level variations. 
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Blur: Encompasses Defocus, Glass, Motion, and Zoom 

blur, simulating out-of-focus and motion-induced 

distortions. 

Weather: Consists of Snow, Frost, and Fog effects, 

emulating natural environmental challenges. 

Digital: Includes Brightness, Contrast, Elastic 

transformation, Pixelation, and JPEG compression artifacts, 

mimicking digital processing distortions. 

Each corruption type is tested across five levels of 

severity, providing a robust evaluation framework. This 

approach ensures that the model’s performance is thoroughly 

assessed under diverse and challenging conditions, reflecting 

its ability to generalize effectively across varying scenarios. 

3.3 Training and implementation 

The training process is designed to maximize the 

efficiency and robustness of the enhanced YOLOv11 model. 

The implementation pipeline includes the following key 

steps: 

Optimizer: Stochastic Gradient Descent (SGD) with a 

momentum of 0.9 and a weight decay of 1e-5 is employed to 

ensure stable and effective learning. 

Learning Rate Schedule: A cosine annealing schedule is 

used, incorporating warm-up and decay phases to optimize 

convergence. 

Training Epochs: The model is trained for 20 epochs, 

balancing computational efficiency and the need for 

thorough experimentation. 

The PushPull-Conv unit is seamlessly integrated into the 

backbone of YOLOv11, replacing the first convolutional 

layer. This ensures that the selective inhibition mechanism is 

applied at the earliest stage of feature extraction, allowing 

the model to enhance relevant patterns and suppress 

irrelevant details from the outset. The biologically inspired 

design of the PushPull-Conv unit not only enhances 

robustness but also maintains the model's computational 

efficiency, making it suitable for real-time applications. 

3.4 Hyperparameter selection 

To systematically assess the impact of kernel size on 

robustness and detection accuracy in the proposed PushPull 

convolutional layers, we conducted a controlled ablation 

study using various kernel sizes, including 3×3, 5×5, 7×7, 

9×9, and 11×11. All experiments were conducted under 

identical training conditions and limited to three epochs to 

isolate the influence of kernel size from other factors. The 

results demonstrated that smaller kernels (3×3 and 5×5) 

offered higher initial precision and faster convergence, while 

larger kernels (7×7 and above) progressively improved 

mAP50 and mAP50-95 scores, suggesting superior spatial 

generalization and resilience to corruptions. 

In particular, the 7×7 PushPull kernel achieved the 

highest mAP50-95 value (0.0573) by the end of the third 

epoch, outperforming not only all other tested configurations 

but also the commonly used 3×3 baseline (0.0108). This 

finding supports the effectiveness of wider receptive fields 

in suppressing high-frequency corruptions and aligns with 

biologically inspired insights reported by Bennabhaktula et 

al. (2024) [11]. Additionally, when the inhibitory strength 

parameter (α) was implemented as a learnable parameter 

during training, it enabled dynamic adaptation without 

compromising model stability. This behavior justifies its 

inclusion as a default configuration in our architecture. 

Overall, the choice of kernel size involves a trade-off 

between computational cost and robustness gains. The 7×7 

configuration strikes the best balance, making it the preferred 

option in subsequent experiments. These findings support 

the functional role of wide spatial receptive fields in early 

visual processing and demonstrate the practical effectiveness 

of integrating PushPull mechanisms into modern object 

detection frameworks such as YOLOv11. 

3.5 Evaluation metrics 

To comprehensively assess the performance of the 

enhanced YOLOv11 model, these primary metrics are 

utilized. Mean Average Precision (mAP) is a metric that 

evaluates the detection accuracy of the model, serving as a 

standard benchmark in object detection tasks. It reflects the 

model’s ability to precisely identify and localize objects 

across various conditions [8]. Precision (P) is a metric that 

measures the model's ability to correctly identify positive 

instances among all instances it classifies as positive. It 

evaluates the accuracy of the model in making positive 

predictions, ensuring that the detected objects are relevant 

and minimizing false positives. High precision indicates that 

most detected objects are correctly identified [8]. Recall (R) 

is a metric that assesses the model's effectiveness in 

identifying all relevant objects in the dataset. It calculates the 

ratio of correctly detected objects to the total number of 

actual objects, reflecting the model's ability to minimize false 

negatives. A high recall score indicates that the model 

successfully detects most objects in an image [8]. F1-Score 

is the harmonic mean of Precision and Recall, balancing the 

trade-off between these two metrics. It provides a single 

measure of a model’s accuracy, particularly useful in 

scenarios where both false positives and false negatives need 

to be considered. A high F1-Score indicates a strong balance 

between identifying relevant objects and minimizing 

irrelevant detections [2]. Evaluation metrics formulas are 

shown in Table 1. 

 

Table 1. Evaluation metrics and their formulas 

Metric Formula1 

mAP50 
1

𝐶
∑𝐴𝑃𝑖

𝐶

𝑖=1

 

mAP50-95 
1

𝐶
∑(

1

𝑛
∑ 𝐴𝑃(𝐼𝑜𝑈𝑡

0.95

𝐼𝑜𝑈𝑡=0.5

))

𝐶

𝑖=1

 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-Score 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

1C: Num. of classes APi: Avg. Precision of class i IoUt: Intersection 
over Union threshold, TP: True Positive TN: True Negative FP: False 

Positive FN: False Negative 
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3.6 Analysis 

The robustness of the PushPull-Conv-enhanced 

YOLOv11 model is analyzed in detail, focusing on its 

performance across different corruption frequencies: 

High-Frequency corruption includes noise-related 

distortions that typically challenge models due to their 

random and unpredictable nature. Mid-Frequency corruption 

encompasses blur effects that test the model’s ability to 

handle spatial distortions. Low-Frequency corruption covers 

weather-related effects that simulate gradual, environmental 

image degradation. 

The results demonstrate that the enhanced model excels 

particularly in handling high-frequency corruptions, 

showcasing its advanced feature extraction capabilities. The 

PushPull-Conv unit's selective inhibition mechanism plays a 

critical role in this performance improvement, enabling the 

model to maintain high accuracy even under challenging 

conditions. 

Additionally, Wilcoxon signed-rank test is a 

nonparametric statistical method designed to compare paired 

samples, particularly when assumptions of normality are not 

met. Unlike parametric tests like the paired t-test, it does not 

rely on the normal distribution of data, making it ideal for 

small sample sizes or data with unknown distributions [31]. 

In the context of object detection algorithms, this test is 

instrumental for assessing the differences in performance 

metrics—such as precision, recall, and mAP (mean Average 

Precision)—of different models applied to the same dataset. 

For example, when comparing improvements brought by a 

novel algorithm (e.g., YOLOv11) against a baseline model, 

the Wilcoxon signed-rank test evaluates whether observed 

differences in detection accuracy or inference time are 

statistically significant. The Wilcoxon signed-rank test 

ensures robust and reliable comparisons, making it a 

valuable tool in advancing object detection research and 

validating algorithmic enhancements [32]. 

4 Results 

4.1 Brightness corruption 

As the severity of brightness corruption increases, both 

PushPull-YOLO and YOLOv11 methods experience a 

gradual decline in performance. PushPull-YOLO shows 

competitive metrics for precision and recall while slightly 

outperforming YOLOv11 in mAP50-95 values, particularly 

at higher severity levels. This indicates its robustness in 

adapting to changes in brightness intensity. Table 2 

highlights these trends, showcasing PushPull-YOLO’s 

superior adaptability to brightness variations. 

The Wilcoxon signed-rank test was conducted to 

compare the performance of PushPull-YOLO and YOLOv11 

across five metrics: Precision, Recall, mAP50, mAP50-95, 

and Fitness. The results indicated no statistically significant 

difference for Precision (p = 0.21875), suggesting 

comparable performance between the two models in this 

metric. Recall showed borderline significance (p = 0.09375), 

hinting at a potential but inconclusive advantage for 

PushPull-YOLO. However, statistically significant 

differences were observed in favor of PushPull-YOLO for 

mAP50, mAP50-95, and Fitness (p = 0.03125 for all), 

demonstrating its superior performance in accuracy and 

robustness across varying IoU thresholds. These findings 

highlight that while both models perform similarly in 

Precision, PushPull-YOLO consistently outperforms 

YOLOv11 in metrics that are critical for reliable and 

accurate object detection. This underscores PushPull-YOLO 

as a more robust and effective solution for object detection 

tasks requiring high accuracy and overall model efficiency. 

Comparison of YOLOv11 and PushPull-YOLO 

performance metrics under brightness corruption across 

varying severity levels is shown in Figure 4. 

 

 

Figure 1. Performance comparison of YOLOv11 and 

PushPull-YOLO under brightness corruption 

 

4.2 Contrast corruption 

Contrast corruption significantly affects the metrics for 

both methods as severity rises. While precision and recall are 

similar, PushPull-YOLO achieves better mAP50-95 scores 

across all severity levels, demonstrating its improved 

handling of contrast variations. The results, detailed in Table 

3, suggest that PushPull-YOLO is better suited for 

environments with varying contrast conditions. 

The Wilcoxon signed-rank test was applied to compare the 

performance of PushPull-YOLO and YOLOv11 across five 

metrics: Precision, Recall, mAP50, mAP50-95, and Fitness. 

The results revealed borderline significance for Precision (p 

= 0.09375) and Recall (p = 0.0625), indicating potential but 

inconclusive differences between the two methods in these 

areas. However, statistically significant differences were 

observed in favor of PushPull-YOLO for mAP50, mAP50-

95, and Fitness (p = 0.03125 for all), demonstrating its 

superior performance in detection accuracy and robustness 

across varying IoU thresholds. These findings highlight that 

while both methods achieve comparable results in Precision 

and Recall, PushPull-YOLO consistently outperforms 

YOLOv11 in metrics that are critical for reliable and 

accurate object detection. This underscores PushPull-

YOLO’s effectiveness as a robust and efficient solution for 

tasks requiring high detection accuracy and overall model 

performance. Comparison of YOLOv11 and PushPull-

YOLO performance metrics under contrast corruption across 

varying severity levels is shown in Figure 5. 
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Table 2. Performance metrics for PushPull-YOLO and YOLOv11 under brightness corruption at varying severity levels. 

PushPull-YOLO YOLOv11 Severity 

Level Precision Recall mAP50 mAP50-95 Fitness Precision Recall mAP50 mAP50-95 Fitness 

0.6065 0.4604 0.4980 0.3526 0.3671 0.6127 0.4517 0.4935 0.3487 0.3632 1 

0.6093 0.4428 0.4847 0.3417 0.3560 0.5999 0.4455 0.4811 0.3383 0.3526 2 

0.5972 0.4332 0.4693 0.3295 0.3435 0.5997 0.4293 0.4677 0.3283 0.3422 3 

0.5897 0.4199 0.4494 0.3136 0.3270 0.5822 0.4149 0.4476 0.3119 0.3255 4 

0.5798 0.3959 0.4236 0.2942 0.3072 0.5666 0.3946 0.4224 0.2930 0.3060 5 

0.5965 0.4304 0.4650 0.3263 0.3402 0.5922 0.4272 0.4625 0.3240 0.3379 Avg. 

 

Table 3. Performance metrics for PushPull-YOLO and YOLOv11 under contrast corruption at varying severity levels. 

PushPull-YOLO YOLOv11 Severity 

Level Precision Recall mAP50 mAP50-95 Fitness Precision Recall mAP50 mAP50-95 Fitness 

0.5936 0.4209 0.4548 0.3206 0.3340 0.5919 0.4149 0.4501 0.3159 0.3293 1 

0.5807 0.3900 0.4237 0.2973 0.3099 0.5555 0.3918 0.4164 0.2910 0.3036 2 

0.5296 0.3446 0.3647 0.2524 0.2636 0.5132 0.3368 0.3555 0.2458 0.2567 3 

0.4325 0.2173 0.2194 0.1479 0.1551 0.4023 0.2107 0.2082 0.1399 0.1467 4 

0.3228 0.0839 0.0748 0.0475 0.0502 0.3280 0.0726 0.0679 0.0437 0.0461 5 

0.4918 0.2914 0.3075 0.2131 0.2226 0.4782 0.2854 0.2996 0.2072 0.2165 Avg. 

 

 

Figure 2. Performance comparison of YOLOv11 and 

PushPull-YOLO under contrast corruption 

4.3 Defocus blur corruption 

Defocus blur impacts object detection performance for 

both methods, with PushPull-YOLO maintaining a slight 

advantage in mAP metrics across all levels. The resilience of 

PushPull-YOLO to blur effects is particularly evident at 

higher severity levels, as shown in Table 4, emphasizing its 

suitability for detecting blurred objects. 

The Wilcoxon signed-rank test was applied to compare 

the performance of PushPull-YOLO and YOLOv11 across 

five metrics: Precision, Recall, mAP50, mAP50-95, and 

Fitness. The analysis revealed no statistically significant 

differences for Recall (p = 1.0), mAP50 (p = 0.3125), 

mAP50-95 (p = 0.3125), and Fitness (p = 0.3125), indicating 

that both models perform comparably in these areas. 

Precision showed borderline significance (p = 0.09375), 

suggesting a potential but inconclusive advantage for 

PushPull-YOLO. These findings highlight that while the two 

methods are generally comparable across most metrics, 

further analysis with larger datasets or more specific 

conditions may be needed to clarify potential differences in 

Precision. Overall, PushPull-YOLO and YOLOv11 

demonstrate similar capabilities in object detection tasks 

under the tested conditions. Comparison of YOLOv11 and 

PushPull-YOLO performance metrics under defocus blur 

corruption across varying severity levels is shown in Figure 

6. 

 

 

Figure 6. Performance comparison of YOLOv11 and 

PushPull-YOLO under defocus blur corruption 

 

Table 4. Performance metrics for PushPull-YOLO and YOLOv11 under defocus blur corruption at varying severity levels. 

PushPull-YOLO YOLOv11 Severity 

Level Precision Recall mAP50 mAP50-95 Fitness Precision Recall mAP50 mAP50-95 Fitness 

0.5871 0.3955 0.4231 0.2938 0.3068 0.5460 0.3954 0.4192 0.2920 0.3047 1 

0.5233 0.3513 0.3696 0.2525 0.2641 0.5326 0.3481 0.3714 0.2530 0.2649 2 

0.4469 0.2653 0.2668 0.1736 0.1829 0.4371 0.2715 0.2732 0.1785 0.1879 3 

0.3837 0.1968 0.1868 0.1179 0.1248 0.3682 0.1979 0.1885 0.1194 0.1263 4 

0.3166 0.1468 0.1304 0.0792 0.0842 0.3073 0.1447 0.1309 0.0805 0.0856 5 

0.4515 0.2711 0.2753 0.1834 0.1926 0.4383 0.2715 0.2766 0.1847 0.1939 Avg. 
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Table 5. Performance metrics for PushPull-YOLO and YOLOv11 under elastic transform corruption at varying severity levels. 

PushPull-YOLO YOLOv11 Severity 

Level Precision Recall mAP50 mAP50-95 Fitness Precision Recall mAP50 mAP50-95 Fitness 

0.5733 0.4161 0.4481 0.3073 0.3214 0.5562 0.4214 0.4447 0.3069 0.3207 1 

0.5554 0.3767 0.4035 0.2726 0.2857 0.5432 0.3784 0.3993 0.2706 0.2834 2 

0.5244 0.3217 0.3406 0.2249 0.2364 0.5387 0.3191 0.3365 0.2225 0.2339 3 

0.5038 0.2845 0.2954 0.1925 0.2028 0.5150 0.2782 0.2885 0.1873 0.1974 4 

0.4907 0.2350 0.2460 0.1561 0.1651 0.4937 0.2286 0.2354 0.1494 0.1580 5 

0.5295 0.3268 0.3467 0.2307 0.2423 0.5293 0.3251 0.3409 0.2273 0.2387 Avg. 

4.4 Elastic transform corruption 

Elastic transformations challenge the models with 

distortions, but PushPull-YOLO demonstrates higher 

robustness in mAP50-95 and fitness scores. Its ability to 

retain detection quality under severe transformations is 

evident in Table 5, where PushPull-YOLO consistently 

performs better than YOLOv11. 

The Wilcoxon signed-rank test was conducted to 

compare the performance of PushPull-YOLO and YOLOv11 

across five metrics: Precision, Recall, mAP50, mAP50-95, 

and Fitness. The results revealed no statistically significant 

differences for Precision (p = 1.0) and Recall (p = 0.4375), 

indicating that both methods perform comparably in these 

metrics. However, statistically significant differences were 

observed in favor of PushPull-YOLO for mAP50, mAP50-

95, and Fitness (p = 0.03125 for all), demonstrating its 

superior performance in these critical metrics. These 

findings suggest that while both methods achieve similar 

Precision and Recall, PushPull-YOLO offers significant 

advantages in detection accuracy and robustness, making it 

a more effective solution for object detection tasks requiring 

high accuracy and model efficiency across varying IoU 

thresholds. Comparison of YOLOv11 and PushPull-YOLO 

performance metrics under elastic transform corruption 

across varying severity levels is shown in Figure 7. 

 

 

Figure 7. Performance comparison of YOLOv11 and 

PushPull-YOLO under elastic transform corruption 

4.5. Fog corruption 

Under foggy conditions, both methods show strong 

performance at lower severity levels, but PushPull-YOLO 

sustains its advantage in mAP50-95 as severity increases. 

This robustness makes it ideal for low-visibility scenarios, as 

reflected in Table 6, which details the metrics across all fog 

severities. 

The Wilcoxon signed-rank test was conducted to 

compare the performance of PushPull-YOLO and YOLOv11 

across five metrics: Precision, Recall, mAP50, mAP50-95, 

and Fitness. The analysis revealed a statistically significant 

difference in Precision (p = 0.03125), indicating that 

PushPull-YOLO outperforms YOLOv11 in this metric. 

However, no statistically significant differences were 

observed for Recall (p = 0.5625), mAP50 (p = 0.84375), 

mAP50-95 (p = 0.5625), and Fitness (p = 0.6875), suggesting 

that the two methods perform comparably in these areas. 

These findings highlight that while PushPull-YOLO 

demonstrates a distinct advantage in achieving higher 

Precision, both models exhibit similar performance in other 

critical metrics related to detection accuracy and robustness. 

This suggests that PushPull-YOLO may be better suited for 

tasks where Precision is of greater importance, while both 

methods remain reliable and effective in broader object 

detection scenarios. Comparison of YOLOv11 and PushPull-

YOLO performance metrics under fog corruption across 

varying severity levels is shown in Figure 8. 

 

 

Figure 8. Performance comparison of YOLOv11 and 

PushPull-YOLO under fog corruption 

 

 

 

 

 

 

 



 

 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(3), 1100-1115 

H. A. Akyürek 

 

1107 

 

Table 6. Performance metrics for PushPull-YOLO and YOLOv11 methods under fog corruption at varying severity levels. 

PushPull-YOLO YOLOv11 Severity 

Level Precision Recall mAP50 mAP50-95 Fitness Precision Recall mAP50 mAP50-95 Fitness 

0.5912 0.4248 0.4577 0.3229 0.3363 0.5815 0.4285 0.4596 0.3234 0.3370 1 

0.5898 0.4081 0.4416 0.3101 0.3230 0.5747 0.4087 0.4403 0.3092 0.3223 2 

0.5713 0.3941 0.4243 0.2964 0.3092 0.5687 0.3931 0.4230 0.2956 0.3083 3 

0.5778 0.3886 0.4231 0.2962 0.3089 0.5492 0.3952 0.4210 0.2943 0.3070 4 

0.5677 0.3756 0.3982 0.2771 0.2892 0.5434 0.3710 0.3998 0.2783 0.2904 5 

0.5796 0.3982 0.4290 0.3005 0.3133 0.5635 0.3993 0.4287 0.3002 0.3130 Avg. 

 

Table 7. Performance metrics for PushPull-YOLO and YOLOv11 methods under frost corruption at varying severity levels. 

PushPull-YOLO YOLOv11 Severity 

Level Precision Recall mAP50 mAP50-95 Fitness Precision Recall mAP50 mAP50-95 Fitness 

0.5736 0.3993 0.4293 0.2971 0.3102 0.5726 0.3916 0.4227 0.2921 0.3052 1 

0.5387 0.3318 0.3544 0.2401 0.2515 0.5265 0.3187 0.3378 0.2306 0.2413 2 

0.4982 0.2826 0.2955 0.1979 0.2076 0.4912 0.2671 0.2800 0.1881 0.1973 3 

0.4983 0.2757 0.2849 0.1907 0.2002 0.4791 0.2618 0.2700 0.1814 0.1903 4 

0.4640 0.2453 0.2542 0.1689 0.1775 0.4581 0.2310 0.2362 0.1573 0.1652 5 

0.5146 0.3069 0.3237 0.2190 0.2294 0.5055 0.2940 0.3093 0.2099 0.2198 Avg. 

 

4.6 Frost corruption 

Frost corruption introduces visual disturbances that affect 

object detection. PushPull-YOLO consistently outperforms 

YOLOv11 in mAP50-95 and fitness scores, especially at 

higher severity levels. This indicates its superior adaptability 

to frosty conditions. Table 7 highlights these trends, 

demonstrating PushPull-YOLO’s capability to maintain 

robust detection performance under frost-related 

corruptions. 

The Wilcoxon signed-rank test was applied to evaluate 

the performance differences between PushPull-YOLO and 

YOLOv11 across five critical metrics: Precision, Recall, 

mAP50, mAP50-95, and Fitness. The analysis revealed 

statistically significant differences in favor of PushPull-

YOLO for all metrics (p = 0.03125 for each), indicating that 

PushPull-YOLO consistently outperforms YOLOv11. These 

results highlight the enhanced detection accuracy, robustness 

across varying IoU thresholds, and overall model fitness 

offered by PushPull-YOLO. This demonstrates its 

superiority as a more efficient and reliable object detection 

solution, particularly in scenarios requiring high precision, 

comprehensive recall, and robust performance across diverse 

conditions. The findings affirm PushPull-YOLO's 

effectiveness in advancing object detection capabilities over 

the baseline performance of YOLOv11. Comparison of 

YOLOv11 and PushPull-YOLO performance metrics under 

frost corruption across varying severity levels is shown in 

Figure 9. 

4.7 Gaussian noise corruption 

Gaussian noise leads to substantial performance 

degradation at higher severities. PushPull-YOLO achieves 

better mAP50-95 scores across all levels, indicating its 

effectiveness in managing noisy environments. Table 8 

presents the comparative analysis, showcasing its robustness 

to this corruption type. 

 

 

 

Figure 9. Performance comparison of YOLOv11 and 

PushPull-YOLO under frost corruption 

 

The Wilcoxon signed-rank test was applied to compare 

the performance of PushPull-YOLO and YOLOv11 across 

five metrics: Precision, Recall, mAP50, mAP50-95, and 

Fitness. The analysis revealed no statistically significant 

differences for any of the metrics, with p-values of \(p = 

0.84375 for Precision, \(p = 0.21875 for Recall, mAP50-95, 

and Fitness, and \(p = 0.4375 for mAP50. These findings 

indicate that both methods exhibit comparable performance 

across all evaluated metrics under the given conditions. This 

suggests that PushPull-YOLO and YOLOv11 are equally 

effective for object detection tasks, offering similar levels of 

accuracy, robustness, and overall efficiency in detection 

performance. Comparison of YOLOv11 and PushPull-

YOLO performance metrics under gaussian noise corruption 

across varying severity levels is shown in Figure 10. 
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Table 8. Performance metrics for PushPull-YOLO and YOLOv11 under Gaussian noise corruption at varying severity levels. 

PushPull-YOLO YOLOv11 Severity 

Level Precision Recall mAP50 mAP50-95 Fitness Precision Recall mAP50 mAP50-95 Fitness 

0.5440 0.3582 0.3852 0.2653 0.2773 0.5442 0.3618 0.3853 0.2633 0.2755 1 

0.4874 0.2789 0.2937 0.1959 0.2056 0.4764 0.2852 0.2953 0.1954 0.2054 2 

0.3827 0.1747 0.1685 0.1083 0.1143 0.3954 0.1773 0.1690 0.1076 0.1137 3 

0.2880 0.0793 0.0683 0.0427 0.0453 0.2945 0.0732 0.0655 0.0412 0.0437 4 

0.0328 0.0664 0.0150 0.0096 0.0102 0.0153 0.0800 0.0167 0.0108 0.0114 5 

0.3470 0.1915 0.1861 0.1243 0.1305 0.3452 0.1955 0.1864 0.1237 0.1299 Avg. 

 

Table 9. Performance metrics for PushPull-YOLO and YOLOv11 methods under glass blur corruption at varying severity levels. 

PushPull-YOLO YOLOv11 Severity 

Level Precision Recall mAP50 mAP50-95 Fitness Precision Recall mAP50 mAP50-95 Fitness 

0.5777 0.3914 0.4183 0.2875 0.3006 0.5535 0.3788 0.4028 0.2767 0.2893 1 

0.5179 0.3357 0.3460 0.2362 0.2471 0.4976 0.3119 0.3212 0.2192 0.2294 2 

0.3565 0.1595 0.1432 0.0917 0.0968 0.3691 0.1457 0.1271 0.0809 0.0855 3 

0.3231 0.1246 0.1034 0.0652 0.0690 0.3119 0.1146 0.0922 0.0587 0.0621 4 

0.2966 0.0906 0.0696 0.0422 0.0449 0.2711 0.0905 0.0674 0.0416 0.0442 5 

0.4144 0.2204 0.2161 0.1445 0.1517 0.4006 0.2083 0.2021 0.1354 0.1421 Avg. 

 

 

Figure 10. Performance comparison of YOLOv11 and 

PushPull-YOLO under Gaussian noise corruption 

 

4.8 Glass blur corruption 

Glass blur significantly impacts detection capabilities. 

PushPull-YOLO demonstrates stronger resilience, 

particularly in mAP metrics, as severity rises. Table 9 

illustrates these trends, highlighting PushPull-YOLO’s 

superiority in handling glass-induced distortions. 

The Wilcoxon signed-rank test was conducted to 

compare the performance of PushPull-YOLO and YOLOv11 

across five metrics: Precision, Recall, mAP50, mAP50-95, 

and Fitness. The results revealed statistically significant 

differences in favor of PushPull-YOLO for Recall, mAP50, 

mAP50-95, and Fitness (p = 0.03125 for all), indicating that 

PushPull-YOLO demonstrates superior detection accuracy, 

robustness across varying IoU thresholds, and overall model 

efficiency. Precision showed borderline significance (p = 

0.09375), suggesting a potential but inconclusive advantage 

for PushPull-YOLO in this metric. These findings highlight 

that while both models achieve comparable results in 

Precision, PushPull-YOLO consistently outperforms 

YOLOv11 in critical metrics that reflect detection reliability 

and robustness, making it a more effective and reliable 

choice for object detection tasks under diverse conditions. 

Comparison of YOLOv11 and PushPull-YOLO 

performance metrics under glass blur corruption across 

varying severity levels is shown in Figure 11. 

 

 

Figure 11. Performance comparison of YOLOv11 and 

PushPull-YOLO under glass blur corruption 

4.9 Impulse noise corruption 

Impulse noise introduces high-intensity pixel-level 

disturbances that degrade performance. PushPull-YOLO 

shows greater stability in mAP50-95 values, particularly at 

higher severities, as highlighted in Table 10, making it 

suitable for challenging environments. 

The Wilcoxon signed-rank test was conducted to 

evaluate the performance differences between PushPull-

YOLO and YOLOv11 across five key metrics: Precision, 

Recall, mAP50, mAP50-95, and Fitness. The analysis 

revealed statistically significant differences in favor of 

PushPull-YOLO for mAP50, mAP50-95, and Fitness (p = 

0.03125 for all), demonstrating its superior detection 

accuracy, robustness across varying IoU thresholds, and 

overall model efficiency. Precision showed borderline 

significance (p = 0.09375), indicating a potential but 
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inconclusive advantage for PushPull-YOLO in this metric. 

For Recall, no statistically significant difference was 

observed (p = 0.5625), suggesting comparable performance 

between the two models. These results underscore PushPull-

YOLO's advantage in delivering higher accuracy and 

reliability, particularly in metrics that evaluate 

comprehensive detection capabilities, making it a more 

effective choice for object detection tasks where precision 

and robustness are critical. Comparison of YOLOv11 and 

PushPull-YOLO performance metrics under impulse noise 

corruption across varying severity levels is shown in Figure 

12. 

 

 

Figure 12. Performance comparison of YOLOv11 and 

PushPull-YOLO under impulse noise corruption 

 

4.10 JPEG compression corruption 

JPEG compression results in a gradual decline in 

performance as compression increases. PushPull-YOLO 

consistently outperforms YOLOv11 in mAP metrics, as 

shown in Table 11, emphasizing its robustness in handling 

compressed images. 

The Wilcoxon signed-rank test was applied to compare 

the performance of PushPull-YOLO and YOLOv11 across 

five metrics: Precision, Recall, mAP50, mAP50-95, and 

Fitness. The analysis revealed a statistically significant 

difference in Precision (p = 0.03125), indicating that 

PushPull-YOLO outperforms YOLOv11 in this metric. 

However, no statistically significant differences were 

observed for Recall (p = 0.15625), mAP50 (p = 0.3125), 

mAP50-95 (p = 0.4375), and Fitness (p = 0.4375), suggesting 

comparable performance between the two methods in these 

areas. These findings highlight that while PushPull-YOLO 

demonstrates a clear advantage in Precision, both methods 

perform similarly in terms of overall detection accuracy, 

robustness across IoU thresholds, and model fitness, making 

them equally reliable for general object detection tasks. 

Comparison of YOLOv11 and PushPull-YOLO 

performance metrics under JPEG compression corruption 

across varying severity levels is shown in Figure 13. 

 

 

Figure 13. Performance comparison of YOLOv11 and 

PushPull-YOLO under jpeg compression corruption 

 

Table 10. Performance metrics for PushPull-YOLO and YOLOv11 under impulse noise corruption at varying severity levels. 

PushPull-YOLO YOLOv11 Severity 

Level Precision Recall mAP50 mAP50-95 Fitness Precision Recall mAP50 mAP50-95 Fitness 

0.5185 0.3161 0.3221 0.2186 0.2289 0.5103 0.3382 0.3579 0.2451 0.2563 1 

0.4238 0.2340 0.2294 0.1507 0.1586 0.4416 0.2534 0.2527 0.1676 0.1761 2 

0.3659 0.1667 0.1578 0.1017 0.1073 0.3878 0.1771 0.1710 0.1104 0.1165 3 

0.2626 0.0645 0.0545 0.0340 0.0361 0.3125 0.0632 0.0580 0.0359 0.0381 4 

0.0121 0.1080 0.0143 0.0091 0.0096 0.0161 0.0713 0.0163 0.0103 0.0109 5 

0.3166 0.1778 0.1556 0.1028 0.1081 0.3337 0.1807 0.1712 0.1138 0.1196 Avg. 

 

Table 11. Performance metrics for PushPull-YOLO and YOLOv11 under JPEG compression at varying severity levels. 

PushPull-YOLO YOLOv11 Severity 

Level Precision Recall mAP50 mAP50-95 Fitness Precision Recall mAP50 mAP50-95 Fitness 

0.5599 0.3806 0.4066 0.2758 0.2889 0.5491 0.3792 0.4021 0.2704 0.2836 1 

0.5094 0.3239 0.3395 0.2253 0.2367 0.4874 0.3235 0.3391 0.2251 0.2365 2 

0.4778 0.2806 0.2893 0.1889 0.1989 0.4618 0.2884 0.2915 0.1894 0.1996 3 

0.4265 0.1793 0.1778 0.1116 0.1182 0.3958 0.1936 0.1870 0.1181 0.1250 4 

0.3885 0.1077 0.0978 0.0601 0.0639 0.3606 0.1179 0.1050 0.0646 0.0686 5 

0.4724 0.2544 0.2622 0.1723 0.1813 0.4510 0.2605 0.2649 0.1735 0.1827 Avg. 
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4.11 Motion blur corruption 

Motion blur impacts both methods similarly, but 

PushPull-YOLO maintains a consistent advantage in 

mAP50-95 and fitness metrics. This resilience to motion-

induced distortions is detailed in Table 12, underscoring its 

applicability in dynamic environments. 

The Wilcoxon signed-rank test was conducted to 

evaluate the performance differences between PushPull-

YOLO and YOLOv11 across five metrics: Precision, Recall, 

mAP50, mAP50-95, and Fitness. The analysis revealed 

statistically significant differences in favor of PushPull-

YOLO for all metrics (p = 0.03125), demonstrating its 

consistent superiority over YOLOv11. These results 

highlight the enhanced detection accuracy, robustness across 

varying IoU thresholds, and overall model fitness offered by 

PushPull-YOLO. The statistically significant improvements 

in Precision and Recall further emphasize PushPull-YOLO's 

ability to balance accurate detection and comprehensive 

coverage, making it a more effective and reliable approach 

for object detection tasks in diverse and challenging 

conditions. These findings position PushPull-YOLO as a 

valuable advancement in object detection technology. 

Comparison of YOLOv11 and PushPull-YOLO 

performance metrics under motion blur corruption across 

varying severity levels is shown in Figure 14. 

 

 

Figure 14. Performance comparison of YOLOv11 and 

PushPull-YOLO under motion blur corruption 

4.12 Pixelate corruption 

Pixelation reduces resolution and impacts detection 

metrics. PushPull-YOLO shows superior mAP50-95 scores 

across all severity levels, confirming its adaptability to low-

resolution images. Table 13 summarizes these findings. 

The Wilcoxon signed-rank test was conducted to 

compare the performance of PushPull-YOLO and YOLOv11 

across five metrics: Precision, Recall, mAP50, mAP50-95, 

and Fitness. The results revealed no statistically significant 

difference in Precision (p = 0.5625), indicating that both 

methods perform comparably in terms of precision. 

However, statistically significant differences were observed 

in favor of PushPull-YOLO for Recall, mAP50, mAP50-95, 

and Fitness (p = 0.03125 for all), demonstrating its superior 

performance in detection accuracy, robustness, and overall 

model efficiency across varying IoU thresholds. These 

findings highlight PushPull-YOLO's ability to achieve 

higher recall and enhanced detection performance, making it 

a more robust and effective solution for object detection 

tasks under diverse conditions. Comparison of YOLOv11 

and PushPull-YOLO performance metrics under pixelate 

corruption across varying severity levels is shown in Figure 

15. 

 

 

Figure 15. Performance comparison of YOLOv11 and 

PushPull-YOLO under pixelate corruption 

 

Table 12. Performance metrics for PushPull-YOLO and YOLOv11 under motion blur corruption at varying severity levels. 

PushPull-YOLO YOLOv11 Severity 

Level Precision Recall mAP50 mAP50-95 Fitness Precision Recall mAP50 mAP50-95 Fitness 

0.5685 0.4041 0.4346 0.2939 0.3080 0.5562 0.3857 0.4140 0.2789 0.2924 1 

0.5161 0.3344 0.3453 0.2237 0.2358 0.4895 0.3147 0.3246 0.2100 0.2214 2 

0.4126 0.2357 0.2299 0.1416 0.1504 0.3971 0.2265 0.2159 0.1331 0.1414 3 

0.3352 0.1508 0.1336 0.0779 0.0835 0.3098 0.1426 0.1270 0.0733 0.0787 4 

0.2816 0.1088 0.0911 0.0507 0.0547 0.2474 0.1006 0.0824 0.0452 0.0489 5 

0.4228 0.2467 0.2469 0.1576 0.1665 0.4000 0.2340 0.2328 0.1481 0.1566 Avg. 

 

Table 13. Performance metrics for PushPull-YOLO and YOLOv11 methods under pixelate corruption at varying severity levels. 

PushPull-YOLO YOLOv11 Severity 

Level Precision Recall mAP50 mAP50-95 Fitness Precision Recall mAP50 mAP50-95 Fitness 

0.5842 0.4268 0.4601 0.3230 0.3367 0.5866 0.4119 0.4481 0.3129 0.3264 1 

0.5830 0.4054 0.4377 0.3059 0.3191 0.5658 0.3885 0.4196 0.2914 0.3042 2 

0.4879 0.2613 0.2734 0.1857 0.1945 0.4454 0.2197 0.2204 0.1470 0.1543 3 

0.4019 0.1379 0.1335 0.0897 0.0941 0.4089 0.0880 0.0834 0.0554 0.0582 4 

0.3914 0.0983 0.0906 0.0608 0.0638 0.4054 0.0746 0.0708 0.0469 0.0493 5 

0.4897 0.2659 0.2791 0.1931 0.2017 0.4824 0.2365 0.2485 0.1707 0.1785 Avg. 
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4.13 Shot noise corruption 

Shot noise introduces random noise spikes, challenging 

detection performance. PushPull-YOLO demonstrates better 

mAP50-95 metrics, especially at moderate and severe levels, 

as detailed in Table 14, highlighting its robustness against 

this corruption type. 

The Wilcoxon signed-rank test was conducted to 

evaluate the performance differences between PushPull-

YOLO and YOLOv11 across five metrics: Precision, Recall, 

mAP50, mAP50-95, and Fitness. The analysis revealed a 

statistically significant difference in favor of PushPull-

YOLO for mAP50 (p = 0.03125), highlighting its superior 

detection accuracy. Precision (p = 0.4375) and Recall (p = 

0.21875) showed no statistically significant differences, 

indicating comparable performance between the two 

methods in these metrics. Borderline significance was 

observed for mAP50-95 and Fitness (p = 0.0625 for both), 

suggesting a potential but inconclusive advantage for 

PushPull-YOLO in these areas. Overall, the findings 

demonstrate that while PushPull-YOLO provides enhanced 

detection accuracy through improved mAP50, its 

performance in other metrics is similar to that of YOLOv11, 

with indications of possible further advantages in robustness 

and model efficiency. Comparison of YOLOv11 and 

PushPull-YOLO performance metrics under shot noise 

corruption across varying severity levels is shown in Figure 

16. 

 

 

Figure 16. Performance comparison of YOLOv11 and 

PushPull-YOLO under shot noise corruption 

4.14 Snow corruption 

Snow corruption disrupts detection capabilities, 

particularly at higher severities. PushPull-YOLO maintains 

better mAP50-95 and fitness metrics compared to 

YOLOv11, as shown in Table 15, confirming its 

effectiveness for outdoor applications in snowy 

environments. 

The Wilcoxon signed-rank test was conducted to 

compare the performance of PushPull-YOLO and YOLOv11 

across five key metrics: Precision, Recall, mAP50, mAP50-

95, and Fitness. The analysis revealed statistically significant 

differences in favor of PushPull-YOLO for all metrics (p = 

0.03125), demonstrating its consistent superiority over 

YOLOv11. These results highlight the enhanced detection 

accuracy, robustness across varying IoU thresholds, and 

overall model efficiency offered by PushPull-YOLO. The 

significant improvements in Precision and Recall further 

emphasize PushPull-YOLO's capability to achieve both high 

detection accuracy and comprehensive recall, making it a 

more effective and reliable choice for object detection tasks 

in diverse and challenging conditions. These findings 

reinforce PushPull-YOLO's position as a robust 

advancement in object detection technology. Comparison of 

YOLOv11 and PushPull-YOLO performance metrics under 

snow corruption across varying severity levels is shown in 

Figure 17. 

 

 

Figure 17. Performance comparison of YOLOv11 and 

PushPull-YOLO under snow corruption 

 

Table 14. Performance metrics for PushPull-YOLO and YOLOv11 under shot noise corruption at varying severity levels. 

PushPull-YOLO YOLOv11 Severity 

Level Precision Recall mAP50 mAP50-95 Fitness Precision Recall mAP50 mAP50-95 Fitness 

0.5487 0.3654 0.3904 0.2685 0.2807 0.5413 0.3663 0.3905 0.2674 0.2797 1 

0.4823 0.2793 0.2905 0.1941 0.2037 0.4759 0.2926 0.3006 0.2003 0.2103 2 

0.3997 0.1825 0.1829 0.1183 0.1247 0.3968 0.1926 0.1898 0.1225 0.1292 3 

0.3123 0.0748 0.0613 0.0381 0.0404 0.3113 0.0739 0.0677 0.0420 0.0446 4 

0.2943 0.0293 0.0243 0.0157 0.0166 0.3095 0.0265 0.0285 0.0184 0.0194 5 

0.4075 0.1863 0.1899 0.1269 0.1332 0.4070 0.1904 0.1954 0.1301 0.1366 Avg. 
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Table 15. Performance metrics for PushPull-YOLO and YOLOv11 methods under snow corruption at varying severity levels. 

PushPull-YOLO YOLOv11 Severity 

Level Precision Recall mAP50 mAP50-95 Fitness Precision Recall mAP50 mAP50-95 Fitness 

0.5532 0.3475 0.3736 0.2570 0.2687 0.5251 0.3431 0.3625 0.2483 0.2597 1 

0.4813 0.2524 0.2570 0.1702 0.1789 0.4578 0.2278 0.2297 0.1527 0.1604 2 

0.4614 0.2490 0.2536 0.1672 0.1758 0.4565 0.2320 0.2394 0.1578 0.1660 3 

0.4231 0.1938 0.1896 0.1222 0.1289 0.4056 0.1815 0.1765 0.1132 0.1195 4 

0.4334 0.1994 0.1975 0.1266 0.1336 0.4059 0.1775 0.1742 0.1122 0.1184 5 

0.4705 0.2484 0.2543 0.1686 0.1772 0.4502 0.2324 0.2364 0.1568 0.1648 Avg. 

 

Table 16. Performance metrics for PushPull-YOLO and YOLOv11 under zoom blur corruption at varying severity levels. 

PushPull-YOLO YOLOv11 Severity 

Level Precision Recall mAP50 mAP50-95 Fitness Precision Recall mAP50 mAP50-95 Fitness 

0.4410 0.2415 0.2404 0.1313 0.1422 0.4294 0.2342 0.2304 0.1259 0.1363 1 

0.3639 0.1851 0.1737 0.0857 0.0945 0.3649 0.1734 0.1653 0.0816 0.0900 2 

0.3406 0.1622 0.1476 0.0692 0.0770 0.3444 0.1494 0.1369 0.0636 0.0709 3 

0.3065 0.1286 0.1132 0.0491 0.0556 0.2818 0.1213 0.1032 0.0444 0.0503 4 

0.2806 0.1185 0.0986 0.0413 0.0470 0.2535 0.1098 0.0880 0.0362 0.0413 5 

0.3465 0.1672 0.1547 0.0753 0.0833 0.3348 0.1576 0.1448 0.0703 0.0778 Avg. 

 

 

4.15 Zoom blur corruption 

Zoom blur affects object detection metrics as severity 

increases. PushPull-YOLO outperforms YOLOv11 in 

mAP50-95 across all levels, demonstrating its capability to 

handle variable focal lengths. The comparative results are 

presented in Table 16. 

The Wilcoxon signed-rank test was applied to evaluate 

the performance differences between PushPull-YOLO and 

YOLOv11 across five key metrics: Precision, Recall, 

mAP50, mAP50-95, and Fitness. The analysis revealed 

statistically significant differences in favor of PushPull-

YOLO for Recall, mAP50, mAP50-95, and Fitness (p = 

0.03125 for all), indicating its superior performance in terms 

of detection accuracy, robustness across varying IoU 

thresholds, and overall model fitness. No statistically 

significant difference was observed for Precision (p = 

0.15625), suggesting comparable performance between the 

two methods in this metric. These findings highlight 

PushPull-YOLO's ability to deliver higher recall and 

improved detection capabilities, making it a more effective 

solution for object detection tasks, particularly in scenarios 

requiring high accuracy and robustness. Comparison of 

YOLOv11 and PushPull-YOLO performance metrics under 

zoom blur corruption across varying severity levels is shown 

in Figure 18. 

The integration of PushPull convolution into YOLOv11 

provides substantial robustness against image corruptions 

while maintaining real-time performance. This robustness is 

achieved through the PushPull-Conv unit’s ability to 

combine excitatory and inhibitory convolutional kernels, 

mimicking biological mechanisms in the primary visual 

cortex. The push kernel focuses on detecting preferred 

stimuli, while the pull kernel suppresses responses in 

irrelevant regions, effectively enhancing selectivity and 

minimizing noise from non-relevant features. This dynamic 

interaction allows the network to maintain high detection 

accuracy under challenging conditions. This study 

demonstrated the consistent advantages of PushPull-YOLO 

in handling challenging object detection scenarios compared 

to standard YOLOv11. PushPull-YOLO achieves superior 

generalization, particularly for unseen corruptions, due to the 

inhibition-driven convolutional units. These units operate by 

incorporating complementary push and pull kernels, where 

the push kernel highlights critical features, and the pull 

kernel reduces interference from irrelevant stimuli. This dual 

mechanism enhances the model's ability to distinguish 

relevant patterns, improving its adaptability to novel 

corruption types and ensuring robust performance across 

diverse datasets. 

 

 

Figure 18. Performance comparison of YOLOv11 and 

PushPull-YOLO under zoom blur corruption 

 

Ablation studies revealed that a good starting point 

inhibits the strength set via backpropagation around 0.5, with 

a kernel size tuned to 3 × 3 for most applications. In this 

study we set kernel size to 7 × 7 according to Section3.4. 

These configurations were shown to provide a balancing 

effect on robustness and detection accuracy, especially under 

diverse image corruption conditions. Statistical analyses also 

supported improved metrics by PushPull-YOLO in mean 

Average Precision (mAP) and Fitness, with significant 

advantages in mAP50-95. Whereas improvement in 
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Precision is not conclusive, the improvement for Recall was 

substantial to know a better coverage was obtained without 

any loss in precision. 

These results indicate that the PushPull mechanism 

further enhances the state-of-the-art performance of YOLO 

models for practical applications, especially when the 

application scenarios demand robustness against image 

distortions due to external factors such as those in the self-

driving car ecosystem when there is heavy rain or fog 

outside, inspection of defects using industrial quality control 

systems under changing illuminations, and other surveillance 

systems with degraded visibility or motion blur. This will 

surely make PushPull-YOLO one of the trustworthy options 

in all future autonomous systems, industrial automation, and 

surveillance applications that require high accuracy with 

high efficiency. 

5 Discussion 

This comparative study of PushPull-YOLO and 

YOLOv11 on such a wide range of corruption types has shed 

light on the critical aspects of robustness, adaptability, and 

performance of PushPull-YOLO. Both models put in a very 

impressive performance, but PushPull-YOLO stands out in 

handling a range of real-world challenges with remarkable 

improvements in essential metrics like mAP50-95 and 

Fitness. These metrics provide a clear insight into the 

exactness of detection over varying IoU thresholds and relate 

directly to the practical utility of the model. 

Although PushPull-YOLO exhibits a minor trade-off in 

precision compared to YOLOv11 for certain corruption 

types, this is significantly outweighed by its gains in other 

critical performance areas. For instance, under brightness 

corruption, PushPull-YOLO achieves a precision of 0.5965, 

closely approximating YOLOv11’s 0.5922, demonstrating 

its capability to sustain high detection quality even in 

challenging scenarios. Similarly, recall values indicate 

PushPull-YOLO’s consistent performance. Under fog 

corruption, the recall of 0.3982 aligns with YOLOv11’s 

0.3993, indicating that PushPull-YOLO maintains reliable 

detection coverage despite visual obstructions. Across 

various scenarios, PushPull-YOLO balances precision and 

recall effectively, ensuring dependable detection even under 

adverse conditions. 

PushPull-YOLO’s robustness is particularly evident in 

its mAP50-95 performance under severe corruptions. For 

example, in elastic transform corruptions, PushPull-YOLO 

achieves a mAP50-95 of 0.2307, surpassing YOLOv11’s 

0.2273. Likewise, under frost and fog corruptions, PushPull-

YOLO’s resilience to environmental variations becomes 

apparent, making it a preferred choice for unpredictable, 

dynamic environments. This robustness highlights its 

practical utility in applications such as autonomous systems, 

industrial quality control, and surveillance where external 

factors often degrade image quality. 

PushPull-YOLO’s performance under specific 

corruption types further emphasizes its adaptability. For 

brightness and fog corruptions, its ability to maintain 

superior mAP50-95 metrics underscores its enhanced 

capacity to handle extreme conditions. For pixelation and 

Gaussian noise, PushPull-YOLO’s adaptability to low-

resolution and noisy images ensures reliable functionality in 

scenarios like remote monitoring and navigation. Notably, 

under motion blur, zoom blur, and snow corruptions, 

PushPull-YOLO’s detection capabilities remain consistently 

robust, demonstrating its reliability in handling real-time, 

dynamic image sequences. 

The architectural modifications introduced in PushPull-

YOLO—specifically the integration of the PushPull-Conv 

mechanism—play a significant role in its superior 

performance. This biologically inspired design emulates the 

selective inhibition mechanisms observed in the primary 

visual cortex, effectively enhancing feature selectivity and 

suppressing irrelevant stimuli. By dynamically balancing 

excitation and inhibition, PushPull-YOLO excels in 

distinguishing critical patterns and mitigating the effects of 

noise and distortions. Ablation studies highlight the 

importance of optimized configurations, such as inhibition 

strength and kernel size, in achieving a harmonious balance 

between robustness and accuracy. These innovations 

position PushPull-YOLO as an ideal solution for high-stakes 

applications, such as autonomous vehicles navigating 

adverse weather, precision manufacturing, and critical 

infrastructure surveillance. 

Statistical analyses further validate the robustness of 

PushPull-YOLO. The Wilcoxon signed-rank test 

underscores its significant advantages in mAP50-95 and 

Fitness metrics (p = 0.03125), establishing its superiority in 

comprehensive detection scenarios. Although precision 

differences remain statistically insignificant (p = 0.21875), 

borderline significance in recall (p = 0.09375) suggests that 

PushPull-YOLO may offer a subtle yet meaningful 

improvement in detection coverage under specific 

conditions. These findings solidify PushPull-YOLO’s 

position as a balanced and reliable framework for demanding 

object detection tasks. 

As such, it demonstrates PushPull-YOLO’s robustness to 

a wider range of corruptions. For instance, under defocus and 

glass blur scenarios, PushPull-YOLO retains superior 

mAP50-95 values, ensuring effective detection even in out-

of-focus imagery. Similarly, its performance under impulse 

noise and JPEG compression corruptions highlights its 

adaptability to data artifacts commonly encountered in 

compressed or degraded datasets. PushPull-YOLO’s 

resilience to extreme image corruptions, including frost, 

snow, and zoom blur, further cements its utility in outdoor 

applications and environments with frequent visual 

distortions. 

PushPull-YOLO’s demonstrated robustness makes it 

particularly relevant for critical real-world applications. 

Autonomous systems operating in adverse environments, 

industrial automation requiring precise quality control, and 

security systems monitoring low-visibility scenarios can all 

benefit from its advanced capabilities. Furthermore, the 

integration of biologically inspired mechanisms opens 

avenues for future exploration in neuro-mimetic computing 

and adaptive AI systems. These advancements suggest that 

future iterations of PushPull-YOLO could further refine its 
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adaptability, extending its application scope to even more 

challenging and dynamic scenarios. 

PushPull-YOLO establishes itself as a transformative 

advancement in object detection, offering unparalleled 

robustness across diverse corruption types. Its innovative 

architecture, inspired by biological processes, allows it to 

effectively address the challenges posed by dynamic and 

unpredictable environments. By consistently delivering 

superior performance in mAP metrics and overall detection 

reliability, PushPull-YOLO underscores the potential of 

biologically inspired designs in advancing AI technologies. 

These findings not only position PushPull-YOLO as a leader 

in object detection but also set a benchmark for future 

explorations into robust, adaptive, and efficient detection 

frameworks. 

6. Conclusions 

Integration of PushPull convolution into the YOLOv11 

architecture sets up a solid and efficient framework for object 

detection, particularly in challenging cases that involve 

image corruptions. Drawing inspiration from 

neurophysiological mechanisms, PushPull convolution 

enhances the selectivity for the stimulus of interest by 

employing complementary push and pull filters. This 

mechanism self-regulates the balance between excitatory 

and inhibitory responses, thereby mitigating the impact of 

such corruptions as noise, blur, and digital artifacts. This 

integration follows the biological inspiration of how best 

equipping the model to process such complex visual data in 

various conditions would be. Advanced architectural 

components like the C3k2 block and C2PSA module, 

YOLOv11 presents state-of-the-art object detection with 

high scores of mAP and computational efficiency. 

These features are complemented by the addition of 

PushPull convolution, which strengthens the model's 

performance against common corruptions, as demonstrated 

in extensive evaluations on benchmark datasets such as 

ImageNet-C. This leverages the rapid inference capabilities 

and precise detection of YOLOv11, while PushPull 

convolution significantly contributes to resilience against 

adverse scenarios. Experimental results showed that the 

combined approach does much better compared to state-of-

the-art approaches in handling high-frequency corruptions, 

which are of particular importance in real-time applications 

like autonomous navigation, surveillance, and industrial 

automation. This hybrid model successfully fulfills the 

application demands by facilitating the dual advantages of 

robustness and accuracy. 

Moreover, the implications of this integration hold 

promise for the deployment of advanced object detection 

systems in resource-constrained environments, including 

edge devices, where efficiency and accuracy are paramount. 

This approach also highlights the potential for developing 

models that can adapt to unforeseen challenges in dynamic 

real-world scenarios, making it a versatile tool for a variety 

of industries. 

This work provides the way for further interdisciplinary 

innovations in computer vision by providing a new 

perspective on robustness in object detection tasks. The work 

demonstrates how integrating biologically inspired 

mechanisms with state-of-the-art architectures can lead to 

superior performance. Future work could explore extending 

this methodology to other tasks such as segmentation, key-

point detection, and pose estimation. These extensions will 

broaden its applicability in a variety of real-world scenarios, 

from medical imaging to environmental monitoring, and 

could ultimately address more complex challenges in 

computer vision. 
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