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Abstract 

In this study, the performance of different Particle Swarm 
Optimization (PSO) variants in solving the Selective 
Harmonic Elimination (SHE) equations of a Cascaded H-
Bridge Multilevel Inverter (CHB-MLI) was compared. The 
SHE method consists of nonlinear transcendental equations, 
which are particularly difficult to solve analytically in high-
level systems. The aim of the study is to examine the overall 
improvements provided by the PSO variants and to 
specifically evaluate their effectiveness in solving such 
complex engineering problems. In addition to the standard 
PSO, several improved versions from the literature have been 
considered. For each variant, the optimal switching angles 
that solve the SHE equations were determined and applied to 
a CHB-MLI model in the MATLAB/Simulink environment. 
The convergence behaviors of the algorithms, the total 
harmonic distortions (THD) and the amplitudes of the 
fundamental components of the output voltages were 
analyzed statistically. As a result of these analyses, the 
strengths and weaknesses of the PSO variants in the 
optimization processes were revealed. Based on the findings, 
a hybrid model was also proposed, which integrates the 
strong features of the successful variants. It was observed that 
the proposed hybrid model stands out from the other 
variants by exhibiting a stable and competitive performance 
even in the worst-case scenarios. These findings indicate that 
effectively developed PSO variants can be a powerful 
alternative for solving real-world optimization problems. 

Öz 

Bu çalışmada, farklı Parçacık Sürü Optimizasyonu (PSO) 
varyantlarının Kaskat Bağlı H-Köprü Çok Seviyeli Eviricinin 
(CHB-MLI) Seçici Harmonik Eliminasyon (SHE) 
denklemlerini çözmedeki performansları karşılaştırılmıştır 
SHE yöntemi, özellikle yüksek seviyeli sistemlerde analitik 
olarak çözülmesi oldukça zor olan doğrusal olmayan 
transandantal denklemlerden oluşmaktadır. Çalışmanın 
amacı, PSO varyantlarının genel olarak sağladığı 
iyileştirmeleri incelemek ve özellikle bu tür karmaşık 
mühendislik problemlerindeki etkinliklerini 
değerlendirmektir. Standart PSO'nun yanı sıra, literatürdeki 
geliştirilmiş bazı PSO versiyonları ele alınmıştır. Her varyant 
için SHE denklemlerini çözen optimal anahtarlama açıları 
belirlenerek MATLAB/Simulink ortamında bir CHB-MLI 
modeline uygulanmıştır. Algoritmaların yakınsama 
davranışları, çıkış gerilimlerinin toplam harmonik 
distorsiyonları ve temel bileşen genlikleri istatistiksel olarak 
analiz edilmiştir. Bu analizler sonucunda, PSO varyantlarının 
optimizasyon süreçlerindeki güçlü ve zayıf yönleri ortaya 
konmuştur. Ayrıca elde edilen bulgular doğrultusunda, 
başarılı varyantların seçilen güçlü özelliklerinin entegre 
edildiği hibrit bir model de önerilmiştir. Özellikle önerilen 
hibrit modelin, en kötü senaryolarda dahi istikrarlı ve 
rekabetçi bir performans sergileyerek diğer varyantlardan 
ayrıştığı gözlemlenmiştir. Bu bulgular, etkin şekilde 
geliştirilen PSO varyantlarının gerçek dünya optimizasyon 
problemlerinin çözümünde güçlü bir alternatif olabileceğini 
göstermektedir. 
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1. Introduction 

Particle Swarm Optimization (PSO) has a significant place in nature-inspired metaheuristic optimization 
algorithms. Initially proposed by Eberhart and Kennedy in 1995 [1], PSO was developed by modelling the 
collective behaviour of birds and fish moving in flocks or schools [2]. At its core, the algorithm consists of 
a swarm of particles randomly initialized in a multi-dimensional solution space. The way swarm 
individuals influence each other while searching for food has served as the inspiration for PSO’s 
fundamental steps in solving optimization problems. Each particle moves within the search space by 
updating its position and velocity. These movements are guided by both the best position found by the 
individual particle (𝑃𝑏𝑒𝑠𝑡) and the best position discovered by the entire swarm (𝐺𝑏𝑒𝑠𝑡). Due to its simple 
structure, low computational cost, and broad applicability, PSO has been widely adopted in various 
engineering problems [3]. 
 
However, over time, several limitations of the classical PSO algorithm have been identified in practical 
applications. In particular, PSO tends to exhibit premature convergence and can become trapped in local 
minima, which restricts its effectiveness, especially in multimodal and complex search spaces [4]. These 
issues arise due to the algorithm’s inability to properly balance exploration and exploitation during the 
search process [5]. To overcome these challenges, numerous PSO variants have been developed in the 
literature[6–9]. The primary goal of these variants is to adapt particle dynamics to the problem structure, 
ensuring a more effective exploration of the search space while also achieving faster and higher-quality 
solutions. 
 
In recent years, with the increasing number of metaheuristic optimization algorithms, PSO has been 
perceived as a less competitive approach and is now primarily used as a benchmark tool to demonstrate 
the superiority of newly developed optimization techniques. However, the PSO algorithms employed for 
this purpose are typically either the standard version or variants with only limited enhancements. This 
situation has led to the neglect of the potential offered by advanced PSO variants. Therefore, evaluating 
the effectiveness of different PSO variants in real-world optimization problems is of great importance. 
 
Optimization processes in real-world engineering problems often involve nonlinear and complex 
mathematical models. One such problem is the solution of Selective Harmonic Elimination (SHE) 
equations for Cascaded H-Bridge Multilevel Inverters (CHB-MLIs). The SHE method consists of nonlinear 
and transcendental equations [10] designed to eliminate specific harmonic components while maintaining 
the fundamental component amplitude at a desired level [11]. While these equations can be solved 
analytically for low-level systems, they are generally highly challenging for high-level inverters [12], 
necessitating the use of numerical or heuristic methods. In this context, due to its simple implementation 
and ability to efficiently explore large search spaces, advanced PSO variants are considered a strong 
alternative for solving SHE equations. 
 
In this study, the performance of different PSO variants in solving SHE equations was compared, and the 
contributions of various improvements to the optimization process were examined. The analysis revealed 
that while some variants were successful in certain aspects, they fell short in others. Based on these 
findings, a new hybrid PSO variant that integrates the most effective strategies of successful PSO variants 
was developed and included in the evaluation. 
 
With the inclusion of the hybrid model, a total of eight different PSO variants were evaluated through a 
series of independent runs, where optimal switching angles minimizing the objective fitness function were 
determined. First, the fitness values produced by each variant were visualized using box plots for 
comparative analysis, allowing for an overall performance evaluation of the algorithms. Then, to validate 
the results, the switching angles corresponding to these fitness values were applied to a three-phase star-
connected CHB-MLI model in the MATLAB/Simulink environment, and the output voltage waveforms 
and their frequency spectrums were examined. 



Doğan,                                               Performance Evaluation of PSO Variants for Selective Harmonic Elimination in Multi-Level Inverters 

Adyü J Eng Sci 2025;12(25):93-112/Adyü Müh Bil Derg 2025;12(25):93-112      95 

Accordingly, the obtained results reveal the strengths and weaknesses of the algorithms, providing 
significant insights into which strategies are more effective in solving SHE equations. In particular, the 
proposed hybrid model has distinguished itself from other variants by producing not only consistent 
overall performance but also demonstrating stable and competitive results even in the worst-case 
scenarios. Additionally, this study shows that a well-designed PSO variant can be effectively applied not 
only in theoretical test scenarios but also in real-world problems such as solving SHE equations, as 
exemplified by the newly developed hybrid variant. 
 

2. Cascaded H-Bridge MLI and Selective Harmonic Elimination Method 

CHB-MLI consists of multiple identical and discrete H-bridge inverter modules connected in series [13]. 
Each module has its own independent power supply, and all modules together generate a staircase-
shaped output voltage. Each module forms a single step of this staircase waveform. As the number of 
modules increases, the output voltage waveform contains more steps, thereby achieving a closer 
approximation to the desired sinusoidal waveform. This modular design offers various advantages, 
particularly in high-voltage power systems [14,15]. For instance, when voltage levels need to be increased 
or decreased, additional modules can be added or removed as needed without requiring a fundamental 
modification to the entire system. Moreover, since each module operates independently, in case of 
maintenance or failure, the faulty module(s) can be isolated and replaced without disrupting the entire 
system. Due to these advantages, despite the increased complexity of control algorithms and the higher 
number of power switches required, the CHB-MLI topology is preferred over alternative multilevel 
inverter configurations, particularly in medium- and high-power applications. 
 
In a CHB-MLI, the number of voltage levels depends on the number of independent H-bridge inverter 
modules used. The relationship between them can be expressed as shown in Equation (1), where k 
represents the number of H-bridge modules, and n denotes the output voltage levels: 
 

𝑛 = 2𝑘 + 1 (1) 
 
In this study, the aim is to compare different PSO variants in solving the SHE equations of a three-phase, 
star-connected 11-level CHB-MLI. In this context, five modules, each with a 50 V DC source per phase, 
were utilized. Figure 1 illustrates the circuit diagram of each module along with the block diagram 
representing the module arrangement for each phase, while Figure 2 presents the phase voltage (𝑉𝑝ℎ𝑎𝑠𝑒) 

of the CHB-MLI, which exhibits a staircase waveform. As observed, each module (𝑉𝑜_𝑥) constitutes a step 
of this staircase waveform. To minimize switching losses, each power switch undergoes commutation 
twice per half-cycle (𝜃𝑋, 𝜋 − 𝜃𝑋).  

 

Figure 1. Circuit diagram of each module and arrangement for the 3-phase 11-level CHB-MLI 
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Figure 2. The output voltage waveform for one phase of MLI 

Various switching strategies have been proposed in the literature for CHB-MLIs [16]. However, among 
these approaches, Selective Harmonic Elimination (SHE) has been the most preferred method, particularly 
in high-power critical applications where power quality is a limiting factor. The primary objective of the 
SHE method is to determine the optimal switching angles that eliminate specific low-order dominant 
harmonics in the inverter output voltage while maintaining the fundamental harmonic component at the 
desired level. 
 
As shown in Figure 2, the Fourier series expansion of a CHB-MLI output voltage waveform can be 

expressed by Equation (2). Here, 𝑉ℎ represents the amplitude of the ℎ𝑡ℎ harmonic. Due to quarter-wave 
symmetry, even harmonics do not appear in the output voltage. Assuming that all DC sources are equal 
and considering that five switching angles are required to generate the output voltage of an 11-level 
inverter, each odd harmonic can be calculated using Equation (3). The switching angles must be within 
the range 0 < 𝜃𝑗 < 𝜋 2⁄ . 

𝑉(𝜔𝑡) = ∑ 𝑉ℎ sin(ℎ𝜔𝑡)

∞

ℎ=1

 (2) 

𝑉ℎ =
4𝑉𝐷𝐶

ℎ𝜋
∑cos(ℎ𝜃𝑗)

5

𝑗=1

  ℎ = 1,3,5,7,…    𝑗 = 1,2,3,4,5 (3) 

 
When the SHE method is applied to an 11-level MLI, five harmonic equations are derived from Equation 
(3) to determine the optimal five switching angles. One of these equations represents the fundamental 
component, while the remaining four are selected based on which harmonics need to be eliminated. As is 
well known, low-order harmonics have a more dominant effect on power quality. Additionally, due to 
three-phase symmetry, the third and its multiples are not considered. Therefore, in an 11-level MLI, the 
elimination of the 5th, 7th, 11th and 13th harmonics is typically targeted. The corresponding harmonic 
equations are given in Equations (4)–(8). 
 
The most significant challenge of the SHE method is solving these five nonlinear equations with five 
unknowns. For such nonlinear and complex equations, numerical and algebraic solution methods are 
often insufficient. Determining the switching angles that satisfy the required conditions can be directly 
considered an optimization problem. Therefore, metaheuristic optimization techniques are frequently 
preferred to overcome this challenge in the SHE method [17]. In this study, the performance of different 
PSO variants, one of the most fundamental metaheuristic optimization algorithms, is compared in solving 
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this optimization problem. The objective is to determine the optimal five switching angles (𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5) 
that maintain V1 at the desired reference value while eliminating V5, V7, V11 and V13 in the given equations. 
 

𝑉1 =
4𝑉𝐷𝐶

𝜋
[cos(𝜃1) + cos(𝜃2) + cos(𝜃3) + cos(𝜃4) + cos(𝜃5)] (4) 

𝑉5 =
4𝑉𝐷𝐶

5𝜋
[cos(5𝜃1) + cos(5𝜃2) + cos(5𝜃3) + cos(5𝜃4) + cos(5𝜃5)] (5) 

𝑉7 =
4𝑉𝐷𝐶

7𝜋
[cos(7𝜃1) + cos(7𝜃2) + cos(7𝜃3) + cos(7𝜃4) + cos(7𝜃5)] (6) 

𝑉11 =
4𝑉𝐷𝐶

11𝜋
[cos(11𝜃1) + cos(11𝜃2) + cos(11𝜃3) + cos(11𝜃4) + cos(11𝜃5)] (7) 

𝑉13 =
4𝑉𝐷𝐶

13𝜋
[cos(13𝜃1) + cos(13𝜃2) + cos(13𝜃3) + cos(13𝜃4) + cos(13𝜃5)] (8) 

 

3. Particle Swarm Optimization (PSO) Variants 

The objective of this study is to compare the performance of different PSO variants in solving SHE 
equations. Among the PSO algorithm variants to be compared, it is essential to include the original version 
first proposed by Kennedy and Eberhart [1], which will hereafter be referred to as Standard PSO (SPSO). 
At this stage, the fundamental equations and operational steps of SPSO in the context of solving SHE 
equations will be briefly summarized. This will provide a clearer understanding of PSO’s general 
approach to optimization problems and highlight the specific areas where the examined variants 
introduce improvements. 
 
PSO is a population-based heuristic optimization algorithm that operates in a multi-dimensional search 
space. Each particle moves based on both its personal best position (𝑃𝑏𝑒𝑠𝑡) and the global best position 
(𝐺𝑏𝑒𝑠𝑡) within the swarm[18]. The position and velocity updates of the particles form the core of the 
algorithm, incorporating randomness to balance social and individual knowledge interactions. 
 
The algorithm begins by generating a random initial population consisting of N particles. Each particle 
represents a solution set containing five angular variables (𝜃𝑖), as shown in Equation (9), specifically 
tailored for solving the SHE equations. This solution must satisfy the constraints given in Equation (10). 
At the initialization stage, since no predefined solution exists, each particle's current position is considered 
its personal best solution (𝑃𝑏𝑒𝑠𝑡𝑖). Additionally, the velocity parameters (𝑉𝑖) are set to zero, as it is 
undesirable for the particles to have any predefined direction at the start of the optimization process. In 
this way, the candidate initial solutions for solving SHE equations are established 
 

𝜃𝑖 = (𝜃𝑖,1, 𝜃𝑖,2, 𝜃𝑖,3, 𝜃𝑖,4, 𝜃𝑖,5)  𝑖 ∈ {1,2,… ,𝑁} (9) 

0 ≤ 𝜃1 < 𝜃2 < 𝜃3 < 𝜃4 < 𝜃5 ≤ 𝜋 2⁄  (10) 
𝑃𝑏𝑒𝑠𝑡𝑖 = 𝜃𝑖         𝑉𝑖 = (0,0,0,0,0) (11) 

 
After generating the random initial population, the first fitness scores must be computed to evaluate how 
close each particle is to an optimal solution. For this purpose, the fitness function derived from the SHE 
equations, as given in Equation (12), is used. In this equation, the first term controls the amplitude of the 
fundamental harmonic, while the second term aims to minimize the dominant low-order harmonics [19]. 
Since solving the nonlinear SHE equations is formulated as a minimization problem, a particle with a 
lower fitness score represents a better candidate solution. This implies achieving successful suppression 
of low-order harmonics while maintaining the output voltage at the desired level. 
 
As shown in Equations (13) and (14), the fitness score of each particle in the swarm is evaluated using the 
given fitness function, and the best solution for the initialization phase is then selected. 
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𝑓𝑖 = (|𝑉1𝑟𝑒𝑓 −
4𝑉𝐷𝐶

𝜋
∑cos(𝜃𝑖,𝑗)

5

𝑗=1

| + (
4𝑉𝐷𝐶

𝜋
)
2

∑ (
1

ℎ𝑘
∑cos(ℎ𝑘𝜃𝑖,𝑗)

5

𝑗=1

)

2
4

𝑘=1

) 

ℎ = [5,7,11,13] 

(12) 

𝐹 =

[
 
 
 
 
𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁]

 
 
 
 

=

[
 
 
 
 
𝑓(𝜃1)

⋮
𝑓(𝜃𝑖)

⋮
𝑓(𝜃𝑁)]

 
 
 
 

 (13) 

𝐹𝑏𝑒𝑠𝑡 = 𝑚𝑖𝑛(𝐹) → 𝐺𝑏𝑒𝑠𝑡 = 𝜃(𝐹𝑏𝑒𝑠𝑡) (14) 
 
In the equations above, 𝑉1𝑟𝑒𝑓 represents the desired amplitude of the fundamental frequency component 

of the output voltage, ℎ is a vector containing the orders of low-frequency harmonic components to be 

eliminated in a three-phase system, 𝐹 denotes the fitness vector, and 𝐹𝑖 is the fitness score of the 𝑖𝑡ℎ particle. 
 
After the initialization phase, the iteration loop begins. In each iteration, the velocity of each particle is 
first updated based on its current position (𝜃𝑖), personal best position (𝑃𝑏𝑒𝑠𝑡𝑖), and the position of the best 
particle in the swarm (𝐺𝑏𝑒𝑠𝑡), as shown in Equation (15). Then, the updated velocity is added to the current 
position to obtain the new position, as expressed in Equation (16). The goal is to move each particle closer 
to the optimal solution while preserving its individual experience. 
 

𝑉𝑖,𝑗(𝑡 + 1) = 𝑉𝑖,𝑗(𝑡) + 𝐶1. 𝑟1. (𝑃𝑏𝑒𝑠𝑡𝑖,𝑗 − 𝜃𝑖,𝑗(𝑡)) + 𝐶2. 𝑟2. (𝐺𝑏𝑒𝑠𝑡𝑗 − 𝜃𝑖,𝑗(𝑡)) (15) 

𝜃𝑖,𝑗(𝑡 + 1) = 𝜃𝑖,𝑗(𝑡) + 𝑉𝑖,𝑗(𝑡 + 1)   𝑖 ∈ {1,2,… ,𝑁}  𝑗 ∈ {1,2,3,4,5} (16) 
 
In the equations above, 𝑡 represents the current iteration number, while 𝑡 + 1 denotes the next iteration. 
𝑟1 and 𝑟2 are randomly generated numbers in the range [0,1]. 𝐶1 is the cognitive coefficient that determines 
a particle’s tendency to move toward its personal best position, whereas 𝐶2 is the social coefficient that 
influences the particle’s movement toward the global best position in the swarm. These two parameters 
together are referred to as acceleration coefficients. In SPSO, both values are set equal (𝐶1 = 𝐶2 = 2) to 
ensure that particles benefit equally from their individual experiences and the swarm's collective 
knowledge, thereby establishing a balanced exploration and exploitation process. 
 
At the end of each iteration, the fitness function given in Equation (12) is re-evaluated based on the 
updated positions of the particles. The personal best positions and the global best position are then 
updated according to Equations (17) and (18). The process described above is repeated until a predefined 
maximum number of iterations (𝑇) is reached. 
 
𝑓(𝜃𝑖) < 𝑓(𝑃𝑏𝑒𝑠𝑡𝑖) → 𝑃𝑏𝑒𝑠𝑡𝑖 = 𝜃𝑖 (17) 
𝑓(𝑃𝑏𝑒𝑠𝑡𝑖) < 𝑓(𝐺𝑏𝑒𝑠𝑡) → 𝐺𝑏𝑒𝑠𝑡 = 𝑃𝑏𝑒𝑠𝑡𝑖 (18) 

 
At the end of the entire optimization process, the position of the best particle in the swarm (𝐺𝑏𝑒𝑠𝑡) 
represents the optimal switching angles determined by PSO for solving the SHE equations, as shown in 
Equation (19). These angles will be applied to the power switches of the multilevel inverter to achieve the 
desired output voltage while minimizing low-order harmonics 
 
𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑆𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝐴𝑛𝑔𝑙𝑒𝑠 → 𝐺𝑏𝑒𝑠𝑡 = (𝐺𝑏𝑒𝑠𝑡1, 𝐺𝑏𝑒𝑠𝑡2, 𝐺𝑏𝑒𝑠𝑡3, 𝐺𝑏𝑒𝑠𝑡4, 𝐺𝑏𝑒𝑠𝑡5) (19) 

 
The standard PSO algorithm exhibits certain structural weaknesses that affect the movement dynamics of 
particles, particularly in complex and high-dimensional problems. One of the primary weaknesses is the 
absence of a mechanism to retain the previous velocity component in velocity updates. In standard PSO, 
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the velocity of each particle is updated solely based on its personal best position and the global best 
position, without incorporating any mechanism to preserve the particle’s current velocity 
 
The lack of dependence on previous velocity disrupts the continuity of particle movement, leading to two 
major issues. First, when the 𝑃𝑏𝑒𝑠𝑡 and 𝐺𝑏𝑒𝑠𝑡 positions are very close to the particle’s current position, the 
velocity component reaches very small values, causing the particle to become nearly motionless. This 
phenomenon, commonly referred to as stagnation in the literature, results in a loss of movement 
capability, particularly during the convergence phase. On the other hand, as 𝑃𝑏𝑒𝑠𝑡 and 𝐺𝑏𝑒𝑠𝑡 move further 
away from the particle, it may take large and uncontrolled jumps toward these attraction points. These 
two extreme cases hinder an effective exploration of the search space, ultimately negatively impacting the 
overall performance of the algorithm. 
 
To overcome these issues, one of the first structural modifications proposed in the literature was the 
introduction of an inertia weight coefficient in the velocity update equation. Therefore, the second variant 
in the list of PSO variants to be compared is PSOCIW (Constant Inertia Weight PSO) [20], which was the 
first approach in the literature to incorporate this coefficient with a fixed value. This variant enables 
particles to retain a portion of their current velocity, facilitating a more balanced exploration and 
exploitation process in the search space. In the PSOCIW variant, the velocity update equation is redefined 
as follows, where 𝜔 represents a constant inertia weight: 
 

𝑉𝑖,𝑗(𝑡 + 1) = 𝜔. 𝑉𝑖,𝑗(𝑡) + 𝐶1. 𝑟1. (𝑃𝑏𝑒𝑠𝑡𝑖,𝑗 − 𝜃𝑖,𝑗(𝑡)) + 𝐶2. 𝑟2. (𝐺𝑏𝑒𝑠𝑡𝑗 − 𝜃𝑖,𝑗(𝑡)) (20) 

 
With the addition of the inertia weight, PSO gained improved velocity control and enhanced adaptability 
to different types of optimization problems. As a result, PSOCIW is considered a milestone in PSO 
literature, and the majority of modern PSO variants have been developed based on this fundamental 
concept. However, subsequent studies have shown that maintaining a fixed coefficient does not always 
ensure an effective balance between exploration and exploitation across different optimization processes. 
Consequently, new variants have been introduced in the literature, where the inertia weight is defined as 
either a time-varying or randomly selected parameter. In this context, two additional PSO variants 
included in the comparison are PSOTVIW (Time Varying Inertia Weight PSO) [21] and PSORIW (Random 
Inertia Weight PSO) [22]. 
 
PSOTVIW is one of the fundamental improvements to the fixed inertia weight approach. In this variant, 
the inertia weight (𝜔) is defined as a linearly decreasing function as iterations progress. This strategy aims 
to promote broader exploration in the early iterations and more focused exploitation in later iterations. 
The inertia weight is defined as shown in Equation (21), where 𝜔𝑚𝑎𝑥 represents the initial maximum 
inertia weight, and 𝜔𝑚𝑖𝑛 denotes the minimum inertia weight at the final iteration. The velocity update 
equation includes the inertia weight as in PSOCIW; however, in this case, the coefficient is not fixed but 
varies over time. 
 

𝜔(𝑡) = 𝜔𝑚𝑎𝑥 − (𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛) ⋅
𝑡

𝑇
 (21) 

 
The PSORIW variant offers an alternative approach in which the inertia weight is randomly selected 
within a predefined range at each iteration. Instead of a deterministic change, this method adopts a 
dynamic and stochastic inertia management strategy, allowing different levels of exploration and 
exploitation to be applied in each iteration. This variability helps reduce the risk of getting trapped in local 
minima and enhances adaptability to different types of optimization problems. The inertia weight for each 
iteration is determined as follows: 
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𝜔(𝑡) = 0,5 +
𝑅𝑎𝑛𝑑

2
 (22) 

 
Both methods provide a more flexible and adaptive structure compared to PSOCIW. PSOTVIW establishes 
a systematic exploration-exploitation balance by modelling the natural evolution of the search process, 
whereas PSORIW enhances search diversity through randomness, aiming to reduce the risk of being 
trapped in different local minima. While the diversity introduced by PSORIW offers an advantage in 
highly multimodal and high-dimensional problems, the controlled approach of PSOTVIW tends to be 
more effective in convex and unimodal problems. 
 
Both variants are considered significant advancements in the use of inertia weight in PSO and have 
influenced the development of many modern PSO derivatives. Today, hybrid approaches derived from 
these two strategies are widely utilized in contemporary PSO variants. 
 
In addition to the variants discussed above, numerous studies have explored different approaches to 
updating the inertia weight. In this context, various PSO derivatives such as CRIWPSO (Chaotic Random 
Inertia Weight PSO) [23], AIWPSO (Adaptive Inertia Weight PSO) [24], GLBPSO (Global Local Best Inertia 
Weight PSO) [25], DAPSO (PSO with Dynamic Adaptation) [26], and IPSO (Improved PSO) [27] have been 
introduced in the literature. However, preliminary performance analyses indicate that these variants do 
not offer a significant advantage over PSORIW and PSOTVIW. Therefore, among the inertia weight-based 
improvements, only PSOCIW, PSORIW, and PSOTVIW have been selected as the core methods for 
comparison in this study. 
 
In early PSO variants, optimization improvements primarily focused on the inertia weight component, 
with modifications limited to different update strategies (e.g., linear, nonlinear, or adaptive methods based 
on the iteration count or the relationship between 𝑃𝑏𝑒𝑠𝑡 and 𝐺𝑏𝑒𝑠𝑡). No changes were made to the 
acceleration coefficients (𝐶1, 𝐶2) or the velocity-position update mechanisms, nor was an approach similar 
to the mutation mechanism in genetic algorithms introduced to enhance solution space diversity. These 
variants preserved the fundamental structure of PSO's original version, including its core velocity and 
position update equations. 
 
In contrast to the previous variants, the next three variants examined in this study introduce novel 
approaches beyond just improvements in the inertia weight mechanism. These methods are identified as 
MPSOTVAC (PSO with Mutation and Time-Varying Acceleration Coefficients) [28], APSO (Adaptive 
PSO) [29], and IAPSO (Inertia Adaptive PSO) [30], respectively. 
 
In MPSOTVAC, the linearly decreasing inertia weight update approach given in Equation (21) is adopted, 
while two major improvements are introduced to the standard PSO. The first improvement involves 
adapting the acceleration coefficients to change over time based on the iteration count. In this enhanced 
strategy, the 𝐶1 coefficient decreases as iterations progress (𝐶1𝑚𝑎𝑥 → 𝐶1𝑚𝑖𝑛), whereas the 𝐶2 coefficient 
increases in contrast (𝐶2𝑚𝑖𝑛 → 𝐶2𝑚𝑎𝑥). The primary objective of this approach is to enable a broader search 
(exploration) during the initial stages of the algorithm while ensuring faster and more stable convergence 
(exploitation) in later iterations. 
 
This strategy is expressed by the following equations: 
 

𝐶1(𝑡) = 𝐶1𝑚𝑎𝑥 − (𝐶1𝑚𝑎𝑥 − 𝐶1𝑚𝑖𝑛) ⋅
𝑡

𝑇
 (23) 

𝐶1(𝑡) = 𝐶1𝑚𝑎𝑥 − (𝐶1𝑚𝑎𝑥 − 𝐶1𝑚𝑖𝑛) ⋅
𝑡

𝑇
 (24) 
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The second improvement is a mutation-based velocity update, which activates a random mutation 
mechanism when particle velocities stagnate and no improvement occurs in the global best solution 
(𝐺𝑏𝑒𝑠𝑡). With this mechanism, if the global best value remains unchanged for a certain period, a randomly 
selected particle undergoes a random perturbation (increase or decrease) in one of its velocity dimensions 
with a certain probability. This approach aims to prevent the issue of premature convergence. The 
mutation process is formulated as follows: 

 

𝑓(𝐺𝑏𝑒𝑠𝑡(𝑡 − 1)) − 𝑓(𝐺𝑏𝑒𝑠𝑡(𝑡)) < 0 → 𝑅1 < 𝑝𝑚 → 𝑉𝑘,𝑑 = {
𝑉𝑘,𝑑 + 𝑅2 ⋅

𝑉𝑚𝑎𝑥

𝑚
, 𝑅2 < 0.5

𝑉𝑘,𝑑 − 𝑅2 ⋅
𝑉𝑚𝑎𝑥

𝑚
, 𝑅2 ≥ 0.5

 (25) 

 
Here, 𝑘 and 𝑑 represent the index of the randomly selected particle and the randomly selected dimension, 
respectively. 𝑝𝑚 is the mutation probability, 𝑚 is the mutation scale parameter, and 𝑅1 and 𝑅2 are two 
randomly generated numbers within the range [0,1]. In this mutation mechanism, 𝑅1 determines whether 
the mutation will be applied, while 𝑅2  determines the mutation direction (increase or decrease). 𝑉𝑚𝑎𝑥 
represents the velocity limit. 
 
In IAPSO, the inertia weight of each particle is dynamically adjusted based on its distance from the global 
best position. In this approach, particles that move away from the global best have their inertia weight 
reduced, allowing them to break free from the influence of their previous velocity and be pulled more 
strongly toward the global best position. This mechanism preserves the exploration capability while 
promoting convergence toward the optimal solution. The inertia weight in IAPSO is defined as follows: 
 

ω = ω0 ⋅ (1 −
𝑑𝑖𝑠𝑡𝑖

𝑚𝑎𝑥_𝑑𝑖𝑠𝑡
) (26) 

𝑑𝑖𝑠𝑡𝑖 = (∑(𝐺𝑏𝑒𝑠𝑡𝑗 − 𝜃𝑖,𝑗)
2

𝐷

𝑗=1

)

1 2⁄

 (27) 

𝑚𝑎𝑥_𝑑𝑖𝑠𝑡 = max(𝑑𝑖𝑠𝑡𝑖) (28) 
 
Here, 𝜔0 is the initial inertia weight, which is randomly selected within the range [0.5,1]. 𝑑𝑖𝑠𝑡𝑖 represents 

the current Euclidean distance of the 𝑖𝑡ℎ particle and is defined as the distance between the particle and 
the global best position. 𝑚𝑎𝑥_𝑑𝑖𝑠𝑡 denotes the maximum distance of any particle from the global best 
position in the current generation 
 
The second major improvement of IAPSO is the addition of an adaptive momentum term to the position 
update equation in classical PSO. This momentum term is controlled by a randomly selected 𝜌 parameter 
and takes a value in the range of 0.75 to 1.25 at each iteration, dynamically adjusting the contribution of 
the particle's previous position to its updated position. This mechanism allows the particle to move more 
freely in the search space by reducing the influence of its previous position in some cases, while in others, 
it reinforces the particle’s current trajectory. Thus, the risk of premature convergence is reduced, and an 
adaptive balance is achieved. The position update equation is defined as follows. Here, 𝜌 is a randomly 
selected value in the range of [−0.25,0.25]. 
 
𝜃𝑖,𝑗(𝑡 + 1) = (1 − ρ) ⋅ 𝜃𝑖,𝑗(𝑡) + 𝑉𝑖,𝑗(𝑡 + 1) (29) 

 
APSO is a PSO variant that stands out with its dynamic inertia weight and adaptive repositioning 
mechanism. In traditional PSO, the inertia weight is considered either as a fixed parameter or as one that 
changes based on iterations, whereas in APSO, it is dynamically determined according to each particle’s 
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fitness value. This allows particles closer to a better solution to move more slowly, while those farther 
away engage in more aggressive exploration, covering larger regions of the search space. The adaptive 
update of the inertia weight is expressed as follows. Here, 𝑅𝑎𝑛𝑘𝑖 represents the ranking of the particle’s 
fitness score within the population, and 𝑁 denotes the total number of particles 
 

𝜔𝑖 = 𝜔𝑚𝑖𝑛 + (𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛) ⋅
𝑅𝑎𝑛𝑘𝑖

𝑁
 (30) 

 
Another significant improvement in APSO is the random repositioning of the worst particles, as defined 
in Equation (31), if the global best fitness value remains unchanged for a certain period. This process aims 
to increase diversity within the population and prevent premature convergence 
 

𝑓(𝐺𝑏𝑒𝑠𝑡𝑡−5) − 𝑓(𝐺𝑏𝑒𝑠𝑡𝑡) < 𝑡ℎ𝑟𝑠 → 𝑠𝑒𝑙𝑒𝑐𝑡 𝜃𝑤𝑜𝑟𝑠𝑡,1, 𝜃𝑤𝑜𝑟𝑠𝑡,2, . . . 𝜃𝑤𝑜𝑟𝑠𝑡,𝑍 

𝜃𝑤𝑜𝑟𝑠𝑡,1 = 𝜃𝑟𝑎𝑛𝑑,1, 𝜃𝑤𝑜𝑟𝑠𝑡,2 = 𝜃𝑟𝑎𝑛𝑑,2. . . 𝜃𝑤𝑜𝑟𝑠𝑡,𝑧 = 𝜃𝑟𝑎𝑛𝑑,𝑧 
(31) 

 
Here, 𝑓(𝐺𝑏𝑒𝑠𝑡) represents the fitness value of the global best solution. If the change in this value remains 
below a certain threshold for five consecutive iterations, the worst 𝑍 particles in the population are 
selected. The positions of these selected particles are then replaced with newly generated random 
positions (𝜃𝑟𝑎𝑛𝑑). 
 
The conducted tests demonstrate that IAPSO achieves successful results compared to classical PSO, thanks 
to its dynamic inertia weight determination and momentum-based position update strategies. In 
particular, the Median and standard deviation (Std) metrics of the best fitness values obtained from 
independent runs confirm the effectiveness of the proposed improvements. However, the observation of 
weaker-than-expected results in some runs and the wide variation in fitness values indicate that the 
algorithm needs further improvements in terms of stability. This issue is believed to stem from IAPSO’s 
fixed acceleration coefficient approach. 
 
In this context, a new hybrid PSO variant has been proposed to address the inconsistencies in IAPSO’s 
performance distribution while preserving its dynamic inertia weight determination and momentum-
based position update strategies. This hybrid approach incorporates the adaptive acceleration coefficient 
adjustment strategy used in MPSOTVAC. Additionally, to further reduce the risk of premature 
convergence, APSO’s reinitialization mechanism has also been integrated into the hybrid model. With the 
inclusion of this hybrid PSO variant, the total number of variants evaluated in the comparative analysis 
has increased to eight. 
 

4. Results and Discussion  

In this study, the effectiveness of eight different PSO variants in solving complex SHE equations was 
compared, and the impact of these improvements on the capability of standard PSO in real-world 
engineering problems was evaluated. The first of these variants is the original PSO algorithm (SPSO) 
without inertia weight, while six of them are existing variants in the literature that have incorporated 
various enhancements into the original version. The final variant is the proposed hybrid model, which 
selectively integrates the strong aspects of some successful variants to achieve a more balanced and robust 
optimization approach 
 
The common goal of all variants is to determine the optimal switching angles by minimizing the fitness 
function defined in Equation (12). This function is designed to eliminate dominant harmonics up to the 
14th order (excluding even harmonics and multiples of three) in the inverter output voltage while keeping 
the fundamental component amplitude as close as possible to the desired reference value. For all 
algorithms, the maximum number of iterations (𝑇) is set to 100, the population size (𝑁) is 50, the reference 
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fundamental component amplitude (𝑉1𝑟𝑒𝑓) is 250 V (433.01 V for line voltage), and the maximum and 

minimum velocity limits of the particles (𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥) are set to [-1,1]. The fixed parameters specific to other 
variants are given in Table 1. 
 

Table 1. Parameters of the PSO variants. 

Variant Parameter 

SPSO 𝐶1,2 = 0.75 

PSOCIW 𝐶1,2 = 0.75, 𝜔 = 0.7 

PSOTVIW 𝐶1,2 = 0.75, 𝜔𝑚𝑖𝑛,𝑚𝑎𝑥 = (0.4, 0.9) 

PSORIW 𝐶1,2 = 0.75 

APSO 𝐶1,2 = 0.75, 𝜔𝑚𝑖𝑛,𝑚𝑎𝑥 = (0.4, 0.9), 𝑍 = 5, 𝑡ℎ𝑟𝑠 = 1 

IAPSO 𝐶1,2 = 0.75,  𝜌 = [−0.25,0.25] 

MPSOTVAC 𝐶1,2𝑚𝑖𝑛 = 0.25, 𝐶1,2𝑚𝑎𝑥 = 1.25, 𝜔𝑚𝑖𝑛,𝑚𝑎𝑥 = (0.4, 0.9), 𝑝𝑚 = 0.1, 𝑚 = 5 

Proposed 𝐶1,2𝑚𝑖𝑛 = 0.25, 𝐶1,2𝑚𝑎𝑥 = 1.25, 𝜔𝑚𝑖𝑛,𝑚𝑎𝑥 = (0.4, 0.9), 𝜌 = [−0.25,0.25], 𝑍 = 5, 𝑡ℎ𝑟𝑠 = 1 

 
For each variant, 501 independent runs were conducted, and the best fitness values obtained from each 
run were recorded. Among these, the Best, Median, and Worst fitness values, along with their standard 
deviations for each variant, were determined and presented in Table 2. Additionally, to visualize the 
distribution of these values and better highlight the performance differences between the variants, a box 
plot was generated and shown in Figure 3a. Furthermore, to analyze the performance of the last three 
variants in more detail, a second box plot was created, including only these three variants, and presented 
in Figure 3b. 
 

Table 2. Optimization results of PSO variants 

PSO Variants 
Statistical Summary of Fitness Values 

Best Median Worst Std 

SPSO 4.3234 64.6005 288.1462 47.7406 

PSOCIW 7.53E-06 39.8323 261.7193 43.4600 

PSOTVIW 3.63E-05 26.6706 259.5298 42.3202 

PSORIW 7.01E-06 27.2649 262.5894 42.8051 

APSO 7.71E-05 26.4647 181.8058 32.6880 

IAPSO 0.2290 3.1401 141.3887 11.1067 

MPSOTVAC 1.44E-05 19.7548 133.2802 26.5570 

Hybrid 0.2895 2.6952 29.1667 4.4168 
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(a) 

 
(b) 

Figure 3. Boxplot graphic of (a) all PSO variants, (b) last 3 variants 
 
Upon examining the box plots and Table 2, the first noticeable point is that the inclusion of inertia weight 
significantly enhances optimization performance. Variants with inertia weight achieve better results 
across all metrics (Best, Median, Worst, and Std) indicating not only improved solution quality but also 
greater stability compared to standard PSO.  
 
Another important observation from the results is that there is no significant performance difference 
among PSOCIW, PSOTVIW, and PSORIW. Although PSORIW achieved the best result in the Best metric 
among all variants, this outcome is possibly due to the stochastic nature of the algorithm and is not 
statistically meaningful, with only a slight improvement over the others. In the Median metric, PSOTVIW 
and PSORIW exhibited slightly lower values than PSOCIW. Overall, the presence of inertia weight led to 
better results in all three algorithms compared to standard PSO. However, considering the method of 
determining inertia weight, the slightly higher Median value of PSOCIW suggests that dynamically 
changing inertia weight approaches improve solution quality more effectively 
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The obtained results indicate that the additional improvements of APSO did not provide a significant 
advantage in the context of this optimization problem in terms of Best and Median metrics. Nevertheless, 
in the Worst metric, APSO achieved a lower error value compared to other methods and exhibited a 
relatively better performance in the worst-case scenarios. Furthermore, its lower standard deviation 
suggests that the algorithm reduces solution variability and operates more stably. However, this stability 
is associated with a narrower distribution of solutions rather than an overall improvement in solution 
quality 
 
In general, when the results are examined, it is observed that the last three variants (IAPSO, MPSOTVAC, 
and the proposed Hybrid) have demonstrated significantly better performance compared to the first five 
variants, except for the Best metric. However, since the Best metric can exhibit substantial variations across 
different runs, it is not considered a reliable standalone criterion for evaluating the overall performance 
of the algorithms. In contrast, these three algorithms, which produced lower values in the Median, Worst, 
and Std metrics, not only generated better solutions during the optimization process but also improved 
the consistency of these solutions, demonstrating a competitive performance. These findings indicate that 
the applied enhancements have improved optimization performance and that these three methods explore 
the search space more efficiently. 
 
IAPSO has demonstrated a significant improvement in the Median and Std metrics compared to the first 
five variants and has also produced better results than MPSOTVAC. Although the difference between 
IAPSO and MPSOTVAC is smaller than that observed with the other variants, it is still noteworthy. In the 
Worst metric, an improvement has been achieved compared to the first five variants; however, this 
difference is relatively small, and IAPSO remains slightly behind MPSOTVAC. 
 
On the other hand, when examining the box plot, it is evident that IAPSO has a considerable number of 
outliers. This indicates that while the algorithm produces very good results in some runs, it yields 
unexpectedly high fitness values under certain conditions. Despite these fluctuations, IAPSO stands out 
as a strong alternative alongside the proposed hybrid variant for solving SHE equations, particularly due 
to the improvements it provides in the Median and Std metrics. 
 
When evaluating its overall performance, MPSOTVAC demonstrates significantly better results compared 
to the first five variants. Although MPSOTVAC achieved the best value among the last three variants in 
the Best metric, this comparison is of limited significance due to the reasons discussed earlier. In the Worst 
metric, it also performed better than IAPSO; however, the difference is not substantial. Therefore, while 
MPSOTVAC delivers a relatively acceptable performance in solving SHE equations, it falls behind the 
proposed hybrid variant and IAPSO. 
 
The proposed hybrid variant integrates three powerful improvement strategies under a single framework: 
the adaptive momentum term added to the position update equation in IAPSO, the time-varying 
acceleration coefficients from MPSOTVAC, and the reinitialization mechanism from APSO. Examining 
the results, the proposed hybrid variant has produced the most consistent and high-quality results across 
all performance metrics. Its lowest Median value among all variants indicates that it consistently generates 
higher-quality solutions. Additionally, its superior performance in the Worst metric demonstrates that it 
maintains acceptable optimization performance even in unfavorable scenarios. The low Std value confirms 
that the solution quality remains stable, indicating that the algorithm provides consistent performance. 
Boxplots reveal that while the proposed hybrid variant has outliers, these values are more concentrated 
within a narrower range compared to other algorithms, minimizing extreme deviations. This suggests that 
the algorithm reduces variability among solutions and minimizes performance fluctuations. 
 
The convergence curves of the last three variants are presented in Figure 4 to further analyze their 
optimization behavior in addition to their overall performance. Upon examining the curves, it is observed 
that IAPSO, MPSOTVAC, and the Hybrid variant all successfully converged toward the global best 
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solution. However, differences can be seen in terms of convergence speed, stability, and improvement in 
solution quality. 

  
(a)                                                                                       (b) 

Figure 4. Convergence curves of the last 3 variants (a) normal, (b) magnified view 
 
IAPSO exhibited a rapid decline in the early iterations due to its fixed acceleration coefficients, 
aggressively steering towards the best solution. However, maintaining fixed acceleration coefficients 
caused the algorithm to lose flexibility in later iterations, leading to a solution quality inferior to that of 
the Hybrid variant. 
 
MPSOTVAC demonstrated a more stable decreasing trend thanks to its mechanism for adjusting 
acceleration coefficients based on iterations. However, its inertia weight update strategy was not as 
effective as that of IAPSO, and the algorithm lagged behind both IAPSO and the Hybrid variant in terms 
of solution quality. 
 
The Hybrid variant, built upon the strong foundation of IAPSO, incorporated MPSOTVAC’s controlled 
acceleration coefficient adjustment strategy, effectively balancing exploration and exploitation, making it 
the most efficient algorithm in the convergence process. Initially, it prioritized a broader exploration 
phase, which resulted in a slower convergence rate compared to IAPSO in the early iterations. However, 
in later iterations, it transitioned into a more aggressive exploitation phase, achieving the highest solution 
quality and surpassing the other two variants. 
 
Overall, while all three algorithms exhibited a successful optimization process, the Hybrid variant 
delivered the most stable and best-performing results. IAPSO gained an early advantage in the initial 
iterations but fell behind the Hybrid variant due to its fixed acceleration coefficients. Meanwhile, 
MPSOTVAC showed a steady decline but remained the weakest variant among the three in terms of 
solution quality. 
 
To validate the results obtained in the optimization processes, the optimal switching angles obtained by 
the last three variants for each performance metric were recorded (Table 3) and applied to a three-phase 
11-level CHB-MLI model in MATLAB/Simulink. As a result of the simulation, the Total Harmonic 
Distortion (THD) up to the 14th order and the fundamental component amplitude errors of the inverter 
output voltage were calculated (Table 4) 
 
Additionally, to visually evaluate the performance of the algorithms, inverter line voltages, their 
fundamental components along with their desired reference counterparts, and frequency spectrums 
showing other dominant harmonics are presented in the following figures. Among these, Figure 5 presents 
the results obtained by applying the switching angles produced by PSO variants in the Best criterion, 
Figure 6 in the Median criterion, and Figure 7 in the Worst criterion 
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Table 3. Optimal switching angles found by the last 3 PSO variants 

PSO Perfor. Fitness Optimal Switching Angles (𝜃) 

Variants Metrics Scores 𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 

IAPSO 

Best 0.22896 8.0723 19.5195 29.5207 47.7187 63.1720 

Median 3.14005 8.3307 19.1536 28.9665 47.2366 63.1539 

Worst 141.389 6.9622 38.0693 88.4607 89.2185 89.4513 

MPSOTVAC 

Best 1.44E-05 7.8621 19.3727 29.6524 47.6809 63.2109 

Median 19.7548 5.2253 24.5971 38.9990 49.6409 72.9554 

Worst 133.280 8.1392 37.0757 87.6129 89.0261 89.9973 

Hybrid 

Best 0.28952 8.1324 19.4678 29.7515 47.7013 63.0676 

Median 2.69516 8.5098 18.7479 29.5546 48.2781 62.9309 

Worst 29.1667 15.9531 24.2180 41.6987 59.2115 61.7156 

 
Table 4. Simulation results of last 3 PSO variants 

  % THD (Until 14th) % Voltage Error of V1 

Perfor. 
IAPSO 

MPSO 
Hybrid IAPSO 

MPSO 
Hybrid 

Metrics TVAC TVAC 

Best 0.19 0.01 0.22 -0.09 -0.09 -0.09 

Median 0.61 0.27 0.66 0.23 -7.83 -0.12 

Worst 2.41 0.77 1.29 -53.44 -53.03 -8.27 

 
Upon examining the simulation results, in the Best criterion, all three algorithms produced fundamental 
component amplitudes that were very close to the target value. However, in terms of THD, MPSOTVAC 
(0.01) achieved the lowest value by a large margin, making it the most successful approach. In contrast, 
the Hybrid (0.22) and IAPSO (0.19) variants produced significantly higher THD values compared to 
MPSOTVAC but remained very close to each other. This indicates that the low fitness value of 
MPSOTVAC in the Best criterion is largely due to its superior THD minimization capability. 
 
In the Median criterion, MPSOTVAC once again achieved the lowest THD value. However, this was 
accomplished at the expense of fundamental component amplitude accuracy. The error rate (-7.83%) was 
significantly higher compared to the Hybrid (-0.12%) and IAPSO (0.23%) variants. The Hybrid and IAPSO 
algorithms also produced very similar results in this criterion in terms of both THD and fundamental 
component amplitude error. While one exhibited slightly higher THD, the other had a marginally larger 
fundamental component amplitude error. 
 
In the Worst criterion, the differences between the algorithms became most pronounced. In this scenario, 
the clear superiority of the proposed Hybrid variant was evident. MPSOTVAC maintained its tendency 
to achieve the lowest THD value. However, while achieving this optimization success, it suffered a 
significant reduction in the fundamental component voltage, nearly halving the voltage value. IAPSO 
exhibited the weakest performance in this criterion. It produced the worst results in terms of both THD 
and fundamental component amplitude, displaying severe instability during the optimization process. 
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(a) 

 
(b) 

 
(c) 

Figure 5. Line voltage waveform, fundamental harmonic and its reference, frequency spectrum of 
(a) IAPSO; (b) MPSOTVAC; (c) Hybrid variants at Best metric 

 
In contrast, the Hybrid variant, even in the worst-case scenario, only produced a -8.27% fundamental 
component amplitude error, which is at a level that MPSOTVAC could only achieve in the Median 
criterion. The THD value of the Hybrid variant in this criterion increased slightly compared to the 
previous scenarios, falling behind MPSOTVAC. However, it should be noted that MPSOTVAC achieved 
this low THD value at the cost of a significant drop in the fundamental component voltage. 
 
Overall, the conducted analyses clearly highlight the strengths and weaknesses of the algorithms. IAPSO, 
although generally a successful algorithm that produced low fitness values, showed instability in some 
runs, resulting in suboptimal outcomes. Indeed, its poor performance in the Worst criterion confirmed 
this, as previously indicated by the broad distribution and high standard deviation (Std) values observed 
in the box plot. 
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(a) 

 
(b) 

 
(c) 

Figure 6. Line voltage waveform, fundamental harmonic and its reference, frequency spectrum of 
(a) IAPSO; (b) MPSOTVAC; (c) Hybrid variants at Median metric 

 
MPSOTVAC produced an outstanding result in the Best criterion in terms of both THD and fundamental 
component amplitude. However, its success in achieving low THD in other criteria came at the expense 
of fundamental component amplitude errors that reached unacceptable levels in the Median and 
especially the Worst criteria. This suggests that while MPSOTVAC has the potential to produce excellent 
results, this success cannot always be achieved consistently. 
 
The proposed Hybrid variant was developed precisely due to IAPSO's vulnerability to such instabilities, 
despite its generally strong performance, and the simulation results validated the correctness of this 
approach. While the Hybrid variant exhibited an average performance in the Best and Median criteria, it 
achieved the most successful results by far in the Worst criterion, demonstrating its overall stability. 
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(a) 

 
(b) 

 
(c) 

Figure 7. Line voltage waveform, fundamental harmonic and its reference, frequency spectrum of 
(a) IAPSO; (b) MPSOTVAC; (c) Hybrid variants at Worst metric 

 

5. Conclusion 

In this study, the capabilities of eight different PSO variants in solving complex SHE equations were 
compared, and the impact of the proposed improvements on the performance of standard PSO in real-
world engineering problems was evaluated. The evaluated variants include the original version of PSO 
(SPSO), existing enhanced versions from the literature, and the proposed hybrid model, which integrates 
selected strong features from some of the most effective variants. 
 
The first and most fundamental improvement introduced to PSO is the addition of an inertia weight. This 
component regulates the balance between exploration and exploitation during the optimization process, 
allowing the algorithm to produce more stable and successful results. However, using inertia weight alone 
has proven insufficient, approaches that lack complementary mechanisms have failed to consistently 
deliver the desired performance in certain cases. 
 
The findings of the study indicate that three variants stand out in terms of performance. IAPSO, with its 
dynamic inertia weight adjustment and momentum-based position update mechanism, has generally 
produced successful solutions. However, it has exhibited instability in some runs, leading to unexpectedly 
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poor results. This inconsistency suggests that IAPSO may suffer from solution quality fluctuations, 
making it unreliable across all scenarios. 
 
MPSOTVAC, which modifies acceleration coefficients based on iteration count, has achieved the best 
results in some runs but has failed to maintain this success consistently. In particular, it has shown large 
deviations in fundamental component amplitude, resulting in an overall unstable performance. 
 
The proposed hybrid PSO variant builds upon the strengths of IAPSO while integrating MPSOTVAC’s 
controlled acceleration coefficient adaptation mechanism and APSO’s reinitialization strategy. The results 
demonstrate that the hybrid variant is not only effective in specific cases but also emerges as the most 
stable and reliable algorithm overall. It has consistently generated the highest-quality solutions on average 
while maintaining competitive performance even in worst-case scenarios. 
 
This study provides a comprehensive evaluation of the strengths and weaknesses of different PSO 
variants, serving as an important reference for future research. Furthermore, the findings highlight that 
the optimization performance of standard PSO can be significantly improved through appropriate 
modifications, with the proposed hybrid approach achieving the best balance. The results also suggest 
that advanced PSO variants can serve as an effective alternative for solving complex engineering problems 
such as SHE equations. 
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