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ABSTRACT 

Density Functional Theory (DFT) calculations used in the Carbon Nanotubes (CNT) design take a very long time even in 
the simulation environment as it is well known in literature. In this study, calculation time of DFT for geometry optimization 
of CNT is reduced from days to minutes using seven artificial intelligence-based and one statistical-based methods and the 
results are compared. The best results are achieved from ANFIS and ANN based models and these models can be used 
instead of CNT simulation software with high accuracy.  
 

Keywords: Geometry Optimization, Cnt, Dft, Artificial Intelligence 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 



Turkish Journal of Engineering (TUJE) 

Vol. 2, Issue 3, pp. 119-124, September 2018 

 

 

120 

 

1. INTRODUCTION 
 
Density functional theory (DFT) (Kohn and Sham, 

1965) is the most successful method that calculates 
atomic coordinates faster than other mathematical 
approaches and it also reaches more accurate results. DFT 
uses ground state energy formula which is developed by 
Kohn and Sham (Eq. (1)).  

 

𝐸 = ∑ 𝜖𝑗
𝑣
1 −

1

2
∫

𝑛(𝑟)𝑛(𝑟′)

|𝑟−𝑟′|
d𝑟d𝑟 ′ − ∫ 𝑣𝑥𝑐(𝑟)𝑛(𝑟)d𝑟 + 𝐸𝑥𝑐[𝑛(𝑟)]     (1) 

 

where the 𝜖𝑗 and 𝑛 are the self-consistent quantities, 𝑉𝑥𝑐 

is the exchange correlation potential energy, 𝐸𝑥𝑐  is the 

exchange correlation energy, and 𝑛(𝑟)  is the electron 
density. However, the elapsed time for calculation of high 
number of atoms may even take several days due to 
calculation capability limits of workstation computers. 
On the other hand, users need to use more powerful 
workstations and parallel computer grids which are too 
expensive to buy easily for reducing the calculation time. 
In literature, many researchers remark this calculation 

time problem in their studies. General view of the 
researchers who studied on geometry optimization using 
DFT can be summarized as “DFT calculations are time 
consuming”. 

Many researchers study on CNT to obtain perfect 
CNTs and widen their application areas: Some of the 
studies are focused on geometry optimizations of the 
CNTs (Kanamitsu and Saito, 2002; Kürti et al., 2003; 

Moradian et al., 2008, 2009; Yagi et al., 2004). Also 
many of the researchers that study on CNT calculations, 
incorporate artificial intelligence methods into their 
works (Abo-Elhadeed, 2012; Akbari et al., 2014; Cheng 
et al., 2015; Ensafi et al., 2010; Hassanzadeh et al., 2015; 
Hayati et al., 2010; Rahimi-Nasrabadi et al., 2015; Salehi 
et al., 2016; Shanbedi et al., 2013). Nowadays, this 
incorporation trend has been increasing (Acı and Avcı, 

2016).  
The motivation of this research is to reduce the 

calculation time for atomic coordinates from days to 
minutes. It is known that the current mathematical 
methods cannot reduce the calculation time up to this 
level. In this work, the problem is investigated in another 
perspective. Instead of calculation; the atomic 
coordinates are predicted as accurately as possible in a 

short time. These predicted atomic coordinates can be 
used as initial coordinates for the simulation software as 
depicted in Fig. 1. Thus, the exact atomic coordinates can 
be calculated within minutes or hours instead of days 
utilizing the proposed approach. In some researches 
predicted atomic coordinates may be enough in accuracy. 
In that case, the predicted coordinates may provide the 
fastest solution. 

The main objective aimed in this work is to develop 

prediction models using regression-based supervised 
artificial intelligence techniques such as Adaptive-
Network Based Fuzzy Inference System (Jang, 1993) 
(ANFIS), four types of Artificial Neural Network (Gupta, 
2013) (ANN) (i.e. Feed Forward Neural Network 
(FFNN), Function Fitting Neural Network (FITNET), 
Cascade-Forward Neural Network (CFNN) and 
Generalized Regression Neural Network (GR 

NN)), Classification and Regression Tree (Lawrence 
and Wright, 2001) (CART) and Support Vector 
Regression (Smola and Vapnik, 1997) (SVR) to estimate 

the atomic coordinates of CNTs. One statistical method 
(i.e. Multiple Linear Regression (Eberly, 2007) (MLR)) 

is used to compare results with artificial intelligence 
based methods. 

 

 
 
Fig. 1. Steps of the two-staged CASTEP simulation 

 

2. MATERIALS AND METHODS  

 

2.1. Dataset 
 
Two distinct datasets named as input dataset and 

output dataset are prepared to be used in prediction 
models. Initial atomic coordinates u, v, w and the pair of 

integers (n, m) used for specifying the chiral vector are 
the 5 parameters of input dataset. On the other hand, 
calculated atomic coordinates u’, v’, w’ are the 3 
parameters of output dataset. The dataset consisting of 
10,721 data samples firstly is divided randomly into 
training, validating and testing data randomly, in which 
there are 70–15–15% training, validating and testing sets 
respectively. A summary of the descriptive statistics for 

the dataset is given in Table 1. These statistics include 
minimum, maximum, mean and standard deviation 
values of the dataset. 
 
Table 1. Descriptive statistics for the dataset 

 
 Inputs Outputs 

 u v w m n u’ v’ w’ 

Minimum 0.0451 0.0451 0 2 1 0.0385 0.0389 0 

Maximum 0.9548 0.9548 0.9999 12 6 0.9614 0.9610 0.9996 

Mean 0.5000 0.5000 0.4994 8.2252 0.3378 0.5000 0.4999 0.4993 

Standard 

Deviation 
0.2900 0.2900 0.2900 2.1400 1.6800 0.2909 0.2910 0.2884 

 
The datasets used in this study are generated with 

CASTEP (2016) using CNT geometry optimization.  
Different chiral vectors are used for each CNT 
simulation. The atom type is selected as carbon, bond 

length is used as 1.42 Å (default value), and then the 
nanotube is built by CASTEP. 

CASTEP uses a parameter named as elec_energy_tol 
(electrical energy tolerance) which represents that the 
change in the total energy from one iteration to the next 
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remains below some tolerance value per atom for a few 
self-consistent field steps to finalize the computation. 

This parameter also determines the calculation level of 
inputs and outputs. The default value of the parameter is 
1x10-5 eV per atom and is usually suitable (CASTEP, 
2016).  

Initial coordinates of all carbon atoms are generated 
randomly. The number of simulated atoms ranges from 
32 to 588. The calculation time according to these 
calculations are approximately varies from 10 minutes to 

5 days. These calculation times will take weeks and 
months for higher atom numbers. All calculations are run 
on a workstation that has a 2.0 Ghz power on 2 Xeon 
processors with 4 cores and 8 GB of RAM, using all cores 
under Linux operating system. The calculation time 
according to these calculations are approximately varies 
from 10 minutes to 5 days as given in Table 2 in seconds. 
These calculation times will take weeks and months for 

higher atom numbers. 
 
Table 2. The calculation time for CNT simulations in 
seconds 
 

ID of CNT Number of Atoms Calculation Time (Seconds) 

1 28 1050.14 

2 52 1256.40 

3 76 2254.18 

4 84 2816.61 

5 56 834.04 

6 148 18496.07 

7 124 33280.80 

8 156 9604.28 

9 196 59998.78 

10 244 19389.07 

11 172 64102.59 
12 104 7207.22 

13 84 6842.67 

14 152 7715.19 

15 364 78421.39 

16 228 13513.07 

17 268 27799.53 

18 316 35982.11 

19 372 94767.02 

20 436 266027.27 

21 508 233190.94 

22 292 27792.55 

23 168 13292.91 

24 388 106542.26 

25 112 6838.91 

26 516 201214.72 
27 296 34136.32 

28 364 103759.38 

29 412 95275.60 

30 156 9558.96 

31 532 427956.63 

32 228 27392.57 

33 444 159893.39 

34 248 74997.74 

35 312 40999.97 

36 140 10014.92 

37 392 83173.05 

38 588 397369.36 

39 344 89653.65 

40 252 26127.05 

41 208 23123.48 

42 168 11826.42 

 

2.2. Prediction Models 

ANFIS, FFNN, FITNET, CFNN, GRNN, CART, 
SVR and MLR models were trained and tested with the 

dataset of atomic coordinates for CNTs.  

A Sugeno-type (Takagi and Sugeno, 1985) Fuzzy 
Inference System (FIS) is used by MATLAB’s 

implementation of ANFIS. An adaptive neural network 
technique is used to train the Sugeno-type FIS 
parameters. Inputs are mapped through input membership 
functions and associated parameters by ANFIS. Then 
through output membership functions and associated 
parameters to outputs, can be used to interpret the 
input/output map. The parameters associated with the 
membership functions change through the learning 

process. A gradient vector facilitates the computation of 
these parameters. A measure of how well the FIS is 
modeling the input/output data for a given set of 
parameters is provided by this gradient vector. When the 
gradient vector is obtained, any of several optimization 
routines can be applied in order to adjust the parameters 
to reduce some error measure. The sum of the squared 
difference between actual and desired outputs usually 

defines this error measure. Either back propagation or a 
combination of least squares estimation and 
backpropagation for membership function parameter 
estimation is used by ANFIS (MATLAB, 2016). 

 A matrix of training data forms the input training 
data and last column is the target output data. Test input 
data is used also in the same way. While the fuzzy toolbox 
provides many membership function types, Generalized 

Bell-Shaped Membership Function (gbellmf), Gaussian 
Curve Membership Function (gaussmf) and Pi-Shaped 
Membership Function (pimf) performed the best for the 
prediction of atomic coordinates. After the five inputs 
enter the ANFIS then they processed for the u’ coordinate 
prediction. Similar FIS models are also designed for 
prediction of v’ and w’ coordinates. 

FFNN, FITNET and CFNN models have 3 layers 

(input, hidden and output) and the input and output layers 
have 5 and 3 neurons respectively. The hidden layers of 
FITNET and CFNN have 10 neurons and that of FFNN 
has 20 neurons. A log-sigmoid activation function 
(LOGSIG) is used in FFNN model and the hyperbolic 
tangent sigmoid activation function (TANSIG) is used in 
FITNET and CFNN models in the hidden layer. A pure-
linear activation function is used in all models in the 
output layer and Levenberg–Marquardt algorithm (Moré, 

1978) is utilized for training the networks. Weights and 
biases were randomly initialized. The other important 
parameters of the FFNN and FITNET models are the 
number of epochs (1000), the learning rate (0.02), and 
momentum (0.5). The network parameters have been 
optimized by try-and-error (i.e. after testing the neural 
network with several different configurations and 
observing that these numbers yield the lowest error rates 

for prediction) in order to reach the accurate results. The 
parameter σ of GRNN model (also called ‘spread’ in 
MATLAB) determines the generalization capability of 
the GRNN. The best spread parameter is adopted as 2 
through this work. 

CART analysis was performed using “classregtree” 
function which specifies some optional parameters in 
MATLAB.  The “prune” option computes the full tree and 

prunes the subtrees. The “minparent” option splits impure 
nodes which have k or more observations to be split for 
given number of k. The “qetoler” option defines tolerance 
on quadratic error per node for CART. Splitting nodes 
stops when quadratic error per node drops below 
qetoler*qed, where qed is the quadratic error for the entire 
data computed before the decision tree is grown. The 
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“mergeleaves” option merges leaves that originate from 
the same parent node and give the sum of risk values 

greater or equal to the risk associated with the parent 
node. The values of the parameters were chosen as 
prune=on, minparent=50 (default is 10), qetoler=1E-7 
(default is 1E-6), mergeleaves=on. All of the parameter 
values were decided by trial-and-error.  

SVR model was designed by running “fitrsvm” 
function in MATLAB. Several combinations have been 
tried and Radial Basis Function was chosen as the kernel 

for performance comparison. 
MLR prediction model is designed with the purpose 

of comparing Machine Learning methods with a 
statistical regression method. The model is coded in 
Statistics and Machine Learning Toolbox of MATLAB 
using “fitlm” function. Model specification is specified as 
“linear” and model specification equations are set for 
each coordinate for the predictions of coordinates such as 

‘u’ ~ u+v+w+m+n’ is set for u’; ‘v’ ~ u+v+w+m+n’ is set 
for v’; and ‘w’ ~ u+v+w+m+n’ is set for w’. 
 

3. RESULTS AND DISCUSSION 
 

Mean Squared Error (MSE), Mean Absolute Error 
(MAE), Standard Error of Estimation (SEE) and Multiple 
Correlation Coefficient (R) are calculated to evaluate the 
performance of prediction models. Summaries of 
mathematic equations of these performance measures are 

given in Eq. (2), Eq. (3), Eq. (4) and Eq. (5) respectively 
(Witten and Frank, 2005).  

 

𝑀𝑆𝐸 =
1

𝑛
[∑ (𝑂𝑖 − 𝑃𝑖)2𝑛

𝑖=1 ]                                           (2) 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑂𝑖 − 𝑃𝑖|𝑛

𝑖=1                                                 (3) 

 

𝑆𝐸𝐸 = √1 −
∑ (𝑂𝑖−𝑃𝑖)2𝑛

𝑖=1

𝑛
                                              (4) 

 

𝑅 =  √1 −
∑ (𝑂𝑖−𝑃𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−𝑂𝑚)2𝑛
𝑖=1

                                                (5) 

 

where 𝑛 is the number of data points used for testing, 𝑃𝑖 

is the predicted value, 𝑂𝑖 is the observed value and 𝑂𝑚 is 
the average of the observed values. MATLAB (R2015b 
64 bit) (MATLAB, 2016) was utilized for designing 
proposed models and obtaining performance measures. 

Table 3, Table 4 and Table 5 summarize the 
performance results of u’, v’ and w’ coordinates 
prediction using ANFIS, FFNN, FITNET, CFNN, 
GRNN, SVR, CART and MLR models respectively. 

 
Table 3. Performance results of u’ coordinate prediction 
(the best results are outlined in bold). 
 

Models 

Performance metrics 

MSE MAE SEE R 

ANFIS 1.077E-05 2.224E-03 3.282E-03 9.999E-01 

FFNN 9.879E-06 2.084E-03 1.000E+00 9.999E-01 

FITNET 1.130E-05 2.143E-03 1.000E+00 9.999E-01 

CFNN 9.403E-06 2.025E-03 1.000E+00 9.999E-01 

GRNN 7.911E-03 2.532E-01 1.000E+00 9.371E-01 

SVR 5.102E-04 1.957E-02 9.998E-01 9.970E-01 

CART 2.471E-05 3.868E-03 1.000E+00 9.999E-01 

MLR 1.525E-01 2.482E+00 3.000E+00 5.999E-01 

 

Table 4. Performance results of v’ coordinate prediction 
(the best results are outlined in bold). 
 

Models 

Performance Metrics 

MSE MAE SEE R 

ANFIS 1.101E-05 2.294E-03 3.318E-03 9.999E-01 

FFNN 7.307E-06 1.870E-03 1.000E+00 9.999E-01 

FITNET 8.708E-06 1.997E-03 1.000E+00 9.999E-01 

CFNN 8.537E-06 1.965E-03 1.000E+00 9.999E-01 

GRNN 7.995E-03 2.554E-01 1.000E+00 9.298E-01 

SVR 4.985E-04 1.940E-02 9.998E-01 9.971E-01 

CART 2.484E-05 3.835E-03 1.000E+00 9.998E-01 

MLR 1.298E-01 2.300E+00 3.000E+00 6.000E-01 

 
Table 5. Performance results of w’ coordinate prediction 
(the best results are outlined in bold). 
 

Models 

Performance Metrics 

MSE MAE SEE R 

ANFIS 4.962E-08 1.534E-04 2.228E-04 1.000E+00 

FFNN 5.501E-08 1.531E-04 1.000E+00 1.000E+00 

FITNET 5.554E-08 1.523E-04 1.000E+00 1.000E+00 

CFNN 5.418E-08 1.498E-04 1.000E+00 1.000E+00 

GRNN 8.088E-03 2.466E-01 9.587E-01 9.313E-01 

SVR 4.321E-04 1.832E-02 9.997E-01 9.983E-01 

CART 2.140E-05 3.021E-03 1.000E+00 9.999E-01 

MLR 4.865E-02 1.476E-01 3.000E+00 6.000E-01 

 
All models performed good levels of successes when 

we look at all results with a general view. However, the 
results of ANFIS, FFNN, FITNET and CFNN models 
have a superiority over other models. This implies that 
ANN based models can closely estimate atomic 

coordinates of CNTs. CART and SVR models produced 
average performance results comparing to other models. 
The results can be analyzed in detail as follows:  

• CFNN model has the best performance values for u’ 
and w’ coordinates prediction by means of MSE and 
MAE. However, MSE and R results of ANFIS, FFNN 
and FITNET models are very close to CFNN model.  

• The best SEE results are achieved by ANFIS model for 
all coordinates. 

• R value prediction results varies in a very small range 
(from 9.298E-01 to 1.000E+00) for all models except 
MLR based model.  

• MLR based model yielded the worst performance 
results for all coordinates.  

• The estimation results with the highest accuracy are 
yielded for w' coordinate (MSE results of the first four 
models are almost zero). 

The results obtained from this study can be used in 
two ways: i) The predicted atomic coordinates can be 
used in physical calculations without using a simulation 
software, ii) The estimated results can be used as an initial 

value of simulation software for reducing duration of the 
atomic coordinate calculation seriously. 

 

4. CONCLUSION 
 
As a result of this work, the effectiveness of artificial 

intelligence based solutions, which estimate atomic 
coordinates that can be integrated into software, has been 
observed and the results that have significantly shortened 
the simulation processes in the field of nanotechnology 

have been presented to be integrated into scientific or 
commercial software. 
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