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Abstract 

Industrial transportation problems, such as the distribution of petroleum products, industrial gases, 

merchandise, and waste management, are critical challenges in operations research. These issues often 

involve high costs and complex logistics, making efficient solutions essential for businesses. The rout-

ing problem, a well-known optimization challenge, focuses on minimizing transportation costs while 

satisfying vehicle capacity. In this research, we propose an innovative approach Hybrid Artificial Bee 

Colony (HABC), which combines the Artificial Bee Colony (ABC) algorithm with the Genetic Algo-

rithm (GA). The ABC algorithm is recognized for its rapid convergence, whereas GA is effective at 

diversifying the search space through genetic operators such as crossover and mutation. By integrating 

these two metaheuristics, HABC aims to exploit their complementary strengths, thereby improving 

both solution quality and computational performance. In addition, we introduce a heuristic for random 

population initialization, which ensure a balance between quality and diversity in the initial solutions. 

This strategy helps avoid premature convergence and explores a broader solution space. Simulation 

results demonstrate that HABC achieves significant improvement in solution quality, outperforming 

existing methods in several instances of the CVRP. This approach not only reduces transportation costs 

but also offers a scalable and efficient framework for solving complex industrial logistics problems. 

By optimizing routes and resource allocation, HABC contributes to more sustainable and cost-effective 

operations, offering tangible benefits to industries that depend on reliable transportation systems. The 

proposed method underscores the potential of hybrid AI techniques in addressing real-world opera-

tional challenges. 
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1. Introduction  

As a necessity for both individuals and businesses, logistics is 

the process that ensures the physical movement of goods. It in-

cludes all actions involving the transfer of unfinished, partially 

finished, or finished goods [1]. The transfer can happen between 

companies within the same manufacturing sector or across dif-

ferent industries. Additionally, it may go directly from produc-

ers to ultimate consumers, via distributors like the distribution 

of petroleum products, the distribution of industrial gases, the 

distribution of merchandise to companies or individuals, care 

service tours, sales tours, garbage collection, and disposal, etc., 

and frequently involve high costs. Logistics combines transport, 

handling, packaging, and all the physical, administrative, infor-

mational, and organizational operations [2]. It employs a range 

of techniques to deliver the customer with the desired goods at 

the lowest possible cost, within the requested timeframe and 

quantity. 

This has encouraged us to propose a hybrid method for the 

Capacited Vehicle Problem (CVRP) with the aim of minimizing 

the total distance as well as the number of vehicles. Figure 1 

illustrates an example of CVRP that includes: 

- Depot, where each route departs from and ends at the depot, 

- Clients whose are represented by nodes and each node is vis-

ited exactly once, 

- Homogeneous vehicles, such that vehicle capacity is not ex-

ceeded, and the number of vehicles used is not greater than the 

number available.  

http://www.ijastech.org/
mailto:amel.djebbar@ese-oran.dz
https://doi.org/10.30939/ijastech..1663305
https://orcid.org/0000-0002-4295-2080
https://orcid.org/0000-0002-5043-8022


Djebbar et al. / International Journal of Automotive Science and Technology 9 (2): 249-258, 2025 

 

250 

 

Because the problem is NP-hard, this motivated us to move to-

wards metaheuristic approaches. A variety of metaheuristic ap-

proaches have been suggested to solve optimization problems, 

such as the artificial bee colony approach, the ant colony optimi-

zation, the genetic algorithm, etc [3]. One of the most well-known 

evolutionary algorithms developed in 2005 by Karaboga, is the 

ABC metaheuristic [4]. The ABC presents many improvements 

compared to the previous population-based algorithms. Indeed, it 

utilizes fewer control parameters compared to other optimization 

algorithms, making it simpler to integrate with them. Additionally, 

it exhibits robustness and rapid convergence, while being user-

friendly, highly adaptable, and efficient [5], [6], [7]. Nevertheless, 

the ABC algorithm has the disadvantage that sometimes the opti-

mal value cannot be found because it easily falls into premature 

convergence in the later search phase [8]. 

The genetic algorithm ranks among the most effective methods 

to solve problems with high computational complexity, such as 

VRP [9], [10]. Indeed, the genetic algorithm is a key technology in 

random search to solve any problem that requires a significant 

amount of computing time to find the optimal solution [11]. 

Based on the advantages of the ABC method and the GA, this 

paper proposes a hybrid of the artificial bee colony algorithm and 

the genetic algorithm to solve the capacited vehicle routing prob-

lem. The principle of this hybridization is expected to provide bet-

ter convergence and to solve the problem more effectively. The 

objective of combining ABC with GA is to achieve a better result, 

to combine their advantages, and to mitigate their limitations. The 

efficiency of the suggested method is evaluated using benchmark 

datasets. 

The primary objective of this paper is to devise a discrete hybrid 

artificial bee colony optimization algorithm and apply it to the ca-

pacitated vehicle routing problem. We adopt an integer vector to 

represent solutions and introduce suitable crossover and mutation 

strategies within both the employed and onlooker bee phases. As a 

result, our contribution encompasses three aspects:  

1. To exploit the robustness, rapid convergence and high 

flexibility of the ABC metaheuristic, which also has the 

advantage of requiring fewer control parameters. 

2. To enhance the efficiency of the artificial bee colony me-

taheuristic, we propose hybridizing it with the genetic al-

gorithm. This approach enables the diversification of so-

lutions through various genetic operators, thereby pre-

venting the algorithm from becoming trapped in local op-

tima. 

3. To carry out an experimental study to assess the effi-

ciency of the proposed HABC algorithm and to analyze 

its performance when applied on well-known CVRP 

benchmark instances. 

The rest of this paper is structured in seven parts. In Section 2, 

we present a concise review of the literature on CVRP. In Section 

3, we explain our motivation. In Section 4, we define bio-inspired 

methods. Section 5 describes the proposed HABC algorithm. In 

Section 6, we present the results and discuss them. Section 7 out-

lines the limitations of the study. Finally, the conclusions of the 

study and suggestions for future work are presented in Section 8. 

2. Motivation  

Even though most of the existing methods, as discussed in the 

previous section, usually perform well in most of the cases 

where they are applied, there is still room for developing a hy-

bridization of metaheuristics for the reason that the existing 

methods have some limitations, either in terms of computational 

time or applicability to different kinds of optimization issues 

[12]. For example, Altabeeb et al. [13] proposed integrating the 

Firefly Algorithm (FA) with two local search techniques, 2-opt 

and enhanced 2-opt, to accelerate convergence. Also, they in-

corporated crossover and two types of mutation operators in the 

genetic algorithm to maintain the diversity of the solutions and 

prevent the algorithm from converging prematurely to a local 

optimum. 

Additionally, Nayyar et al. [14] studied the benefits of ABC 

in different optimization fields. The high convergence rate of 

ABC in different fields has motivated us to use ABC for CVRP. 

Also, GA gives a more diversified solution space due to its dif-

ferent genetic operators [15]. Thus, a hybridization of these two 

metaheuristics could be more efficient to solve the CVRP. 

3. Literature Review 

Because the CVRP presents a complex combinatorial optimi-

zation challenge, known to be NP-hard, the researchers focused 

on enhancing metaheuristics via employing novel mechanisms 

in order to generate solutions within the discrete search space. 

Metaheuristics are used because of their ability to address dif-

ferent optimization challenges and generate quality solutions for 

complex optimization problems in a reduced computational time. 

For example, Zhang et al. [16] suggested a hybrid quantum 

evolutionary approach to treat the CVRP. According to their ex-

perimental findings, the hybrid quantum evolution algorithm 

outperformed the genetic algorithm and the particle swarm op-

timization method, Yu et al. [17] implemented an upgraded ant 

colony metaheuristic that used the 2-Opt method to improve the 

algorithm’s performance. Zhao et al.  [18] proposed a discrete 

invasive weed approach. They used real matrix real encoding, 

and a two-stage hybrid neighborhood search method to guaran-

tee stability between global and local search capabilities to 

search for the best solution. Their experiments showed that the 

invasive weed approach outperforms quantum evolutionary, ge-

netic, particle swarm optimization, and ant colony algorithms 

expressed in terms of performance calculation, convergence rate, 

and optimization efficiency. Goel et al. [19] developed a hybrid 

approach integrating the ant colony algorithm and firefly algo-

rithm to treat the CVRP. They suggested a novel representation 

of firefly and a technique for measuring distances; and they 

demonstrated the superiority of their proposed approach com-

pared to the existing firefly algorithm based approaches. Tham-

mano et al. [20] suggested a combination of the ant method, a 

sweep method, and path relinking to resolve a CVRP problem. 
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Dalbah et al. [21] adapted the Coronavirus Herd Immunity Op-

timizer (CHIO), a metaheuristic algorithm inspired by COVID-

19 herd immunity strategies, to address the CVRP. The adapta-

tion involved modifying CHIO's operators to ensure feasible so-

lutions for CVRP instances. The algorithm was tested on two 

datasets: ten Synthetic CVRP models and the ABEFMP dataset 

with 27 instances. The modified CHIO achieved comparable re-

sults with existing algorithms on the first dataset and ranked first 

in 8 out of 27 instances on the second, more complex dataset. 

Recently, Kalatzantonakis et al. [22] suggested a reinforce-

ment learning algorithm to determine which local search opera-

tors should be used in which order. They introduced a new hy-

per-heuristic model, named Bandit Variable Neighborhood 

Search, based on the Variable Neighborhood Search method, 

and improved it with a hyper-heuristic strategy derived from the 

Multi-Armed Bandit. Their results showed that the proposed 

Bandit learning procedures possess a small computation foot-

print and are easier to apply. Souza et al. [23] presented a hybrid 

approach using a discrete differential evolution metaheuristic 

associated with local search algorithms to resolve the CVRP. 

The outcomes they obtained indicated that the approach they 

proposed was significantly better than other methods used in the 

literature. Tiwari et al. [24] evaluated Tabu Search, and Local 

Search algorithms, which give a sub-optimal result to the greedy 

solution of the CVRP problem. They compared the solution pro-

vided by these algorithms to the optimal solution that can be 

achieved in exponential time. Their results showed that Tabu 

search outperformed the other techniques for large instances, but 

for small instances, local search can generate comparable results 

to Tabu search in significantly less time. Zhang et al. [25] inte-

grated an artificial bee colony optimization with variable neigh-

borhood search to address CVRP. By embedding multi-variable 

neighborhood operators into the local search phase, their algo-

rithm improved solution diversity and stability, achieving supe-

rior performance compared to existing methods. Yong et al. [26] 

proposed an adaptive hybrid ant colony optimization algorithm, 

introducing adaptive mechanisms in pheromone updating and 

state transferring rules. By combining sub-route construction 

with genetic algorithms and local search techniques, their 

method enhanced optimization accuracy and efficiency in solv-

ing CVRP. 

Several reviews have also enriched the field by classifying 

and synthesizing metaheuristic approaches. Elshaer and Awad 

[27] presented a detailed taxonomic review of metaheuristics for 

VRP and its variants, offering a structured perspective on algo-

rithmic strategies and hybridizations. Similarly, Tan and Yeh 

[28] provided a broad classification of VRP problems and solu-

tion techniques, identifying current trends and research chal-

lenges. 

Beyond review papers, specific hybrid and bio-inspired ap-

proaches have been proposed. For instance, Altabeeb et al. [29] 

developed a cooperative firefly algorithm tailored to CVRP, 

achieving competitive performance and fast convergence. Boğar 

and Beyhan [30] introduced a hybrid genetic algorithm to ad-

dress the mobile robot path problem, highlighting the efficiency 

of combining traditional heuristics with nature-inspired tech-

niques concepts relevant to CVRP solution development. 

Other different extensions of routing problems are treated that 

consider environmental aspects, like Djebbar et al. [31] formu-

lated a novel pickup and delivery problem with time windows 

that takes into account CO2 emissions and proposes a hybrid dis-

crete artificial bee colony algorithm to solve it. Sadati et al. [32] 

and Wen et al. [33] considered the multi-depot green vehicle 

routing problem. 

4. Bio-inspired Optimization Methods 

Bio-inspired optimization methods, including the Artificial 

Bee Colony (ABC) and the Genetic Algorithm (GA), have been 

widely developed. Karaboga [6] provided a comprehensive sur-

vey of these algorithms, highlighting their applications and the 

behaviors of bee swarms that inspired their development. Gao et 

al. [8] presented an improved version of the ABC algorithm, in-

corporating differential evolution and a new search mechanism. 

Pham et al. [34] introduced the Bees Algorithm, which mimics 

the foraging behavior of honeybees and has been shown to han-

dle complex optimization problems effectively. Lastly, Yang et 

al. [35] proposed the Virtual Bee Algorithm to engineering op-

timizations, demonstrating its effectiveness in comparison to ge-

netic algorithms.  Huo et al. [36] introduced a multi-objective 

artificial bee colony incorporating regulation mechanisms, re-

sulted in improved accuracy and faster execution time. Panniem 

et al. [37] proposed an adapted artificial bee colony incorporat-

ing a firefly algorithm strategy to address issues of gradual con-

vergence and local solution trapping. Li et al. [38] hybridized 

quantum computing and bee colony optimization, resulting in a 

quantum-inspired bee colony algorithm that outperformed the 

classical method. Xin [39] further improved the standard artifi-

cial bee colony algorithm by introducing an adaptive Cauchy 

mutation, which effectively prevented falling to local optima 

and improved solution quality. Drezner et al. [40] proposed a 

new parent selection rule in genetic algorithms, which improved 

results without increasing computing time. This is in line with 

the findings of Krishnanand et al. [41], who compared the per-

formance of genetic algorithms with other bio-inspired evolu-

tionary optimization techniques and found them to be effec-

tive. Gen et al. [42] and Reddy et al. [43] both highlighted the 

potential of genetic algorithms, with Mitchell emphasizing their 

simplicity and effectiveness in solving complex problems, and 

Reddy discussing their application in various fields. These stud-

ies collectively underscore the potential of bio-inspired optimi-

zation methods in solving a diverse array of complex problems. 

5. Methodology 

Our proposed approach, based on a hybridization of two me-

taheuristics, the artificial bee colony algorithm and the genetic al-

gorithm, was developed to treat the problem. Metaheuristics are 

commonly used to solve this NP-hard problem with high compu-

tational complexity. 
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This work addresses the capacitated vehicle routing problem us-

ing a hybrid approach that combines the Genetic Algorithm (GA) 

and the Artificial Bee Colony (ABC) algorithm. The ABC algo-

rithm is adapted in such a way that the employed and onlooker bee 

phases utilize GA operators; selection, crossover, and mutation; to 

explore and improve solutions. 

5.1. Initialization 

It consists of encoding each food source this type of discrete op-

timization problems. The algorithm begins by creating N initial so-

lutions, which serve as the initial food sources to be explored in the 

first phase of the HABC (Hybrid Artificial Bee Colony). Each food 

source in the HABC algorithm is a feasible solution to CVRP, 

which consists of a list of routes. Each route, containing a sequence 

of nodes (customers) is assigned to one vehicle. The example in 

Figure 2 represents the solutions, where 0 represents the depot and 

the integer numbers represent the client location. 

The initial population is created using the following method: a 

random node is chosen as the route's initial node, and the subse-

quent requests are added sequentially to the route to ensure satis-

faction of the capacity constraint and the total number of vehicles 

required to obtain a feasible solution. 

5.2. Mathematical Formulation 

Let: 

- xij ∈ {0,1}: binary decision variable indicating if arc (i, j)   

is traversed, 

- dij: distance between nodes i and j, 

- qi: demand at customer i, 

- Q: vehicle capacity, 

- K: number of available vehicles, 

- ui: auxiliary variable for sub tour elimination. 

- Minimize the total travel cost or distance covered by all 

vehicles: 

Minimiser f(x)=∑ ∑ 𝑥𝑖𝑗𝑘 ∗ 𝑑𝑖𝑗𝑘𝑗∈𝑁𝑖∈𝑁                    (1)                            

- Each customer is visited exactly once by one vehicle: 

∑ ∑ 𝑥𝑖𝑗𝑘
𝐾
𝑘=1 = 1,   𝑗 = 2, … , 𝑁𝑁

𝑖=1                     (2) 

- Each customer is departed from exactly once by one   

vehicle: 

∑ ∑ 𝑥𝑖𝑗𝑘
𝐾
𝑘=1 = 1,   𝑖 = 2, … , 𝑁𝑁

𝑗=1                     (3) 

- Each vehicle returns to the depot exactly once: 

∑ 𝑥𝑖0𝑘 = 1,𝑁
𝑖=1        ∀ 𝑘 ∈ 𝐾                      (4) 

- Each vehicle departs from the depot exactly once: 

∑ 𝑥0𝑗𝑘 = 1,𝑁
𝑗=1        ∀ 𝑘 ∈ 𝐾                      (5) 

- Flow conservation (continuity of the route): 

∑ 𝑥𝑖𝑢𝑘 − ∑ 𝑥𝑢𝑗𝑘
𝑁
𝑗=1 = 0,𝑁

𝑖=1 ∀ 𝑘 ∈ 𝐾, ∀ 𝑢 ∈ 𝑁         (6)  

- Load update constraint (to avoid sub-tours): 

𝑥𝑖𝑗𝑘 = 1  𝑦𝑗𝑘 = 𝑦𝑖𝑘 + 𝑞𝑖 , ∀𝑘 ∈ 𝐾, ∀ 𝑖, 𝑗 ∈ 𝑁        (7) 

- Load update constraint (to avoid sub-tours): 

𝑦0𝑘 = 0,             ∀𝑘 ∈ 𝐾                       (8) 

- Vehicle capacity constraint: 

0 ≤ 𝑦𝑗𝑘 ≤ 𝑄𝑘         ∀ 𝑘 ∈ 𝐾, ∀ 𝑗 ∈ 𝑁             (9) 

5.3. Proposed hybrid ABC and GA 

The hybrid model modifies the standard ABC algorithm by 

embedding GA operators into the employed and onlooker bee 

phases. Each bee manipulates a solution represented as a se-

quence of customer nodes. 

The Artificial Bee Colony approach simulates the intelligent 

food-search behavior of a honey bee swarm; it is one of the most 

recently developed swarm-based optimization techniques. It mim-

ics the behavior of real bees in solving an optimization problems 

[5]-[8] and involves three types of bees: employed bees, onlooker 

bees, and scouts bees. The employed bees represent the first half 

of the colony, while the onlooker bees make up the second half. 

A bee whose associated food source cannot be improved be-

comes a scout bee. During the employed and onlooker bee phases, 

we incorporate GA operators [44], [45] to enhance solution quality. 

The GA, introduced by John Holland in the 1970s [46] is inspired 

by the natural process of evolution. It typically involves three main 

operators: selection, crossover, and mutation [10], [44], [47], 

which are used to generate a new population that is fitter than the 

previous one: 

- Selection: The food source with the best fitness value is 

chosen. This selection is based on fitness scores, where 

better solutions are more likely to be selected. 

- Crossover: New food sources (offspring) are produced by 

exchanging genes between parent solutions. The ex-

change may involve several genes, and the offspring 

from a new population. 

- Mutation: A modification in the gene sequence of a food 

source is applied to maintain diversity within the popula-

tion. It helps avoid local optima by randomly altering the 

visit order of customer nodes. For example, two nodes 

from different routes may be swapped. 

Once the employed and onlooker phases are complete, a scout 

bee generates a new solution if an employed bee has failed to im-

prove its solution after a certain number of attempts. This new so-

lution is generated using the same initialization procedure as the 

original population. 

This hybridization combines the global search capabilities of 

GA with the distributed and adaptive search strategy of ABC, re-

sulting in enhanced performance for solving combinatorial routing 

problems. 
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Unlike previous works that merely chain or alternate the use of 

GA and ABC phases, our proposed HABC introduces a tighter in-

tegration where GA’s evolutionary operators are deeply embedded 

into ABC’s core search mechanism. This technical innovation al-

lows each bee to not only follow the colony-based decision rules 

of ABC but also to apply evolutionary pressure during solution up-

dates. Specifically, the crossover and mutation operations are used 

within the decision cycles of employed and onlooker bees rather 

than as post-processing or separate phases. This results in a more 

dynamic and adaptive exploration-exploitation trade-off, which 

improves convergence speed and reduces the chance of getting 

trapped in local optima. 

The hybrid ABC-GA algorithm proceeds as follows: 

1. The Initial population is generated using random permuta-

tions of customer nodes. 

2. Employed bees apply GA operators to explore neighboring 

solutions. 

3. Onlooker bees refine elite solutions using the same GA op-

erators. 

4. Scout bees introduce diversity by replacing stagnant or un-

productive solutions. 

5. The process repeats until a maximum number of generations 

is met. 

Figure 3 illustrates the overall process of this research work. It 

begins by generating an initial population where each solution con-

tains a sequence of nodes to be visited by the vehicles. These nodes 

are mapped in a 2D plane, and their coordinates are provided in the 

text file. The proposed HABC algorithm is then applied to each 

solution in the population to determine routes that minimize both 

the total distance traveled and the number of vehicles used. 

6. Results and Discussion 

The working environment consists of C++ software executed on 

a personal computer equipped with an Intel Core i5, 2.60 gigahertz, 

64-bit processor with 4 gigabytes of RAM, and running Windows 

8 OS. To assess the performance of HABC in addressing the Ca-

pacitated Vehicle Routing Problem (CVRP), we evaluate it across 

various instances. These instances include those proposed by Au-

gerat [48], covering a range of nodes from 16 to 100.  In addition, 

we examine a case study investigated by Wang [49] and Pham [50], 

which involves 8 nodes. Furthermore, we consider another case 

study presented by Pham [50], featuring 30 nodes. Through this 

comprehensive analysis, we aim to gain insights into the effective-

ness of HABC for the CVRP across different problem sizes and 

scenarios.  

Four parameters are required for the proposed HABC algorithm 

to efficiently perform on different data sets. To determine the best 

parameter setting, tests are performed on the number of food 

sources, the number of iterations, and the limit (number of trials). 

After several preliminary experiments, the maximal number of 

food sources (colony size), the maximal number of iterations, the 

crossover rate, and the maximal limit are provided in table 1. 

6.1. Experimentation on the first dataset 

The procedure utilized a fleet comprising two vehicles, with 

each vehicle capable of accommodating up to eight units. Further 

information regarding the distances between clients and their spe-

cific delivery requisites can be found in the references provided 

[49], [50]. 

The performance of our proposed algorithm was evaluated by 

comparing it with the algorithms developed by Wang [49] and 

Pham [50]. The results of this comparison are summarized in Table 

2. In Table 2, the first column represents the total distance obtained 

by our proposed approach, while the second column indicates our 

retrieved set of routes. The best-known solution obtained by Wang 

et al. [49] is presented in column 3, and the solution obtained by 

Pham et al. [50] is presented in column 4. An analysis of Table 2 

reveals that our proposed approach is capable of achieving the 

same best solutions as those found in the literature. 

6.2. Experimentation on the second dataset 

To evaluate the performance of the proposed algorithm, it was 

also applied to another dataset available from [50]. In this particu-

lar problem instance, a fleet consisting of five vehicles, each with 

a capacity of 700 units, was used. 

Comparative analysis against DSSA [50] and HABC revealed 

that our proposed approach yielded superior results. The summa-

rized comparison results are presented in Table 3. In this table, the 

first column denotes the total distance obtained by our proposed 

approach, while the second column showcases the corresponding 

set of routes retrieved. Additionally, the third column displays the 

solution obtained by Pham et al. [50]. 

This comparative evaluation not only demonstrates the efficacy 

of our proposed algorithm but also highlights its competitiveness 

against existing state-of-the-art approaches. 

6.3. Experimentation on the third dataset 

To evaluate the performance of the proposed algorithm, we ex-

tended its application to another dataset, which is available for 

download from [48]. The outcomes of this evaluation are visually 

depicted in Figure 4 and Figure 5, showing the results obtained for 

the P-n16-k8 and P-n22-k2 datasets, respectively. 

In these figures, the graphical representation illustrates the opti-

mal solution achieved by the HABC algorithm. Each point on the 

graph corresponds to a client, while the edges represent the routes 

traversed by the vehicles. The node labeled '0' signifies the depot. 

Each distinctively colored route illustrates the path taken by a ve-

hicle, starting at ending at the designated depot. 

The selection of the P-n16-k8 dataset for graphical representa-

tion was intentional due to its manageable size, comprising only 

16 clients and 8 vehicles. This choice ensures a clear visualization 

of all the routes, facilitating a comprehensive understanding of the 

algorithm's performance. 

The computational results for the selected instances are pre-

sented in Table 4. From left to right, the columns display the da-
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taset name, the minimum number of vehicles used, the optimal to-

tal distance obtained by HABC, and the computational time, re-

spectively. For instance, the best-known solution for an instance 

with 22 nodes and 8 vehicles is 474, consisting of four routes. Each 

sub-route is bidirectional, as the source data is provided in a sym-

metric matrix. In certain instances, the proposed HABC approach 

outperformed results from the literature, which are highlighted in 

bold in Table 4. Additional comparative results from other algo-

rithms are available in [48]. 

By comparing Figure 4 and Figure 5, increases with the number 

of vehicles and clients. The graphical representation also becomes 

more intricate with larger problem sizes. However, as the problem 

size grows (both in terms of customers and vehicles), computa-

tional time increases significantly, highlighting the computational 

complexity of solving larger instances optimally. 

For smaller instances, such as P-n16-k8 and P-n19-k2, compu-

tational times are relatively short, 3 seconds and 33 seconds, re-

spectively. These smaller instances, with fewer customers and ve-

hicles, allow the solver to reach optimal solutions more efficiently. 

However, as problem size and complexity increase, computational 

time increases considerably. For example, P-n55-k15 requires 809 

seconds, while P-n60-k15 exceeds 1000 seconds. 

The number of vehicles also plays a critical role in computa-

tional time. Instances with more vehicles generally require longer 

computation times. For example, comparing P-n50-k7 (7 vehicles, 

360 seconds) with P-n50-k10 (10 vehicles, 399 seconds) shows a 

clear increase. Similarly, P-n55-k7 (535 seconds) and P-n55-k15 

(809 seconds) demonstrate how adding vehicles significantly im-

pacts runtime. 

However, this relationship is not strictly linear. Factors such as 

problem-specific constraints, routing complexity, and solution 

space size also contribute to variations in computational time. For 

instance, while P-n76-k4 (950 seconds) and P-n76-k5 (978 sec-

onds) show similar computation times despite differing vehicle 

counts, P-n101-k4 exhibits a significant jump to 1890 seconds, pri-

marily due to the larger dataset size. 

It is worth noting that the proposed methods require longer com-

putation times for large problem instances. This increased compu-

tation time is justified by the simultaneous generation of routing 

sequences and the iterative adjustments to customer routes per-

formed during HABC iterations. 

To statistically assess whether the improvements brought by the 

proposed HABC algorithm are significant compared to benchmark 

solutions, we applied the Wilcoxon signed-rank test on the ob-

tained results. The test yielded a Wilcoxon statistic of 29.0 and a 

p-value of 0.0015. As the p-value is well below the commonly ac-

cepted threshold of 0.05, we can conclude that the performance 

differences are statistically significant. 

7. Limitations 

It is important to note that the proposed HABC algorithm 

tends to require longer computation times as the size of the prob-

lem increases. This is mainly due to the complexity of the algo-

rithm, which must perform multiple tasks simultaneously during 

its execution. First, the algorithm generates optimal routing se-

quences for each vehicle, ensuring that each customer is served 

in a way that minimizes the total distance traveled. This task be-

comes significantly more complex as the number of customers 

and vehicles increases. 

In addition to generating the sequences, the algorithm makes 

iterative adjustments to the customer routes to refine solutions 

and improve the overall objective. This iterative process re-

quires evaluating numerous possible configurations, leading to 

an increased computational load. The hybrid nature of HABC, 

combining the strengths of the Artificial Bee Colony (ABC) al-

gorithm and the Genetic Algorithm (GA), further amplifies the 

time complexity, as both algorithms contribute to the explora-

tion and optimization of the search space. 

Furthermore, larger problem instances, such as those with 

more vehicles or customers, introduce an exponentially larger 

solution space, requiring more time to explore and refine poten-

tial solutions. The increase in the number of vehicles and routes 

adds to the challenge of ensuring the feasibility of each solution 

while maintaining computational efficiency. 

8. Conclusions  

The objective of this study is to find the optimal route with the 

minimum number of vehicles, addressing various vehicle routing 

with satisfying vehicle capacities. This objective was achieved by 

hybridizing the ABC with the GA. A case study was presented in-

volving a routing problem for delivering merchandise between 16 

and 100 different destinations. The proposed HABC algorithm was 

implemented and simulated in a C++ program. The simulation re-

sults showed that the HABC algorithm effectively solved the rout-

ing problem, with the optimal solution obtained within a number 

of iterations for each instance. Experimental results demonstrate 

that HABC outperforms the other algorithms in resolving the ca-

pacitated vehicle routing problem, offering better computational 

performance, stronger search optimization capabilities, and greater 

adaptability and robustness. However, the HABC algorithm has 

only been applied to the static CVRP problem. 

This paper combined two well-studied metaheuristics: the arti-

ficial bee colony algorithm and the genetic algorithm, both of 

which offer promising solutions and open up several future re-

search avenues. Future research could explore other extensions of 

combinatorial optimization problems in the context of VRPs.  

Additional areas for future investigation include incorporating 

time window constraints to manage specific delivery timeframes 

and applying the HABC algorithm to dynamic VRP, which in-

volves the fluctuating presence of customers needing service 

throughout the problem solving process. 
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Figure 2. Diagram of HABC 

 

Figure 3. Best routes for the P-n16-k8 dataset 

 

Figure 4. Best routes for the P-n22-k2 dataset 

Table 1. Food source solution 

Position 0 1 2 3 4 5 6 7 8 9 10 

routes 0 1 2 3 0 8 6 7 4 5 0 

Table 2. Parameter values for HABC 

Parameters Value 

Number Food Source 200 

Iteration 
Crossover rate 

50 
10 

Limit 21 

Table 3. Comparative study 

Total distance Routes Wang et al. Pham et al. 

67.5 0 4 7 6 0 67.5 67.5 

 0 2 8 5 3 1 0   
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Table 4. Result of two algorithms 

Total distance Routes Pham et al. 

755.91 0 19  17  1  14  3  0 785.87 

 0 12 28  5  15  2  25  29  
26  0 

0 24 30  23  8  4  0 
0 9  20  21  18  10  16  

0 
0 22  7  13  11  27  6  0 

 

Table 5. Computational results for set P of Augerat 

Instance Vehicles 
used 

Optimal solution Computational 
time (s) 

P-n16-k8 8 450 3 

P-n19-k2 2 220 33 

P-n20-k2 2 221 80 

P-n21-k2 2 214 86 

P-n22-k2 2 225 91 

P-n22-k8 4 474 126 

P-n23-k8 8 537 146 

P-n40-k5 5 505 309 

P-n45-k5 5 486 323 

P-n50-k7 7 597 360 

P-n50-k8 8 669 388 

P-n50-k10 10 742 399 

P-n51-k10 10 774 517 

P-n55-k7 7 618 535 

P-n55-k10 10 733 580 

P-n55-k15 15 983 809 

P-n60-k10 10 817 572 

P-n60-k15 15 1028 1008 

P-n65-k10 10 869 590 

P-n70-k10 10 898 901 

P-n76-k4 4 749 950 

P-n76-k5 5 777 978 

P-n101-k4 4 925 1890 
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