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Introduction 

Earthquakes are natural disasters that cause societies to 

suffer socioeconomic losses, stop human activities, and 

disrupt physical structures [1]. When we look at Turkey's 

history, it is known that it has witnessed many destructive 

earthquakes. The main reason for destructive earthquakes is 

that the country is in the 1st degree earthquake zone. In 

addition, the fact that the city centers, where people live 

densely, are established on or near the live fault lines known 

as fractures have also increased the destructive effect [2] 

(Fig. 1).  

 

Figure 1. Active fault lines in Turkey (AFAD) 

AFAD’s report shows that earthquakes cause 60 percent of 

disaster-related deaths. In 2023, a devastating earthquake of 

7.6 Mw occurred in Kahramanmaraş [3]. In the earthquake, 

44,218 people died, 80,278 people were injured, and 

528,146 people were evacuated to other cities [4]. Knowing 

the earthquake's magnitude is very important to prepare for 

such situations. Traditional techniques such as ARIMA are 

used to detect linear trends in forecasting procedures. 

However, the proposed methods cannot cope with the 

difficulties associated with irregular and non-linear seismic 

data. New forecasting methods can be developed using 

machine learning and deep learning techniques to extract 

features and learn temporal patterns. The main work in this 

field in the last five years has been presented in Table 1. 

This study investigates the performance of Machine 

learning models (Random Forest, ARIMA), Deep learning 

models (LSTM), and Hybrid architecture (CNN+LSTM, 

Transformer + GP). 

The specific contributions of this research include: 

1. Comparing classical statistical models like ARIMA 

with modern machine learning techniques. 

2. Implementing hybrid models such as CNN+LSTM and 

Transformer + Gaussian Processes for improved accuracy. 
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ABSTRACT 

 
 

This study evaluates the performance of machine learning and hybrid deep learning models for predicting 

earthquake magnitudes using historical seismic data. Five models, including Random Forest (RF), 
ARIMA, Long Short-Term Memory (LSTM), CNN+LSTM, and Transformer + Gaussian Processes (GP), 

were compared using metrics such as Root Mean Squared Error (RMSE) and R2. The RF model was quite 

efficient, with an RMSE of 0.072 and an R2 of 0.30. However, it did not incorporate temporal analysis. 
ARIMA was also better, with an RMSE of 0.065 and R2 of 0.42, which is best suited for linear 

relationships. LSTM identified the sequential relations well and provided an RMSE of 0.097 and R2 of 

0.51. The hybrid CNN+LSTM model outperformed standalone approaches with an RMSE of 0.090 and 
R2 of 0.58 by combining spatial and temporal features. The Transformer + GP model achieved the highest 

accuracy, with an RMSE of 0.063 and R2 of 0.62, offering robust uncertainty quantification through 

confidence intervals. These results highlight the superiority of hybrid models in seismic forecasting, 
demonstrating their potential to improve predictive accuracy and support better risk management 
strategies. 
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3. Incorporating real-time uncertainty estimation using 

Gaussian Processes.  

We aim to evaluate these models using historical 

earthquake data and provide insights into their strengths and 

limitations. 

Table 1. Major studies for earthquake prediction in the last five years 

Researcher 

(Year) 
Method Objective Results 

Bhandarkar et 

al. (2019) [5] 
LSTM, FFNN 

Comparison of earthquake prediction 

methods 

LSTM achieved a 59% better R² 

score than FFNN. 

Doğan and 

Demir (2020) 

[6] 

Structured Recurrent 

Neural Network (SRNN) 

Predicting earthquakes with 

magnitude four or above in Turkey 

in a one-month period. 

0.72 accuracy and 0.74 precision 

were obtained. 

Li et al. (2020) 

[7] 

CNN, Attention 

Mechanism (DLEP 

Model) 

Improving earthquake prediction by 

combining explicit and implicit 

seismic properties 

The DLEP model outperformed the 

baseline methods. 

Berhich et al. 

(2020) [8] 
LSTM, YSA 

Performance comparison of ANN 

and LSTM for earthquake prediction 

ANN: MAE 0.30, MSE 0.13; LSTM: 

MAE 0.11, MSE 0.02 error rates 

were achieved. 

Karcı and Şahin 

(2022) [9] 
LSTM 

Estimation of earthquake magnitude 

and timing 

Kalaba-Sivrice and Izmir earthquakes 

were predicted with 91% and 93% 

accuracy. 

Bhargava and 

Pasari [10]  
LSTM, YSA 

Earthquake forecast in the 

Himalayan region 

It is effective in small-scale regions, 

but insufficient results were obtained 

for large earthquakes. 

Demirelli et al. 

(2023) [3] 

Random Forest, Extreme 

Gradient Boosting, 

Decision Trees, k-NN 

Earthquake prediction with seismic, 

geological and geodetic data. 

RF and XGB gave the best results 

with 0.09 MSE. 

Doğan (2023) 

[11] 

SVM, Linear 

Regression, Gradient 

Boost, Elastic Net, 

Bayesian Ridge, 

XGBoost 

Estimating earthquake locations and 

depths in north-western Turkey 

Potential high-magnitude earthquake 

zones were evaluated with RMSE, 

MAE, and Adjusted R². 

Kavianpour et 

al. (2023) [12] 

CNN, BiLSTM, 

Attention Mechanism 

Estimating the maximum magnitude 

and number of earthquakes in 

different regions in China 

The proposed model gave better 

results compared to other methods. 

Ridzwan and 

Yusoff (2023) 

[13] 

Machine Learning 

Algorithms 

Comparing the effectiveness of 

different algorithms by analysing 31 

studies in 2017-2021 

It provided insights into the 

effectiveness of seismic features and 

the performance of algorithms. 

When the studies presented in Table 1 are examined, certain 

trends and common findings are observed in the research on 

earthquake prediction. Deep learning-based methods, 

especially LSTM models, consistently demonstrate 

superior performance compared to traditional artificial 

neural networks and statistical methods. In 2019, 

Bhandarkar et al. reported that LSTM achieved 59% better 

R² score than FFNN, and in 2020, Berhich et al. reported 

that LSTM offered significantly lower error rates (MAE 

0.11, MSE 0.02) than ANN. Hybrid and advanced models, 

such as CNNs and attention mechanisms [7][12], provide 

better results than single-method models. However, the 

effectiveness of the models varies according to their 

geographical scope. Although they perform better in small-

scale regions, they can also predict large earthquakes in 

large regions [10]. Ensemble methods such as Random 

Forest and XGBoost have shown strong performance in 

studies combining different data types (seismic, geological, 

geodetic) [3]. Consequently, the most promising 

approaches for earthquake prediction are deep learning 

methods, but the prediction accuracy remains highly 
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dependent on the regional context, data quality, and 

estimated parameters (magnitude, timing, or location). 

Materials and methods 

Data description 

In this study, the earthquake data set recorded by the 

Disaster and Emergency Management Presidency (AFAD) 

between 1990 and 2024, with magnitudes between 3 and 6.5 

(3447 earthquakes), epicenter in Afyonkarahisar (38.7580, 

30.5387), and epicenter distances between 100 km and 150 

km (Figure 2). The dataset obtained from AFAD includes 

various descriptive features for each earthquake event. 

Specifically, it contains the earthquake ID, date and time of 

occurrence, latitude, longitude, and depth (in kilometers). 

Additionally, it provides multiple magnitude scales such as 

MD (Duration Magnitude), ML (Local Magnitude), Mw 

(Moment Magnitude), Ms (Surface-Wave Magnitude), and 

Mb (Body-Wave Magnitude). The dataset also includes the 

earthquake type and the location name. These variables 

were used to construct a time-series dataset for training the 

models, and the ML (Local Magnitude) value was selected 

as the primary target variable for prediction. 

Afyonkarahisar contains 31 live fault lines. The maximum 

earthquake magnitudes that these fault lines can produce are 

between 6.18 and 6.86 𝑀𝑤 [14].  

 

Figure 2. Map of earthquakes within a radius of 150 km, 

centered in Afyonkarahisar 

Moment magnitude scale 𝑀𝑤 and Richter local magnitude 

scale 𝑀𝐿 indicate earthquake magnitudes. It has been 

observed that the scale reaches saturation in high-

magnitude earthquakes (𝑀𝐿 ≥ 6). Conversely, Mw is a scale 

widely used in large earthquakes, and its structure is more 

stable [15]. Since there are no earthquakes exceeding 

magnitude 6 in this dataset, the local magnitude scale  𝑀𝐿 

was selected for use in the calculations. 

 

The dataset includes earthquake records with magnitude 

(𝑀𝑤), converted to Local Magnitude (𝑀𝐿) using the 

Equation (1). 

𝑀𝐿 = 0.67 𝑥 𝑀𝑤 + 1.45 (1) 

The data spans multiple years and provides magnitudes for 

various earthquake events, processed into a time series 

format [16], [17]. 

 

Preprocessing 

Missing values in magnitude data were handled using mean 

imputation. The data was normalized for deep learning 

models using Min-Max scaling. Features (x) and labels (y) 

were generated with a rolling window of five years for 

sequential models. 

Models implemented 

• Random forest (RF) 

Random Forest is an ensemble learning method based on 

decision trees. It was optimized using GridSearchCV to find 

the best parameters for estimators, depth, and leaf samples. 

Evaluation metrics include 𝑅𝑀𝑆𝐸 and R2 [18].  

• ARIMA 

The ARIMA model analyzes time series data using 

autoregressive and moving average components. After 

performing a stationarity (ADF) test, differences were 

applied for non-stationary series. The model parameters 

(p,d,q) were selected based on AIC [19]. 

• LSTM 

LSTM networks are recurrent neural networks designed to 

model sequential dependencies: Input shape (timesteps, 

features), hidden layers including 50 LSTM units with 

dropout for regularization. The model was trained using the 

Adam optimizer and mean squared error as the loss function 

[20]. 

• CNN+LSTM hybrid 

Combining CNN for spatial feature extraction with LSTM 

for temporal dependencies: CNN branch: Two Conv1D 

layers with ReLU activation followed by a flattening layer: 

Two LSTM layers with dropout. The final layers were 

concatenated and fed into dense layers for prediction [21]. 

The hybrid CNN+LSTM model consists of two main 

branches. The CNN branch begins with two consecutive 1D 

convolutional layers, with 32 and 64 filters respectively, 

both using a kernel size of 2 and ReLU activation function. 

These layers are followed by a flattening operation. The 

LSTM branch includes two stacked LSTM layers, each with 

50 units; the first returns sequences while the second 

outputs the final hidden state. The outputs of both branches 

are concatenated and passed through a dense layer with 50 

units and ReLU activation, followed by a dropout layer with 

a rate of 0.2 to prevent overfitting. Finally, a dense layer 

with a single unit is used for the regression output. 

• Transformer + Gaussian processes 

This hybrid model leverages Transformers for long-term 

dependencies and Gaussian Processes for uncertainty 

quantification. Multi-head attention was used to capture 

dependencies. Gaussian Processes were implemented for 

probabilistic predictions with a kernel combining RBF and 

constant kernels [22]. The Transformer + Gaussian 

Processes (GP) model combines deep learning with 

probabilistic modeling to enhance prediction and 
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uncertainty estimation. The Transformer module is 

composed of a custom encoder block featuring two multi-

head attention layers (with 2 attention heads), feed-forward 

layers with 32 units, and a dropout rate of 0.1 to reduce 

overfitting. After processing the time-series input, the 

Transformer’s output is passed through a fully connected 

dense layer with 50 units and an output layer with 1 unit. 

The model is trained for 50 epochs with the Adam optimizer 

and a batch size of 32. 

Once trained, the predicted outputs from the Transformer 

model are used as input to a Gaussian Process (GP) 

regression model, which is configured with a radial basis 

function (RBF) kernel scaled by a constant kernel. The GP 

model is optimized with 10 restarts to avoid local minima. 

The GP outputs both the predicted values and standard 

deviation estimates, enabling the construction of 95% 

confidence intervals (±1.96σ), which are visualized in the 

result figures to represent prediction uncertainty. 

Implementation Details and Reproducibility 

All experiments were conducted using Python 

programming language. The main software libraries and 

their versions used in this study are as follows: TensorFlow 

2.12.0, scikit-learn 1.3.0, pandas 1.5.3, numpy 1.23.5, 

matplotlib 3.7.1, and stats models 0.13.5. To ensure the 

reproducibility of the models, all key hyperparameters were 

reported. The batch size was set to 32 and all models were 

trained for 50 epochs. The learning rate for the Transformer 

model was set to 0.001 using the Adam optimizer. The 

dropout rate was fixed at 0.2 across deep learning models to 

reduce overfitting. The Transformer encoder used 2 

attention heads and a feed-forward layer with 32 units. In 

the CNN+LSTM model, two convolutional layers with 32 

and 64 filters and a kernel size of 2 were used, followed by 

two LSTM layers each with 50 units. For the Gaussian 

Process regressor, an RBF kernel multiplied by a constant 

kernel was employed with 10 restarts and alpha set to 1e-2. 

These implementation details ensure the reproducibility and 

transparency of the proposed approach. 

Evaluation metrics 

RMSE (Root Mean Square Error) and R2 (Determination 

Coefficient) metrics were used to evaluate the performance 

of the models. The 𝑅𝑀𝑆𝐸 is the square root of the mean 

square of the differences between the model estimates and 

actual values. The following is expressed in Equation (2). 

The low values indicate that the model’s accuracy is high 

[23]. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 (2) 

R2 represents the ratio of variance in the dependent variable, 

as explained by the model. It takes values between 0 and 1. 

A value close to 1 indicates that the model explains the data 

perfectly, and a value close to 0 indicates that the model 

loses its explanatory power. The formulation is given in 

Equation (3) [24]. 

𝑅2 =  1 −
∑(𝑦𝑖 − 𝑦�̂�)

2

∑(𝑦𝑖 − �̅�)2
 

 

(3) 

These two metrics are complementary to each other. The 

𝑅𝑀𝑆𝐸 indicates the prediction errors, while 𝑅2 shows the 

explanatory power of the model. 

Results 

From the comparison of the models presented in Table 2, 

the strengths and limitations of the models are established 

based on RMSE and values. For instance, the Random 

Forest (RF) model has an RMSE of 0.072 and a R2 of 0.30, 

which is known to be efficient and fast but has a poor ability 

to capture temporal characteristics of time series data. This 

limitation makes it less suitable for the more challenging 

temporal modeling problems. The ARIMA model, 

however, is better than RF with an RMSE of 0.065 and an 

R2 of 0.42. It can deal with linearity and short-time series 

trends. However, it cannot simulate complex or nonlinear 

temporal dependencies like in dynamic systems, such as 

earthquake magnitude forecasting. The LSTM model has a 

better temporal modeling capability R2 of 0.51, meaning it 

can capture sequential dependencies. However, its RMSE 

of 0.097 indicates room for improvement, particularly in 

handling complex spatial-temporal relationships. The 

hybrid CNN+LSTM model combines the best 

convolutional neural networks for extracting features from 

spatial data and recurrent neural networks for data 

sequences dependent on time. This approach leads to an 

RMSE of 0.090 and R2  of 0.58, which proves that the model 

is efficient in learning the spatial-temporal evolution and 

performs better than the baseline models such as RF and 

ARIMA. The Transformer+ Gaussian Processes (GP) 

model is the best among the models compared with RMSE 

of 0.063 and an R2 of 0.62. This hybrid approach combines 

Transformers' long-term dependency modeling capabilities 

with the probabilistic insights of Gaussian Processes, 

providing robust predictions and uncertainty estimation. 

This makes it the most reliable model for earthquake 

magnitude predictions, especially in applications requiring 

accuracy and confidence quantification. In conclusion, 

while each model has its strengths, hybrid approaches like 

CNN+LSTM and Transformer + GP emerge superiorly due 

to their ability to integrate spatial, temporal, and 

probabilistic aspects into the prediction framework (Table 

2). 
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Table 2. Model comparisons. 

The Random Forest model struggles to capture the temporal 

trends and provides static future predictions. LSTM shows 

an improved ability to follow the general trends of the data. 

It predicts slightly better future values compared to Random 

Forest. Captures sequential dependencies but may still 

struggle with complex temporal shifts. ARIMA predicts 

declining trends for future earthquake magnitudes. It 

performs better for linear and short-term patterns. This 

hybrid model captures spatial and temporal dependencies, 

making more dynamic and accurate predictions. It shows 

better generalization and flexibility compared to standalone 

LSTM or Random Forest models. The transformer + 

Gaussian hybrid model offers the most accurate predictions 

and incorporates a 95% confidence interval. Predictions are 

robust, with uncertainty quantified effectively. Combines 

long-term dependency modeling of Transformers with 

probabilistic insights from Gaussian Processes, making it 

the most reliable approach. Transformers + Gaussian 

Processes excels in accuracy and reliability. Hybrid models 

consistently outperform standalone methods by leveraging 

complementary strengths. Hybrid models like CNN+LSTM 

and Transformer + Gaussian can significantly enhance 

earthquake prediction systems. In Figure 3, the Random 

Forest model demonstrates a general ability to capture the 

trend of earthquake magnitudes. However, it 

underestimates certain peak values and lacks the ability to 

model temporal dependencies, which limits its 

effectiveness in sequential forecasting. In Figure 4, the 

LSTM model successfully captures temporal dependencies 

in the historical data. The future predictions appear 

smoother, indicating the model’s tendency toward 

conservative estimation, though overall trends are 

reasonably followed. In Figure 5, the ARIMA model shows 

reasonable performance in modeling linear components of 

the time series. However, the predicted future values are 

relatively flat and fail to reflect nonlinear or abrupt changes, 

which reduces forecasting accuracy in dynamic settings. In 

Figure 6, the CNN+LSTM hybrid model captures both 

spatial and temporal features more effectively. The 

predicted future magnitudes exhibit better alignment with 

recent patterns, though small deviations remain around 

highly variable points. In Figure 7, the Transformer + 

Gaussian Processes model offers both accurate predictions 

and uncertainty quantification. The future estimates fall 

within narrow confidence intervals, highlighting the 

model’s robustness and the reliability of its predictive 

uncertainty. 

 

Figure 3. Earthquake magnitude estimates with Random 

Forest. 

 

Figure 4. Earthquake magnitude estimates with LSTM. 

 

Figure 5. Earthquake magnitude estimates with ARIMA. 

Model 𝑹𝑴𝑺𝑬 𝑹𝟐 Key Notes 

Random Forest 

(RF) 
0.072 0.30 

Simple, fast, 

lacks temporal 

insight. 

ARIMA 0.065 0.42 

Linear 

dependencies 

only. 

LSTM 0.097 0.51 
Strong temporal 

modeling. 

CNN+LSTM 0.090 0.58 
Effective spatial-

temporal mix. 

Transformer +GP 0.063 0.62 

Robust 

uncertainty 

estimation. 



DUJE (Dicle University Journal of Engineering) 16:2 (2025) Page 369-376 

 

374 
 

 

Figure 6. Earthquake magnitude estimates with 

CNN+LSTM. 

 

Figure 7. Earthquake magnitude estimates with 

Transformer + Gaussian. 

Discussion 

The performance results of the evaluated models provide 

important information on earthquake magnitude 

estimation. Traditional models such as Random Forest 

(𝑅𝑀𝑆𝐸: 0.072, R2: 0.30) and ARIMA (𝑅𝑀𝑆𝐸: 0.065, 

R2: 0.42) have fundamental limitations in capturing the 

complex temporal dynamics inherent in seismic data. 

Although LSTM showed improved temporal modeling 

(R2: 0.51), its relatively high 𝑅𝑀𝑆𝐸 (0.097) points to 

difficulties in handling the complex spatiotemporal 

relationships of earthquake events. In particular, the 

superior performance of hybrid models such as 

CNN+LSTM (𝑅𝑀𝑆𝐸: 0.090, R2: 0.58) and Transformer + 

GP (𝑅𝑀𝑆𝐸: 0.063, R2: 0.62) emphasizes the importance of 

architectures that can simultaneously handle both spatial 

features and temporal dependencies while providing 

uncertainty quantification. 

These findings highlight a clear trend toward hybrid 

approaches that integrate the complementary strengths of 

different modeling paradigms. Recent studies also 

emphasize the increasing use of deep learning approaches 

in seismic forecasting, particularly in the Turkish context. 

For instance, Kas (2023) [25] applied LSTM, GRU, and 

BiLSTM models to forecast earthquake timing using 

seismic data from Turkey spanning 1900–2018, 

highlighting the comparative strengths of different neural 

architectures. Li et al. (2024) [26] focused on real-time 

monitoring by utilizing CNN-based models for detecting 

seismic phases and estimating magnitudes in the 2023 

Kahramanmaraş aftershock sequence. Shah et al. (2024) 

[27] employed Random Forest models for damage 

prediction based on multiple features such as magnitude, 

building stability, and population density in Turkish 

earthquakes. These recent studies support the continued 

relevance and expansion of AI-based models in earthquake 

prediction and risk assessment, and are consistent with the 

hybrid modeling direction taken in this study. 

The ability of the Transformer + GP model to combine 

long-range dependency modeling with probabilistic 

uncertainty estimation represents a significant advance for 

practical earthquake prediction applications. This is 

particularly valuable for early warning systems in which 

the confidence interval is as important as the point 

estimate. The performance gap between traditional 

statistical methods and hybrid deep learning architectures 

underscores the need for models specifically designed to 

handle the nonlinear, spatiotemporal properties of seismic 

data. In addition to prediction accuracy, computational 

efficiency is a crucial factor, especially in real-time 

earthquake monitoring and early warning systems. 

Classical models such as Random Forest and ARIMA are 

relatively lightweight and can be deployed in time-

sensitive environments. Deep learning models like LSTM 

and CNN+LSTM offer improved accuracy but come with 

higher computational costs due to their sequential and 

multi-layered nature. The Transformer + GP model, while 

the most accurate and informative, requires significant 

computational resources during both training and 

inference. Therefore, the choice of model should balance 

prediction quality with time and resource constraints 

depending on the specific application. 

Conclusion 

This study demonstrates how hybrid models, particularly 

the hybrid deep learning models, can be used to predict 

earthquake magnitude. The Transformer + GP model was 

the most efficient, and the best performance was achieved 

by combining deep learning methods with probabilistic 

modeling. Some models, such as Transformer + GP, are 

well suited for seismic early warning systems, mainly due 

to their predictive capabilities and confidence intervals. 

The integration of uncertainty quantification offers better 

decision-making capabilities. The results indicate that 

hybrid models outperform standard-alone machine 

learning methods. The CNN+LSTM model efficiently 

extracted spatial and temporal features, while the 

Transformer + GP model excelled in quantifying 

uncertainty, which is crucial for earthquake prediction. 

Hybrid models can be used in early warning systems to 

estimate the likelihood and magnitude of future 

earthquakes. Gaussian Processes add value by offering 

confidence intervals for decision-making under 

uncertainty. The data set’s size and quality can affect the 

model's performance. ARIMA as a model is simple and, 

therefore, cannot handle some complex models. In future 

studies, comparing model performance across regional and 

global seismic datasets could help assess the 
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generalizability and robustness of the proposed approaches 

under different geological conditions. 

Future work will require more data and other attributes, 

such as geographical location, to improve forecast 

accuracy. 
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