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Accurate predictive modeling is critical for enhancing patient outcomes and facilitating personalized
care. This study introduces a hybrid modelling framework that combines deep learning, transformer-based
architectures, and classical regression methods. The framework integrates multiple approaches, including
Artificial Neural Networks, Long Short-Term Memory Networks, Convolutional Neural Networks,
Random Forest, to model complex patterns in insulin biomarker data. By integrating these models into a
unified framework, the approach enhances predictive accuracy while ensuring interpretability. Explainable
Al techniques, including SHAP and LIME, are employed to identify key features influencing predictions,
thereby promoting transparency and clinical trust. The proposed framework achieves superior performance
on clinical datasets, with improved metrics such as MSE, MAE, and R?, outperforming baseline models.
Additionally, it identifies critical biomarkers associated with insulin regulation. Subgroup-level
interpretations provide clinically relevant insights that inform personalized treatment strategies. This work
demonstrates how advanced machine learning, coupled with explainability, establishes a robust foundation
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for clinical decision support systems to deliver effective and individualized patient care.

Introduction

Modern healthcare systems collect vast amounts of
clinical data, which presents significant challenges for
accurate analysis and interpretation of data. This challenge
is more significant for chronic conditions such as diabetes
and metabolic syndrome, where insulin levels significantly
influence on the management of the disease. Precise
estimation of insulin levels is fundamental for guiding
clinical decisions and for developing tailored treatment
plans. Recent evidence suggests that improvement in
insulin prediction significantly enhances patient care, which
highlights the need for more sophisticated insulin models
and advanced modeling methods in clinical medicine [1].

Clinical data analysis has been based on traditional
statistical frameworks, such as logistic regression. Although
these models have a adequate performance in less complex
cases, they often fail of capturing the complexity and high-
dimensional clinical biomarker data. Recent comparative
studies show that classical statistical methods often
underperform than modern machine learning methods when
dealing with advanced medical datasets. Capable of
modeling non-linear relationships among numerous
biomarkers, advanced deep learning frameworks, such as
CNNs and LSTMs, provide effective methods for the

accurate prediction of biologically complex phenomena. An
illustrative example is precise prediction of insulin levels
that depend on a large number of biological factors [2,3].

Insulin remains a central biomarker in metabolic studies
due to its crucial role in managing diseases like diabetes.
Our random forest-based feature importance analysis
identified critical biomarkers associated with insulin
regulation, including AST, 25-Hydroxy Vitamin D, Glucose
(Fasting), and TSH. These findings illustrate complex
interactions between liver function, thyroid health, glucose
metabolism, and overall endocrine status. Addressing these
diverse clinical variables together appears necessary for
effectively managing complex metabolic disorders. Such
observations are consistent with previous studies, which
emphasize the multifaceted nature of metabolic dysfunction
and support incorporating clinical and demographic data in
predictive models [4, 5].

Explainable Artificial Intelligence (XAI) has emerged
as a critical tool in clinical applications to enhance trust and
transparency. Integrating interpretability techniques into
predictive models helps clinicians better understand and
accept model outputs. For example, SHapley Additive
exPlanations (SHAP) is widely used to visualize how
individual features contribute to insulin predictions. This
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visualization aids clinicians in aligning computational
results with clinical experience, fostering trust and
supporting informed medical decision-making [6,7].

The subsequent stage of this research in our
investigation will focus on an in-depth assessment and
synthesis of predictive approaches. We focus on assessing
conventional statistical methods alongside modern deep
learning approaches to ascertain which one more accurately
predicts insulin fluctuations. Conducting this comparative
evaluation is crucial, given that previous works have
documented significant variations in prediction accuracy
between older and more advanced machine learning
techniques [8]. Utilizing these methods of such methods to
actual clinical datasets will provide empirical evidence of
their value [9, 10] in guiding clinical decisions concerning
the optimal analytical methods for tailored patient
management.

In conducting our investigation, we have systematically
applied systematic validation procedures to evaluate the
reliability of the predictive frameworks. We relied on
commonly accepted metrics, namely the Mean Absolute
Error (MAE), Mean Squared Error (MSE), and the
coefficient of determination (R-squared), to quantify the
accuracy of predictions compared to actual values. Such
comprehensive quantification supports the validity of the
analytical process and helps in adopting predictive tools
into routine clinical settings. Collectively, these
contributions support the operationalization of precision
medicine and provide clinicians with empirical evidence to
deliver accurate, patient-centered interventions supported
by computational analyses [11, 12].

In conclusion, as healthcare systems grapple with
increasing data complexity, integrating deep learning and
XAI provides a robust approach to enhancing patient care.
By focusing on key biomarkers, such as insulin, and
integrating classical and modern machine learning methods,
the approach facilitates precise analysis of metabolic
disorders. This integrated approach enables more accurate
predictions and supports individualized therapeutic
strategies. Moving forward, adopting these methods will be
crucial for aligning computational advances with clinical
reasoning, thereby enhancing clinical decision-making and
improving patient outcomes [13,14].

The remainder of this paper is structured as follows:
Section 2 describes data preprocessing and model
development; Section 3 reports the results; Section 4
discusses the findings; and Section 5 concludes with clinical
implications. Figure 1 illustrates the overall workflow, from
raw data to interpretable predictions. The proposed hybrid
ensemble model advances insulin level prediction by
integrating transformer-based deep learning, classical
regression, and explainable Al techniques, including SHAP
[38] and LIME [41]. Unlike previous approaches, this
strategy optimizes predictive performance through multi-
model integration while ensuring interpretability via global
and local explanation tools. It directly addresses clinical
needs for actionable and trustworthy artificial intelligence
(AD.
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Figure 1. Model Framework
Related Works

The combined application of ensemble deep learning
techniques, transformer architectures, classical regression
approaches, and explainable artificial intelligence
materially improves both the precision and cogency of
clinical prediction models, with notable impact in diabetes
management and the broader biomedical landscape [15,16].
Methods like Boosting and Random Forest steadily
outperform baseline classifiers, exhibiting heightened
resistance to heterogeneous and noisy clinical observations
[17]. Simultaneously, convolutional neural networks and
their hybrid configurations, when directed at medical
imaging datasets, mitigate overfitting and foster broader
generalization to external cohorts [18,19]. Transformers
further expand these advantages by accommodating both
structured clinical records and free-text notes, while the
self-attention mechanism furnishes an intuitive basis for
clinical stakeholders to interrogate model decisions [20,21].
Classical regression techniques remain important for
analyzing clinical relationships and patient outcomes,
especially when dealing with specific data distributions or
hierarchical structures [22,23]. Additionally, explainable Al
methods like SHAP and LIME play a critical role in
understanding and trusting model predictions, thereby
facilitating their integration into clinical practice [21].
Although transformer-based architectures have shown
strong predictive performance including
Badgeley etal. [21], their limited use of explainability
mechanisms has restricted clinical uptake. Likewise,
Afsharetal. [14] employed CNNs on clinical datasets but
did not fully resolve interpretability challenges. Our
approach closes these gaps by uniting hybrid deep-learning
architectures with classical regression and advanced XAl
frameworks, thereby improving both predictive accuracy
and model transparency. In comparison to these studies, our
proposed hybrid ensemble framework uniquely combines
multiple deep learning architectures, classical regression
models, and advanced XAI approaches. This integrated
strategy aims to leverage complementary strengths of each
method to improve both predictive accuracy and
interpretability in insulin level prediction tasks. A concise
comparative summary of important methods, domains, and
key contributions—including our proposed approach—is
presented in Table 1.
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Table 1. Comparative Analysis of Important Studies flexibility in clinical
analytics.
Reference  Method / Data / Key Contribution /
Approach  Domain Relevance Proposed Hybrid Clinical Combines
del E hl, hi. yker C 1p 1, y
Dai et al. Ensemble Clinical Highlights the robustness (Decp . da'ta modélmg approaches
Learning (single- and integrates XAl for
(2020) (e.g., data and accuracy of L.
. . + center enhanced predictive
Boosting, (various ensemble methods across . .
. Classical diabetes accuracy and
Random datasets) different healthcare . . -
. Regressio dataset) interpretability,
Forest) datasets, addressing L,
. o n+ XAI) addressing limitations of
noise and variability L
th h model prior single-method
rough mode studies in clinical data.
aggregation.
Kamnitsa  CNN Medical Demonstrates how Material and Method
s et al. ensemble imaging combining multiple CNN . L L X
(2018) framework  (tumor architectures mitigates This study employed a clinical dataset to predict insulin
s segmentatio  overfitting, improving levels using multiple modeling approaches. The focus is on
n) _generahza?"f} in medical deep learning methods, with comparisons made to classical
{TAge anatysts. machine learning algorithms. Hybrid ensemble models
Sukegawa  CNN- Medical Shows CNN models’ were alsq evalugted. This analysis is hlghly rel.evant given
etal. based deep  imaging effectiveness in th.e growing reliance on automat.ed techniques in mefhcm@.
(2021) learning (osteoporos  identifying conditions Diabetes care depends heavﬂy on accurate insulin
is detection)  such as osteoporosis; requirement data [15,16].
suggests ensemble
integration for improved Base Models with Deep Learning
diagnostic accuracy.
ANN (MLP) Model
Yamamot  CNN- Medical Explores advanced It is designed a model based on a Multi-Layer
oetal. based imaging convolutional methods X
(2020) approache for enhanced diagnostic Perceptron (MLP) architecture, where all layers are fully
s performance, reinforcing connected and dropout layers are incorporated to mitigate
Ihe benefits <1)f giefrlp overfitting. The model optimization step was done with the
carnng in clnica Adam algorithm, which is indicative of its popularity for
imaging. . .
regression tasks across multiple fields [25]. Recent works
Badgeley Transform  Structured Underscores the potential validate MLP’s cap2.101ty to model even the most intricate
etal. ers+ XAl  and of transformer datasets and thus, suitable for healthcare [15,26].
(2019) unstructure architectures for
d clinical analyzing diverse clinical LSTM Model
data data, emphasizin . .
imerpretgbﬂity Viga XAI The LSTM model was designed to consider the tabular
for transparent decision- data as sequential information so that the temporal insulin
making. secretion and absorption relationships can be captured.
‘ Although the dataset contains single time-point clinical
Famoye  Zero- Countdata  Illustrates the continued measurements without explicit temporal sequences, LSTM
& Singh Inflated in clinical importance of classical del lored t tu ible latent tial
(2021) Generalize  outcomes regression methods for models We_re explored (o capture possible 'a ent sequentia
d Poisson specialized data dependencies. It appears that capturing long-range
Regression distributions, advocating dependencies and sequential patterns in glucose profiles is
hybrid approaches when indeed helpful to improve prediction accuracy [27,28]. In
dealing with complex impl . .. . includi
clinical phenomena. LSTM implementations, optimization optlon.s including
RMSprop are commonly chosen due to adaptive learning
Obasohan  Mixed Hierarchica ~ Demonstrates the use of rates [29].
etal. Effects 1 clinical classical statistical
(2020) Model datasets models to capture multi- CNN Model
level or hierarchical Sifting through the data using a one-dimensional
structures, providing X
complementary insights convolutional neural network (1D CNN) enabled us to
alongside advanced ML focus on the most relevant features pertaining to insulin
techniques. levels. Efficient feature extraction was achieved through the
. stacking of Conv1D layers, flatten layers, and dense layers.
Habibov  Ensemble — Heterogene  Showcases how SGD has also been the chosen optimizer in the recent
et al. framework  ous clinical  ensemble methods can . . .
(2019) s for data adaptively learn from 11terat1}re [25] which supports the use of sequential data
heterogene multiple data sources and analysis [30].
ous data handle confounding

variables, offering
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Classical Machine Learning Models
Random Forest Regressor

A benchmark model and a model to evaluate feature
importance was the Random Forest Regressor. Random
forest models have been shown to perform particularly well
when predicting outcomes related to health [15,31]. The
model’s robustness and efficiency in managing high-
dimensional clinical data were corroborated by previous
works. Random forests are usually built as an ensemble and
are very useful in indicating the most important parameters
that impact health metrics [30].

Hybrid Ensemble Framework
Meta-ANN (Stacking Meta-Model)

For the ensemble approach, a meta-ANN model is built
using the outputs of individual deep learning models (ANN,
LSTM and CNN). This stacking method utilizes various
outputs from different models to improve the overall
regression results. Previous research has proven the
effectiveness of such hybridization to improve model
accuracy and generalizability [16,32].

Hybrid (Out-of-Fold, OOF) Stacking Model

In the OOF framework, each base model is fitted on
k—1 folds and generates predictions for the held-out fold.
These out-of-fold predictions then serve as features for
training the meta-model. By relying solely on unseen data
for meta-level inputs, the procedure mitigates overfitting
and improves generalization. This study utilizes k-fold
cross-validation to obtain OOF estimates, which are
subsequently used to train the meta-learner and further curb
model over-learning.

Split into k folds
(k-Fold CV)

Base Model OOF Predictions
Training on Hold-Out
(k-1 folds) Fold
v
Aggregate OOF
Predictions
Meta-Model
Training

Final Ensemble
Prediction

Figure 2. Diagram of Hybrid Stacking Model
Model Evaluation and Explainability

Model performance was evaluated using MSE, MAE,
and R?, each capturing distinct aspects of predictive
accuracy [25]. To enhance clinical interpretability, we
implemented a hybrid XAI framework combining SHAP
and LIME. SHAP provides global feature importance by
quantifying each variable’s contribution across the dataset,

while LIME offers local interpretability by approximating
the model’s behavior around individual predictions.
Together, these methods link population-level insights with
patient-specific  explanations, addressing clinicians’
demands for both transparency and actionable decision
support [16, 24].

Application Process

The dataset from a private hospital in Antalya contains
blood values of patients diagnosed with myalgia. The data
set contains a total of 67 clinical variables and 2822
instances including demographic information including
age, gender and biochemical parameters such as AST, ALT,
glucose, TSH, ferritin. After data preprocessing steps,
feature engineering was performed and the number of
features was reduced to 21. The feature importance graph
with random forest regressor is given in Figure 3.
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Figure 3. Feature Importance with Random Forest
Regressor

During the implementation of the study, the dataset was
first cleaned of missing values; columns with 90% or more
missing values were removed. Remaining missing values
were imputed using the Iterative Imputer method, which
models missing data based on other features to provide
accurate estimates. All data was scaled with Standard Scaler
and then divided into a training-test set, with an 80-20 split.
For deep learning models, the data was reshaped
appropriately, while classical models were trained directly
with scaled data. The predictions produced by the base
models were used for meta-model training using stacking.

Model architectures, hyperparameters, and software
libraries including their versions (Python 3.11, TensorFlow
2.12, scikit-learn 1.0.2, SHAP 0.40) are detailed in the
appendix.

Results

We evaluated the predictive performance of multiple
models for insulin level estimation using our clinical
dataset. Table 2 compares model performances based on
MSE, MAE, and R? score, which quantify prediction error
magnitude and explained variance, respectively. The
Hybrid Ensemble Model, combining MLP and Optimized
Transformer  architectures,  demonstrated  superior
performance with the lowest MSE (11.43), MAE (1.43),
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and highest R? (0.92), highlighting the advantages of
integrating complementary modeling approaches.

Table 2. Comparison of Model Performances

Model MSE MAE R? Score
Random Forest Regressor 253563  1.8267  0.9051
CNN+LSTM 33.3777 29058  0.6153
MLP 249893  2.6739  0.8219
Transformer 69.0674  4.5055 0.4377
Baseline Transformer 66.3250 4.4578  0.4674
Transformer + Positional 36.7644 25394  0.7867
Encoding

Optimized Transformer 26.5052 23304  0.8219
Keras Tuner Optimized Model 28.6607  2.1431 0.8743

Classical machine learning methods proved remarkably
effective, with the Random Forest Regressor achieving
competitive results (MSE: 25.36, MAE: 1.83, R% 0.91) -
outperforming several deep learning base models. Among
individual deep learning architectures, the MLP showed
stronger predictive capability (MSE: 24.99, MAE: 2.67, R*:
0.82) compared to the CNN+LSTM model (MSE: 33.38,
MAE: 291, R% 0.62), suggesting MLPs may be better
suited for tabular clinical data without extensive feature
engineering.

Transformer-based  models  exhibited  varying
performance levels. The  baseline  Transformer
configurations initially underperformed (R? < 0.47), likely
due to hyperparameter sensitivity and moderate dataset size.
However, architectural enhancements yielded significant
improvements: positional encoding increased R? to 0.79,
while comprehensive hyperparameter optimization boosted
performance further (Optimized Transformer R* 0.82;
Keras Tuner-optimized model R?: 0.87).

These results demonstrate that while classical
algorithms like Random Forest remain robust for clinical
prediction tasks, carefully designed hybrid ensembles
combining optimized deep learning models achieve
superior accuracy. The ensemble's performance advantage
stems from its ability to capture complex, nonlinear
relationships in  clinical data through multiple
complementary approaches.
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Glucose (Fasting) _
Ferritin _
TSH (Thyroid Stimulating Hormone) _
ALT (Alanine Aminotransferase) -
age [N
Potassium -
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HDL Cholesterol .
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CRP (C-Reactive Protein) I
12 ||

Blood Urea Nitrogen (UREA) I

0.0 0.5 1.0 15 2.0
mean(|SHAP value|) (average impact on model output mat¢

Figure 4. Average SHAP Feature Importance for Insulin
Prediction Model

Using the SHAP method, the importance levels of
features influencing the model's predictions are revealed.
Figure 4 ranks the features based on their absolute average
SHAP values, highlighting 25-Hydroxy Vitamin D and AST
as the most critical biomarkers for predicting insulin levels.
This aligns with existing literature where vitamin D
deficiency or excess significantly affects insulin regulation
[35]. Other features like fasting glucose and ferritin also
contribute notably, reflecting the close link between
glycemic control, iron metabolism, and insulin dynamics,
while TSH and ALT have smaller yet relevant impacts, with
ALT emphasizing liver function’s role in insulin
metabolism.
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Figure 5. SHAP Bee Swarm Plot Showing Feature Value
Impact on Insulin Prediction

Figure 5 complements this by illustrating how
individual feature values influence insulin predictions
across patients. Each point represents a patient’s SHAP
value for a feature, colored from blue (low feature value) to
red (high feature value). For example, high fasting glucose
levels (red points) correspond to positive SHAP values,
increasing predicted insulin levels, whereas low glucose
levels (blue points) reduce them. Similar patterns are
observed for 25-Hydroxy Vitamin D and AST, showing their
variable contributions depending on measured values.

Feature

Figure 6. LIME Explanation of Feature Contributions for a
Single Patient's Insulin Prediction

Figure 6, generated using the LIME method, details the
positive or negative contribution of features to insulin
prediction in a single example (one patient data point). This
graph clearly shows that high glucose values are the
strongest factor increasing insulin prediction. Some
biomarkers, such as B/2 and FT4 values, have a smaller
effect on insulin levels on a sample basis and, although
locally effective, have a lower effect in the general
population.
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25-Hydroxy Vitamin D -0.12
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Triglycerides
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14.0 14.2 14.4 14.6 14.8 15.2

15.0
E[fix)]
Figure 7. SHAP Waterfall Plot (Single Instance)

Figure 7 presents a SHAP waterfall plot
illustrating how each feature incrementally adjusts the
model’s baseline prediction (14.085) to arrive at the final
predicted value (14.965) for a single patient. In this
instance, Glucose (Fasting) and Age exert the most
pronounced negative contributions, collectively reducing
the prediction by approximately 0.74 units. Conversely,
Calcium and Ferritin provide moderate positive shifts,
suggesting that elevated levels of these biomarkers are
associated with an increased Insulin estimate. The
contribution of 25-Hydroxy Vitamin D—also positive—
reinforces the broader observation that 25-Hydroxy Vitamin
D status plays a significant role in insulin regulation.
Smaller effects, such as the negative impact of Potassium
and the positive shifts from Triglycerides, VLDL
Cholesterol, and AST, further refine the prediction. When
these individual contributions are summed, the model’s
final prediction is slightly higher than the baseline. This
granular view of how each biomarker influences the
predicted insulin level underscores the interpretability
benefits of SHAP, enabling clinicians and researchers to
pinpoint the clinical factors that most strongly drive the
model’s decision for this particular patient.
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Figure 8. SHAP Decision Plot Illustrating Feature
Contributions Across Individual Predictions

564



DUIJE (Dicle University Journal of Engineering) 16:3 (2025) Page 559-570

Figure 8 displays a SHAP decision plot that sequentially
demonstrates how each clinical feature modifies the
model’s predicted insulin value from an initial baseline
(approximately 14.2) to the final output (near 15.0) for a
single instance. The horizontal axis represents the model’s
prediction scale, while each step in the plot shows the
incremental contribution—positive or negative—of a
specific biomarker:

e Glucose (Fasting) and Age appear as the top
contributors, with their combined influence shaping the
initial shift from the baseline.

o Calcium, Ferritin, 25-Hydroxy Vitamin D, and
Potassium provide additional refinements, indicating
that variations in these features can further raise or lower
the predicted insulin level.

o The subsequent features, including Triglycerides, VLDL
Cholesterol, AST, and others, exert smaller but still
meaningful effects, cumulatively guiding the model to
its final prediction.

By illustrating each feature’s incremental impact, the
decision plot offers a transparent view of the model’s
internal reasoning. Clinically, it underscores how multiple
biomarkers—ranging from glucose metabolism to mineral
balance—interact to influence insulin levels, thereby
offering a nuanced perspective for personalized patient
management.
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Figure 9. SHAP Heatmap Displaying Feature Impact on
Model Output Across All Instances

In Figure 9, the visualization is organized into
columns representing individual cases, while the rows
correspond to clinical features ranked by their overall
significance to the model’s output. The color scale used
conveys both the size and sign of each feature’s influence
on the resultant insulin value: saturated red denotes a feature
positively influencing insulin predictions, and saturated
blue denotes its negative impact. The leading feature, serum
25-Hydroxy Vitamin D, exhibits a noticeable spread of red
and blue colors across the observation columns, suggesting
that alterations in vitamin D status may critically impact
insulin estimation according to the underlying risk profile
of concurrent biomarkers. Similar spread is evident for
aspartate aminotransferase, fasting glucose, and ferritin,
each demonstrating distinct patterns that confirm their
significant effect on the variation in predictions. Lower

rows in the heatmap, containing thyroid-stimulating
hormone, alanine aminotransferase, and other clinical
covariates, reveal segments with less intense colors yet still
instrumental in marginal adjustment of the insulin
predictions. The horizontal bands of color further delineate
clusters of patients whose combinatorial biomarker portraits
converge to similar model predictions, suggesting the
presence of latent clinical subgroups influenced by specific
biomarker combinations. This heatmap illustrates both the
global importance and the instance-specific role of selected
biomarkers, providing clinicians and researchers with
understanding of the interactions between features that
collectively contribute to predictive results.

25-Hydroxy Vitamin D
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Age
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Figure 10. SHAP Bar Plot Showing Average Feature
Importance in Insulin Prediction

In Figure 10, each horizontal bar indicates the mean
absolute SHAP value for a given feature, illustrating its
overall impact on the model’s insulin predictions. The
highest bar corresponds to 25-Hydroxy Vitamin D, which
stands out as the most influential predictor, with a mean
SHAP value of +2.2. This suggests that variations in
vitamin D levels produce larger shifts in the model’s output
than any other single biomarker. Following closely, AST
and Glucose (Fasting) exhibit substantial mean SHAP
values, highlighting their critical roles in shaping insulin
estimates—an observation aligned with established clinical
knowledge regarding liver enzymes and glycemic control.
Ferritin, TSH, and ALT also show meaningful
contributions, indicating that metabolic and endocrine
factors collectively inform the model’s decisions. Lower-
ranked features, including Potassium and Calcium, have
more modest mean SHAP values but nonetheless refine the
prediction. The aggregated “Sum of 12 other features”
category demonstrates that while individually less
influential, a group of features still exerts a combined effect
on insulin level estimation. Overall, this visualization
underscores the multifactorial nature of insulin regulation,
highlighting the diverse set of biomarkers—spanning
vitamin levels, hepatic function, and mineral homeostasis—
that the model deems most pertinent in forecasting insulin
concentrations.

565



DUIJE (Dicle University Journal of Engineering) 16:3 (2025) Page 559-570

Distribution of Glucose (Fasting) SHAP Values by Age Group

SHAP Value (Contribution to Insulin Prediction)

=50 Age
Age_Group

Figure 11. Distribution of Glucose (Fasting) SHAP Values
by Age Group

In Figure 11, the distribution of SHAP values for fasting
glucose across age groups reveals a wider spread of values
in the younger subgroup (<50 years), with several positive
outliers strongly contributing to insulin prediction. This
suggests that glucose levels may have a more variable
influence on insulin prediction among younger individuals
compared to older ones. The median SHAP value appears
closer to zero, indicating that while some individuals show
strong influence, the overall effect is moderate.

Distribution of Glucose (Fasting) SHAP Values by Gender_Group

o]

i -
=1 =

,_.

o =3
o

oo

oo a» CO QO

8
8
o}
°]
o

o

SHAP Value (Contribution to Insulin Prediction)
o

Gender_Group

Figure 12. Distribution of Glucose (Fasting) SHAP Values
by Gender Group

In Figure 12, the SHAP value distributions for fasting
glucose are similar between females and males, with
overlapping medians and ranges. Although outliers with
high positive contributions exist in both genders, no
substantial difference in the overall impact on insulin
prediction is evident. This is consistent with the statistical
test result (p = 0.1842), indicating no significant difference
between genders in the predictive contribution of fasting
glucose.

Comparison of SHAP Values of Top 5 Features by Age Group

Age Group
<50 Age

Mean SHAP value
L

Features

Figure 13. Comparison of SHAP Values of Top 5 Features
by Age Group

In Figure 13, a comparison of the mean SHAP values of
the top five features across age groups reveals notable
differences. The younger group (<50 years) exhibits higher
mean SHAP values for AST and 25-Hydroxy Vitamin D,
suggesting these features contribute more strongly to
insulin prediction in this subgroup. Conversely, the older
group’s influence is comparatively lower for these features.
Glucose (Fasting) maintains a moderate effect across both
groups, suggesting it is an important predictor regardless of
age.

Comparison of SHAP Values of Top 5 Features by Gender Group

Gender Group
Female
08 Male

Mean SHAP Value

Features

Figure 14. Comparison of SHAP Values of Top 5 Features
by Gender Group

Figure 14 demonstrates distinct patterns in the
comparison of mean SHAP values for the top features
between genders. Males exhibit higher mean SHAP
contributions for AST and Ferritin, while females show a
stronger influence of 25-Hydroxy Vitamin D. Glucose
(Fasting) shows a relatively consistent effect in both
groups. These differences imply that the model’s
explanation for insulin prediction varies subtly between
males and females, highlighting potential biological or
clinical differences in feature relevance.
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Discussion

Despite the excellent performance achieved by the
hybrid ensemble model, several issues remain that warrant
further attention. Furthermore, it is essential to clarify
whether the dataset inherently contains temporal or
sequential structures that justify the use of recurrent
architectures such as LSTM. If the data exhibits temporal
dependencies, leveraging LSTM could provide meaningful
advantages; otherwise, Transformer-based or other non-
sequential models might require alternative design
considerations [37].

Moreover, the success of the stacking methodology is
highly contingent on the quality of out-of-fold predictions
and the design of the meta-model. Transformer-based
architectures initially exhibited suboptimal results,
underscoring their sensitivity to hyperparameters such as
learning rate, dropout, and attention mechanisms. These
findings point to the necessity of advanced optimization
techniques, such as Bayesian search, to unlock their full
potential. Moreover, although combining MLP and
optimized Transformer outputs yielded strong results (R? =
0.9157), further gains might be achieved by incorporating
additional learners—Ilike Random Forests or other deep
models—offering diverse perspectives and improving
robustness.  Additionally, employing regularization
strategies—such as L2 regularization or dropout at the
meta-model level—could mitigate overfitting risks, leading
to more robust and reliable predictions.

XALI analyses confirmed the importance of biomarkers
including 25-Hydroxy Vitamin D, AST, and Glucose
(Fasting) in predicting insulin levels. Notably, subgroup
analyses demonstrated statistically meaningful variations in
feature importance across demographic strata, highlighting
the need for personalized approaches tailored to
demographic differences. For example, fasting glucose
exhibited greater variability in predictive influence among
younger patients (<50 years), indicating heterogeneous
metabolic profiles or disease manifestations in this
subgroup. Gender-based comparisons, while showing no
statistically significant difference in fasting glucose
contribution, identified subtle but potentially clinically
relevant distinctions in features including AST and Ferritin.
These findings underscore the importance of integrating
subgroup-specific  interpretability ~ within  predictive
modeling frameworks to enhance clinical transparency and
support personalized medicine [38, 39]. Future work should
strive to incorporate these interpretability tools more
seamlessly to provide clinicians with actionable insights
alongside high model performance, ultimately fostering
trust in automated decision support systems [40].

The study’s single-center dataset poses limitations in
terms of generalizability. Broader validation across
multicenter cohorts with diverse clinical profiles is essential
to ensure robustness and external applicability. Future
studies are needed to validate these models on larger,
multicenter datasets with diverse demographic and clinical
characteristics. In addition to technical improvements,
ethical and practical considerations are crucial for clinical

deployment. Ensuring patient data privacy, addressing
potential algorithmic bias, and evaluating the clinical
consequences of false predictions are essential steps for safe
integration into decision support systems. These safeguards
will enhance clinician trust and ensure responsible
application of the model in diverse healthcare settings.
Additionally, expanding the scope to include other relevant
clinical outcomes, such as hypoglycemic events and long-
term complications, could provide a more comprehensive
understanding of disease progression and model utility in
real-world settings [40].

In conclusion, our study demonstrates that hybrid
ensemble methodologies, which integrate advanced deep
learning architectures with classical regression techniques
and robust XAI approaches, offer a promising avenue for
predicting insulin levels in clinical data. Nonetheless,
further optimization of model parameters, incorporation of
additional base learners, explicit consideration of temporal
data structure, and expansion of datasets are essential next
steps to improve model generalizability and clinical utility.
Additionally, embedding subgroup-specific explainability
analyses will be critical for translating predictive models
into trustworthy, personalized clinical decision support
tools, ultimately contributing to more effective patient care
[37, 38].

Conclusion

This study introduces a hybrid ensemble framework that
outperforms individual models in predicting insulin levels
from clinical data by combining deep learning and classical
methods. However, several limitations remain. The dataset
was sourced from a single center, which restricts the
generalizability of the findings. Further refinement of
model hyperparameters is needed, and incorporating
additional biomarkers, including genetic and epigenetic
factors, could enhance predictive power. Validation on
larger, multicenter cohorts and the integration of real-time
data streams, including continuous glucose monitoring, will
be crucial to capture more complex physiological patterns.
Moreover, ensuring that model explanations adapt to patient
subgroups will be key to clinical acceptance, allowing for
personalized and transparent decision-making. The future
success of machine learning in healthcare depends on
balancing high accuracy with explainable models, while
addressing ethical considerations centered on patient care,
including data privacy, model transparency, and potential
algorithmic bias. These considerations are essential for safe
and responsible use of Al in real-world clinical
environments. Collectively, this study not only achieves
high predictive accuracy but also provides clinically
meaningful interpretations tailored to patient subgroups,
representing a significant advancement in personalized Al-
driven clinical decision support. Such progress holds
promise for enhancing patient outcomes.
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Appendix - Model Architectures and Hyperparameters Used in the Study

ACM SIGKDD international conference on knowledge
discovery and data mining (pp. 1135-1144).

. Activation Optimization Learning Dropout Additional
Model Name Layer Structure/Architecture Functions Algorithm Rate Rate Parameters
MLP ReLU (Hidden Epochs: 100
Layers) Batch Size: 32
3 Layers (128-64-32-1) Linear (Output Adam 0.001 0.2 EarlyStopping
Layer) (Patience=10)
Transformer ReLU (CNN
Layer)
CNN (Conv1D, filters=64, kernel=2) )
LSTM (50 units) Tanh (LSTM )\ 4oy 0.001 0.2 Epochs: 50
. Layer) Batch Size: 32
Dense (1 unit) .
Linear
(Output)
Baseline Embedding: Dense (32 dimensions) ReLU (Hidden Epochs: 100
Transformer 2 Transformer Encoder Blocks (Head Layers) Batch Size: 32
Size=16, Num Heads=4, FFN=64) ay Adam 0.001 0.1 .
. Linear (Output EarlyStopping
GlobalAveragePooling Layer) (Patience=10)
Dense (64-1) y
"[:r‘ansformer + Embedding: Dense (64 dimensions) ReLU (Hidden Epochs: 100
Positional Encoding 3 Transformer Encoder Blocks (Head Layers) Batch Size: 16
Size=32, Num Heads=4, FFN=128) ay Adam 0.0001 0.2 .
. Linear (Output EarlyStopping
GlobalAveragePooling Layer) (Patience=10)
Dense (64-1) y
Optimized Auto-tuned: embed _dim=[32,64,128] Epochs: 50
Transformer head_size=[16,32,64] ReLU (Hidden Batch Size: 32
num_heads=[2,4,8] Layers) Adam Tuned (Best Tuned (Best RandomSearch
ff dim=[64,128,256] Linear (Output Selected) Selected) (max_trials=10)
dropout=[0.1-0.5] Layer) EarlyStopping
learning_rate=[le-3,1e-4,1e-5] (Patience=10)
Keras Tuner Base Models: . 5-Fold Cross
Optimized Model - MLP (64-32 units) ReLU (Hidden Validation
L Layers) 0.2 (Meta- .
- Optimized Transformer Linear (Output Adam 0.001 model) Epochs: 20 (per
(Embedding=64. Heads=4, FEN=128) =00 tp model)

Meta-model: Dense (16-8-1)

Batch Size: 32
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