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Introduction 

Modern healthcare systems collect vast amounts of 

clinical data, which presents significant challenges for 

accurate analysis and interpretation of data. This challenge 

is more significant for chronic conditions such as diabetes 

and metabolic syndrome, where insulin levels significantly 

influence on the management of the disease. Precise 

estimation of insulin levels is fundamental for guiding 

clinical decisions and for developing tailored treatment 

plans. Recent evidence suggests that improvement in 

insulin prediction significantly enhances patient care, which 

highlights the need for more sophisticated insulin models 

and advanced modeling methods in clinical medicine [1]. 

Clinical data analysis has been based on traditional 

statistical frameworks, such as logistic regression. Although 

these models have a adequate performance in less complex 

cases, they often fail of capturing the complexity and high-

dimensional clinical biomarker data. Recent comparative 

studies show that classical statistical methods often 

underperform than modern machine learning methods when 

dealing with advanced medical datasets. Capable of 

modeling non-linear relationships among numerous 

biomarkers, advanced deep learning frameworks, such as 

CNNs and LSTMs, provide effective methods for the 

accurate prediction of biologically complex phenomena. An 

illustrative example is precise prediction of insulin levels 

that depend on a large number of biological factors [2,3]. 

Insulin remains a central biomarker in metabolic studies 

due to its crucial role in managing diseases like diabetes. 

Our random forest-based feature importance analysis 

identified critical biomarkers associated with insulin 

regulation, including AST, 25-Hydroxy Vitamin D, Glucose 

(Fasting), and TSH. These findings illustrate complex 

interactions between liver function, thyroid health, glucose 

metabolism, and overall endocrine status. Addressing these 

diverse clinical variables together appears necessary for 

effectively managing complex metabolic disorders. Such 

observations are consistent with previous studies, which 

emphasize the multifaceted nature of metabolic dysfunction 

and support incorporating clinical and demographic data in 

predictive models [4, 5]. 

Explainable Artificial Intelligence (XAI) has emerged 

as a critical tool in clinical applications to enhance trust and 

transparency. Integrating interpretability techniques into 

predictive models helps clinicians better understand and 

accept model outputs. For example, SHapley Additive 

exPlanations (SHAP) is widely used to visualize how 

individual features contribute to insulin predictions. This 
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visualization aids clinicians in aligning computational 

results with clinical experience, fostering trust and 

supporting informed medical decision-making [6,7]. 

The subsequent stage of this research in our 

investigation will focus on an in-depth assessment and 

synthesis of predictive approaches. We focus on assessing 

conventional statistical methods alongside modern deep 

learning approaches to ascertain which one more accurately 

predicts insulin fluctuations. Conducting this comparative 

evaluation is crucial, given that previous works have 

documented significant variations in prediction accuracy 

between older and more advanced machine learning 

techniques [8]. Utilizing these methods of such methods to 

actual clinical datasets will provide empirical evidence of 

their value [9, 10] in guiding clinical decisions concerning 

the optimal analytical methods for tailored patient 

management. 

In conducting our investigation, we have systematically 

applied systematic validation procedures to evaluate the 

reliability of the predictive frameworks. We relied on 

commonly accepted metrics, namely the Mean Absolute 

Error (MAE), Mean Squared Error (MSE), and the 

coefficient of determination (R-squared), to quantify the 

accuracy of predictions compared to actual values. Such 

comprehensive quantification supports the validity of the 

analytical process and helps in adopting predictive tools 

into routine clinical settings. Collectively, these 

contributions support the operationalization of precision 

medicine and provide clinicians with empirical evidence to 

deliver accurate, patient-centered interventions supported 

by computational analyses [11, 12]. 

In conclusion, as healthcare systems grapple with 

increasing data complexity, integrating deep learning and 

XAI provides a robust approach to enhancing patient care. 

By focusing on key biomarkers, such as insulin, and 

integrating classical and modern machine learning methods, 

the approach facilitates precise analysis of metabolic 

disorders. This integrated approach enables more accurate 

predictions and supports individualized therapeutic 

strategies. Moving forward, adopting these methods will be 

crucial for aligning computational advances with clinical 

reasoning, thereby enhancing clinical decision-making and 

improving patient outcomes [13,14]. 

The remainder of this paper is structured as follows: 

Section 2 describes data preprocessing and model 

development; Section 3 reports the results; Section 4 

discusses the findings; and Section 5 concludes with clinical 

implications. Figure 1 illustrates the overall workflow, from 

raw data to interpretable predictions. The proposed hybrid 

ensemble model advances insulin level prediction by 

integrating transformer-based deep learning, classical 

regression, and explainable AI techniques, including SHAP 

[38] and LIME [41]. Unlike previous approaches, this 

strategy optimizes predictive performance through multi-

model integration while ensuring interpretability via global 

and local explanation tools. It directly addresses clinical 

needs for actionable and trustworthy artificial intelligence 

(AI).  

 
Figure 1. Model Framework 

Related Works 

The combined application of ensemble deep learning 

techniques, transformer architectures, classical regression 

approaches, and explainable artificial intelligence 

materially improves both the precision and cogency of 

clinical prediction models, with notable impact in diabetes 

management and the broader biomedical landscape [15,16]. 

Methods like Boosting and Random Forest steadily 

outperform baseline classifiers, exhibiting heightened 

resistance to heterogeneous and noisy clinical observations 

[17]. Simultaneously, convolutional neural networks and 

their hybrid configurations, when directed at medical 

imaging datasets, mitigate overfitting and foster broader 

generalization to external cohorts [18,19]. Transformers 

further expand these advantages by accommodating both 

structured clinical records and free-text notes, while the 

self-attention mechanism furnishes an intuitive basis for 

clinical stakeholders to interrogate model decisions [20,21]. 

Classical regression techniques remain important for 

analyzing clinical relationships and patient outcomes, 

especially when dealing with specific data distributions or 

hierarchical structures [22,23]. Additionally, explainable AI 

methods like SHAP and LIME play a critical role in 

understanding and trusting model predictions, thereby 

facilitating their integration into clinical practice [21]. 

Although transformer‑based architectures have shown 

strong predictive performance including 

Badgeley et al. [21], their limited use of explainability 

mechanisms has restricted clinical uptake. Likewise, 

Afshar et al. [14] employed CNNs on clinical datasets but 

did not fully resolve interpretability challenges. Our 

approach closes these gaps by uniting hybrid deep‑learning 

architectures with classical regression and advanced XAI 

frameworks, thereby improving both predictive accuracy 

and model transparency. In comparison to these studies, our 

proposed hybrid ensemble framework uniquely combines 

multiple deep learning architectures, classical regression 

models, and advanced XAI approaches. This integrated 

strategy aims to leverage complementary strengths of each 

method to improve both predictive accuracy and 

interpretability in insulin level prediction tasks. A concise 

comparative summary of important methods, domains, and 

key contributions—including our proposed approach—is 

presented in Table 1. 
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Table 1. Comparative Analysis of Important Studies 

Reference Method / 

Approach 

Data /  

Domain 

Key Contribution / 

Relevance 

Dai et al. 

(2020) 

Ensemble 

(e.g., 
Boosting, 

Random 

Forest) 

Clinical 

data 
(various 

datasets) 

Highlights the robustness 

and accuracy of 
ensemble methods across 

different healthcare 

datasets, addressing 
noise and variability 

through model 

aggregation. 

Kamnitsa

s et al. 

(2018) 

CNN 

ensemble 

framework

s 

Medical 

imaging 

(tumor 
segmentatio

n) 

Demonstrates how 

combining multiple CNN 

architectures mitigates 
overfitting, improving 

generalization in medical 

image analysis. 

Sukegawa 

et al. 

(2021) 

CNN-
based deep 

learning 

Medical 
imaging 

(osteoporos

is detection) 

Shows CNN models’ 
effectiveness in 

identifying conditions 

such as osteoporosis; 
suggests ensemble 

integration for improved 

diagnostic accuracy. 

Yamamot

o et al. 

(2020) 

CNN-

based 

approache

s 

Medical 

imaging 

Explores advanced 

convolutional methods 

for enhanced diagnostic 
performance, reinforcing 

the benefits of deep 

learning in clinical 

imaging. 

Badgeley 

et al. 

(2019) 

Transform

ers + XAI 

Structured 

and 
unstructure

d clinical 

data 

Underscores the potential 

of transformer 
architectures for 

analyzing diverse clinical 

data, emphasizing 
interpretability via XAI 

for transparent decision-

making. 

Famoye 

& Singh 

(2021) 

Zero-
Inflated 

Generalize

d Poisson 

Regression 

Count data 
in clinical 

outcomes 

Illustrates the continued 
importance of classical 

regression methods for 

specialized data 
distributions, advocating 

hybrid approaches when 

dealing with complex 

clinical phenomena. 

Obasohan 

et al. 

(2020) 

Mixed 

Effects 

Model 

Hierarchica

l clinical 

datasets 

Demonstrates the use of 

classical statistical 
models to capture multi-

level or hierarchical 

structures, providing 
complementary insights 

alongside advanced ML 

techniques. 

Habibov 

et al. 

(2019) 

Ensemble 

framework

s for 
heterogene

ous data 

Heterogene

ous clinical 

data 

Showcases how 

ensemble methods can 

adaptively learn from 
multiple data sources and 

handle confounding 

variables, offering 

flexibility in clinical 

analytics. 

Proposed 

model  

Hybrid 

Ensemble 

(Deep 

Learning 

+ 

Classical 

Regressio

n + XAI) 

Clinical 

biomarker 

data 

(single-

center 

diabetes 

dataset) 

Combines 

complementary 

modeling approaches 

and integrates XAI for 

enhanced predictive 

accuracy and 

interpretability, 

addressing limitations of 

prior single-method 

studies in clinical data. 

Material and Method 

 This study employed a clinical dataset to predict insulin 

levels using multiple modeling approaches. The focus is on 

deep learning methods, with comparisons made to classical 

machine learning algorithms. Hybrid ensemble models 

were also evaluated. This analysis is highly relevant given 

the growing reliance on automated techniques in medicine. 

Diabetes care depends heavily on accurate insulin 

requirement data [15,16]. 

Base Models with Deep Learning 

ANN (MLP) Model 

 It is designed a model based on a Multi-Layer 

Perceptron (MLP) architecture, where all layers are fully 

connected and dropout layers are incorporated to mitigate 

overfitting. The model optimization step was done with the 

Adam algorithm, which is indicative of its popularity for 

regression tasks across multiple fields [25]. Recent works 

validate MLP’s capacity to model even the most intricate 

datasets and thus, suitable for healthcare [15,26]. 

LSTM Model 

 The LSTM model was designed to consider the tabular 

data as sequential information so that the temporal insulin 

secretion and absorption relationships can be captured. 

Although the dataset contains single time-point clinical 

measurements without explicit temporal sequences, LSTM 

models were explored to capture possible latent sequential 

dependencies. It appears that capturing long-range 

dependencies and sequential patterns in glucose profiles is 

indeed helpful to improve prediction accuracy [27,28]. In 

LSTM implementations, optimization options including 

RMSprop are commonly chosen due to adaptive learning 

rates [29]. 

CNN Model 

 Sifting through the data using a one-dimensional 

convolutional neural network (1D CNN) enabled us to 

focus on the most relevant features pertaining to insulin 

levels. Efficient feature extraction was achieved through the 

stacking of Conv1D layers, flatten layers, and dense layers. 

SGD has also been the chosen optimizer in the recent 

literature [25] which supports the use of sequential data 

analysis [30]. 
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Classical Machine Learning Models 

Random Forest Regressor 

 A benchmark model and a model to evaluate feature 

importance was the Random Forest Regressor. Random 

forest models have been shown to perform particularly well 

when predicting outcomes related to health [15,31]. The 

model’s robustness and efficiency in managing high-

dimensional clinical data were corroborated by previous 

works. Random forests are usually built as an ensemble and 

are very useful in indicating the most important parameters 

that impact health metrics [30]. 

Hybrid Ensemble Framework 

Meta-ANN (Stacking Meta-Model) 

 For the ensemble approach, a meta-ANN model is built 

using the outputs of individual deep learning models (ANN, 

LSTM and CNN). This stacking method utilizes various 

outputs from different models to improve the overall 

regression results. Previous research has proven the 

effectiveness of such hybridization to improve model 

accuracy and generalizability [16,32]. 

Hybrid (Out-of-Fold, OOF) Stacking Model 

 In the OOF framework, each base model is fitted on 

k − 1 folds and generates predictions for the held‑out fold. 

These out‑of‑fold predictions then serve as features for 

training the meta‑model. By relying solely on unseen data 

for meta‑level inputs, the procedure mitigates overfitting 

and improves generalization. This study utilizes k-fold 

cross‑validation to obtain OOF estimates, which are 

subsequently used to train the meta‑learner and further curb 

model over‑learning. 

 

Figure 2. Diagram of Hybrid Stacking Model 

Model Evaluation and Explainability 

Model performance was evaluated using MSE, MAE, 

and R², each capturing distinct aspects of predictive 

accuracy [25]. To enhance clinical interpretability, we 

implemented a hybrid XAI framework combining SHAP 

and LIME. SHAP provides global feature importance by 

quantifying each variable’s contribution across the dataset, 

while LIME offers local interpretability by approximating 

the model’s behavior around individual predictions. 

Together, these methods link population-level insights with 

patient-specific explanations, addressing clinicians’ 

demands for both transparency and actionable decision 

support [16, 24]. 

Application Process 

The dataset from a private hospital in Antalya contains 

blood values of patients diagnosed with myalgia. The data 

set contains a total of 67 clinical variables and 2822 

instances including demographic information including 

age, gender and biochemical parameters such as AST, ALT, 

glucose, TSH, ferritin. After data preprocessing steps, 

feature engineering was performed and the number of 

features was reduced to 21. The feature importance graph 

with random forest regressor is given in Figure 3. 

 

Figure 3. Feature Importance with Random Forest 

Regressor 

During the implementation of the study, the dataset was 

first cleaned of missing values; columns with 90% or more 

missing values were removed. Remaining missing values 

were imputed using the Iterative Imputer method, which 

models missing data based on other features to provide 

accurate estimates. All data was scaled with Standard Scaler 

and then divided into a training-test set, with an 80-20 split. 

For deep learning models, the data was reshaped 

appropriately, while classical models were trained directly 

with scaled data. The predictions produced by the base 

models were used for meta-model training using stacking. 

 Model architectures, hyperparameters, and software 

libraries including their versions (Python 3.11, TensorFlow 

2.12, scikit-learn 1.0.2, SHAP 0.40) are detailed in the 

appendix. 

Results 

We evaluated the predictive performance of multiple 

models for insulin level estimation using our clinical 

dataset. Table 2 compares model performances based on 

MSE, MAE, and R² score, which quantify prediction error 

magnitude and explained variance, respectively. The 

Hybrid Ensemble Model, combining MLP and Optimized 

Transformer architectures, demonstrated superior 

performance with the lowest MSE (11.43), MAE (1.43), 
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and highest R² (0.92), highlighting the advantages of 

integrating complementary modeling approaches. 

Table 2. Comparison of Model Performances 

Model MSE MAE R² Score 

Random Forest Regressor 

CNN+LSTM 

25.3563 

33.3777 

1.8267 

2.9058 

0.9051 

0.6153 

MLP 24.9893 2.6739 0.8219 

Transformer 69.0674 4.5055 0.4377 

Baseline Transformer 66.3250 4.4578 0.4674 

Transformer + Positional 

Encoding 

36.7644 2.5394 0.7867 

Optimized Transformer 26.5052 2.3304 0.8219 

Keras Tuner Optimized Model 28.6607 2.1431 0.8743 

Classical machine learning methods proved remarkably 

effective, with the Random Forest Regressor achieving 

competitive results (MSE: 25.36, MAE: 1.83, R²: 0.91) - 

outperforming several deep learning base models. Among 

individual deep learning architectures, the MLP showed 

stronger predictive capability (MSE: 24.99, MAE: 2.67, R²: 

0.82) compared to the CNN+LSTM model (MSE: 33.38, 

MAE: 2.91, R²: 0.62), suggesting MLPs may be better 

suited for tabular clinical data without extensive feature 

engineering. 

Transformer-based models exhibited varying 

performance levels. The baseline Transformer 

configurations initially underperformed (R² < 0.47), likely 

due to hyperparameter sensitivity and moderate dataset size. 

However, architectural enhancements yielded significant 

improvements: positional encoding increased R² to 0.79, 

while comprehensive hyperparameter optimization boosted 

performance further (Optimized Transformer R²: 0.82; 

Keras Tuner-optimized model R²: 0.87). 

These results demonstrate that while classical 

algorithms like Random Forest remain robust for clinical 

prediction tasks, carefully designed hybrid ensembles 

combining optimized deep learning models achieve 

superior accuracy. The ensemble's performance advantage 

stems from its ability to capture complex, nonlinear 

relationships in clinical data through multiple 

complementary approaches.  

 

Figure 4. Average SHAP Feature Importance for Insulin 

Prediction Model 

Using the SHAP method, the importance levels of 

features influencing the model's predictions are revealed. 

Figure 4 ranks the features based on their absolute average 

SHAP values, highlighting 25-Hydroxy Vitamin D and AST 

as the most critical biomarkers for predicting insulin levels. 

This aligns with existing literature where vitamin D 

deficiency or excess significantly affects insulin regulation 

[35]. Other features like fasting glucose and ferritin also 

contribute notably, reflecting the close link between 

glycemic control, iron metabolism, and insulin dynamics, 

while TSH and ALT have smaller yet relevant impacts, with 

ALT emphasizing liver function’s role in insulin 

metabolism. 
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Figure 5. SHAP Bee Swarm Plot Showing Feature Value 

Impact on Insulin Prediction 

 Figure 5 complements this by illustrating how 

individual feature values influence insulin predictions 

across patients. Each point represents a patient’s SHAP 

value for a feature, colored from blue (low feature value) to 

red (high feature value). For example, high fasting glucose 

levels (red points) correspond to positive SHAP values, 

increasing predicted insulin levels, whereas low glucose 

levels (blue points) reduce them. Similar patterns are 

observed for 25-Hydroxy Vitamin D and AST, showing their 

variable contributions depending on measured values. 

 

Figure 6. LIME Explanation of Feature Contributions for a 

Single Patient's Insulin Prediction 

 Figure 6, generated using the LIME method, details the 

positive or negative contribution of features to insulin 

prediction in a single example (one patient data point). This 

graph clearly shows that high glucose values are the 

strongest factor increasing insulin prediction. Some 

biomarkers, such as B12 and FT4 values, have a smaller 

effect on insulin levels on a sample basis and, although 

locally effective, have a lower effect in the general 

population. 

 

Figure 7. SHAP Waterfall Plot (Single Instance) 

 Figure 7 presents a SHAP waterfall plot 

illustrating how each feature incrementally adjusts the 

model’s baseline prediction (14.085) to arrive at the final 

predicted value (14.965) for a single patient. In this 

instance, Glucose (Fasting) and Age exert the most 

pronounced negative contributions, collectively reducing 

the prediction by approximately 0.74 units. Conversely, 

Calcium and Ferritin provide moderate positive shifts, 

suggesting that elevated levels of these biomarkers are 

associated with an increased Insulin estimate. The 

contribution of 25-Hydroxy Vitamin D—also positive—

reinforces the broader observation that 25-Hydroxy Vitamin 

D status plays a significant role in insulin regulation. 

Smaller effects, such as the negative impact of Potassium 

and the positive shifts from Triglycerides, VLDL 

Cholesterol, and AST, further refine the prediction. When 

these individual contributions are summed, the model’s 

final prediction is slightly higher than the baseline. This 

granular view of how each biomarker influences the 

predicted insulin level underscores the interpretability 

benefits of SHAP, enabling clinicians and researchers to 

pinpoint the clinical factors that most strongly drive the 

model’s decision for this particular patient. 

 

Figure 8. SHAP Decision Plot Illustrating Feature 

Contributions Across Individual Predictions 
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Figure 8 displays a SHAP decision plot that sequentially 

demonstrates how each clinical feature modifies the 

model’s predicted insulin value from an initial baseline 

(approximately 14.2) to the final output (near 15.0) for a 

single instance. The horizontal axis represents the model’s 

prediction scale, while each step in the plot shows the 

incremental contribution—positive or negative—of a 

specific biomarker: 

• Glucose (Fasting) and Age appear as the top 

contributors, with their combined influence shaping the 

initial shift from the baseline. 

• Calcium, Ferritin, 25-Hydroxy Vitamin D, and 

Potassium provide additional refinements, indicating 

that variations in these features can further raise or lower 

the predicted insulin level. 

• The subsequent features, including Triglycerides, VLDL 

Cholesterol, AST, and others, exert smaller but still 

meaningful effects, cumulatively guiding the model to 

its final prediction. 

 By illustrating each feature’s incremental impact, the 

decision plot offers a transparent view of the model’s 

internal reasoning. Clinically, it underscores how multiple 

biomarkers—ranging from glucose metabolism to mineral 

balance—interact to influence insulin levels, thereby 

offering a nuanced perspective for personalized patient 

management. 

 

Figure 9. SHAP Heatmap Displaying Feature Impact on 

Model Output Across All Instances 

 In Figure 9, the visualization is organized into 

columns representing individual cases, while the rows 

correspond to clinical features ranked by their overall 

significance to the model’s output. The color scale used 

conveys both the size and sign of each feature’s influence 

on the resultant insulin value: saturated red denotes a feature 

positively influencing insulin predictions, and saturated 

blue denotes its negative impact. The leading feature, serum 

25-Hydroxy Vitamin D, exhibits a noticeable spread of red 

and blue colors across the observation columns, suggesting 

that alterations in vitamin D status may critically impact 

insulin estimation according to the underlying risk profile 

of concurrent biomarkers. Similar spread is evident for 

aspartate aminotransferase, fasting glucose, and ferritin, 

each demonstrating distinct patterns that confirm their 

significant effect on the variation in predictions. Lower 

rows in the heatmap, containing thyroid-stimulating 

hormone, alanine aminotransferase, and other clinical 

covariates, reveal segments with less intense colors yet still 

instrumental in marginal adjustment of the insulin 

predictions. The horizontal bands of color further delineate 

clusters of patients whose combinatorial biomarker portraits 

converge to similar model predictions, suggesting the 

presence of latent clinical subgroups influenced by specific 

biomarker combinations. This heatmap illustrates both the 

global importance and the instance-specific role of selected 

biomarkers, providing clinicians and researchers with 

understanding of the interactions between features that 

collectively contribute to predictive results. 

 

Figure 10. SHAP Bar Plot Showing Average Feature 

Importance in Insulin Prediction 

 In Figure 10, each horizontal bar indicates the mean 

absolute SHAP value for a given feature, illustrating its 

overall impact on the model’s insulin predictions. The 

highest bar corresponds to 25-Hydroxy Vitamin D, which 

stands out as the most influential predictor, with a mean 

SHAP value of +2.2. This suggests that variations in 

vitamin D levels produce larger shifts in the model’s output 

than any other single biomarker. Following closely, AST 

and Glucose (Fasting) exhibit substantial mean SHAP 

values, highlighting their critical roles in shaping insulin 

estimates—an observation aligned with established clinical 

knowledge regarding liver enzymes and glycemic control. 

Ferritin, TSH, and ALT also show meaningful 

contributions, indicating that metabolic and endocrine 

factors collectively inform the model’s decisions. Lower-

ranked features, including Potassium and Calcium, have 

more modest mean SHAP values but nonetheless refine the 

prediction. The aggregated “Sum of 12 other features” 

category demonstrates that while individually less 

influential, a group of features still exerts a combined effect 

on insulin level estimation. Overall, this visualization 

underscores the multifactorial nature of insulin regulation, 

highlighting the diverse set of biomarkers—spanning 

vitamin levels, hepatic function, and mineral homeostasis—

that the model deems most pertinent in forecasting insulin 

concentrations. 
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Figure 11. Distribution of Glucose (Fasting) SHAP Values 

by Age Group 

 In Figure 11, the distribution of SHAP values for fasting 

glucose across age groups reveals a wider spread of values 

in the younger subgroup (≤50 years), with several positive 

outliers strongly contributing to insulin prediction. This 

suggests that glucose levels may have a more variable 

influence on insulin prediction among younger individuals 

compared to older ones. The median SHAP value appears 

closer to zero, indicating that while some individuals show 

strong influence, the overall effect is moderate. 

 

Figure 12. Distribution of Glucose (Fasting) SHAP Values 

by Gender Group 

 In Figure 12, the SHAP value distributions for fasting 

glucose are similar between females and males, with 

overlapping medians and ranges. Although outliers with 

high positive contributions exist in both genders, no 

substantial difference in the overall impact on insulin 

prediction is evident. This is consistent with the statistical 

test result (p = 0.1842), indicating no significant difference 

between genders in the predictive contribution of fasting 

glucose. 

 

Figure 13. Comparison of SHAP Values of Top 5 Features 

by Age Group 

 In Figure 13, a comparison of the mean SHAP values of 

the top five features across age groups reveals notable 

differences. The younger group (≤50 years) exhibits higher 

mean SHAP values for AST and 25-Hydroxy Vitamin D, 

suggesting these features contribute more strongly to 

insulin prediction in this subgroup. Conversely, the older 

group’s influence is comparatively lower for these features. 

Glucose (Fasting) maintains a moderate effect across both 

groups, suggesting it is an important predictor regardless of 

age. 

 

Figure 14. Comparison of SHAP Values of Top 5 Features 

by Gender Group 

 Figure 14 demonstrates distinct patterns in the 

comparison of mean SHAP values for the top features 

between genders. Males exhibit higher mean SHAP 

contributions for AST and Ferritin, while females show a 

stronger influence of 25-Hydroxy Vitamin D. Glucose 

(Fasting) shows a relatively consistent effect in both 

groups. These differences imply that the model’s 

explanation for insulin prediction varies subtly between 

males and females, highlighting potential biological or 

clinical differences in feature relevance. 
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Discussion 

Despite the excellent performance achieved by the 

hybrid ensemble model, several issues remain that warrant 

further attention. Furthermore, it is essential to clarify 

whether the dataset inherently contains temporal or 

sequential structures that justify the use of recurrent 

architectures such as LSTM. If the data exhibits temporal 

dependencies, leveraging LSTM could provide meaningful 

advantages; otherwise, Transformer-based or other non-

sequential models might require alternative design 

considerations [37]. 

Moreover, the success of the stacking methodology is 

highly contingent on the quality of out-of-fold predictions 

and the design of the meta-model. Transformer-based 

architectures initially exhibited suboptimal results, 

underscoring their sensitivity to hyperparameters such as 

learning rate, dropout, and attention mechanisms. These 

findings point to the necessity of advanced optimization 

techniques, such as Bayesian search, to unlock their full 

potential. Moreover, although combining MLP and 

optimized Transformer outputs yielded strong results (R² = 

0.9157), further gains might be achieved by incorporating 

additional learners—like Random Forests or other deep 

models—offering diverse perspectives and improving 

robustness. Additionally, employing regularization 

strategies—such as L2 regularization or dropout at the 

meta-model level—could mitigate overfitting risks, leading 

to more robust and reliable predictions. 

XAI analyses confirmed the importance of biomarkers 

including 25-Hydroxy Vitamin D, AST, and Glucose 

(Fasting) in predicting insulin levels. Notably, subgroup 

analyses demonstrated statistically meaningful variations in 

feature importance across demographic strata, highlighting 

the need for personalized approaches tailored to 

demographic differences. For example, fasting glucose 

exhibited greater variability in predictive influence among 

younger patients (≤50 years), indicating heterogeneous 

metabolic profiles or disease manifestations in this 

subgroup. Gender-based comparisons, while showing no 

statistically significant difference in fasting glucose 

contribution, identified subtle but potentially clinically 

relevant distinctions in features including AST and Ferritin. 

These findings underscore the importance of integrating 

subgroup-specific interpretability within predictive 

modeling frameworks to enhance clinical transparency and 

support personalized medicine [38, 39]. Future work should 

strive to incorporate these interpretability tools more 

seamlessly to provide clinicians with actionable insights 

alongside high model performance, ultimately fostering 

trust in automated decision support systems [40]. 

The study’s single-center dataset poses limitations in 

terms of generalizability. Broader validation across 

multicenter cohorts with diverse clinical profiles is essential 

to ensure robustness and external applicability. Future 

studies are needed to validate these models on larger, 

multicenter datasets with diverse demographic and clinical 

characteristics. In addition to technical improvements, 

ethical and practical considerations are crucial for clinical 

deployment. Ensuring patient data privacy, addressing 

potential algorithmic bias, and evaluating the clinical 

consequences of false predictions are essential steps for safe 

integration into decision support systems. These safeguards 

will enhance clinician trust and ensure responsible 

application of the model in diverse healthcare settings. 

Additionally, expanding the scope to include other relevant 

clinical outcomes, such as hypoglycemic events and long-

term complications, could provide a more comprehensive 

understanding of disease progression and model utility in 

real-world settings [40]. 

 In conclusion, our study demonstrates that hybrid 

ensemble methodologies, which integrate advanced deep 

learning architectures with classical regression techniques 

and robust XAI approaches, offer a promising avenue for 

predicting insulin levels in clinical data. Nonetheless, 

further optimization of model parameters, incorporation of 

additional base learners, explicit consideration of temporal 

data structure, and expansion of datasets are essential next 

steps to improve model generalizability and clinical utility. 

Additionally, embedding subgroup-specific explainability 

analyses will be critical for translating predictive models 

into trustworthy, personalized clinical decision support 

tools, ultimately contributing to more effective patient care 

[37, 38]. 

Conclusion 

This study introduces a hybrid ensemble framework that 

outperforms individual models in predicting insulin levels 

from clinical data by combining deep learning and classical 

methods. However, several limitations remain. The dataset 

was sourced from a single center, which restricts the 

generalizability of the findings. Further refinement of 

model hyperparameters is needed, and incorporating 

additional biomarkers, including genetic and epigenetic 

factors, could enhance predictive power. Validation on 

larger, multicenter cohorts and the integration of real-time 

data streams, including continuous glucose monitoring, will 

be crucial to capture more complex physiological patterns. 

Moreover, ensuring that model explanations adapt to patient 

subgroups will be key to clinical acceptance, allowing for 

personalized and transparent decision-making. The future 

success of machine learning in healthcare depends on 

balancing high accuracy with explainable models, while 

addressing ethical considerations centered on patient care, 

including data privacy, model transparency, and potential 

algorithmic bias. These considerations are essential for safe 

and responsible use of AI in real-world clinical 

environments. Collectively, this study not only achieves 

high predictive accuracy but also provides clinically 

meaningful interpretations tailored to patient subgroups, 

representing a significant advancement in personalized AI-

driven clinical decision support. Such progress holds 

promise for enhancing patient outcomes. 
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Appendix - Model Architectures and Hyperparameters Used in the Study 

Model Name Layer Structure/Architecture 
Activation 

Functions 

Optimization 

Algorithm 

Learning 

Rate 

Dropout 

Rate 

Additional 

Parameters 

MLP 

3 Layers (128-64-32-1) 

ReLU (Hidden 

Layers) 

Linear (Output 

Layer) 

Adam 0.001 0.2 

Epochs: 100 

Batch Size: 32 

EarlyStopping 

(Patience=10) 

Transformer 

CNN (Conv1D, filters=64, kernel=2) 

LSTM (50 units) 

Dense (1 unit) 

ReLU (CNN 

Layer) 
Tanh (LSTM 

Layer) 

Linear 

(Output) 

Adam 0.001 0.2 
Epochs: 50 

Batch Size: 32 

Baseline 

Transformer 

Embedding: Dense (32 dimensions) 

2 Transformer Encoder Blocks (Head 
Size=16, Num Heads=4, FFN=64) 

GlobalAveragePooling 

Dense (64-1) 

ReLU (Hidden 

Layers) 

Linear (Output 

Layer) 

Adam 0.001 0.1 

Epochs: 100 

Batch Size: 32 

EarlyStopping 

(Patience=10) 

Transformer + 

Positional Encoding 

Embedding: Dense (64 dimensions) 

3 Transformer Encoder Blocks (Head 

Size=32, Num Heads=4, FFN=128) 
GlobalAveragePooling 

Dense (64-1) 

ReLU (Hidden 
Layers) 

Linear (Output 

Layer) 

Adam 0.0001 0.2 

Epochs: 100 
Batch Size: 16 

EarlyStopping 

(Patience=10) 

Optimized 

Transformer 

Auto-tuned: embed_dim=[32,64,128] 

head_size=[16,32,64] 

num_heads=[2,4,8] 

ff_dim=[64,128,256] 
dropout=[0.1-0.5] 

learning_rate=[1e-3,1e-4,1e-5] 

ReLU (Hidden 

Layers) 

Linear (Output 

Layer) 

Adam 
Tuned (Best 

Selected) 

Tuned (Best 

Selected) 

Epochs: 50 

Batch Size: 32 

RandomSearch 

(max_trials=10) 
EarlyStopping 

(Patience=10) 

Keras Tuner 

Optimized Model 

Base Models: 
- MLP (64-32 units) 

- Optimized Transformer 

(Embedding=64, Heads=4, FFN=128) 

Meta-model: Dense (16-8-1) 

ReLU (Hidden 

Layers) 
Linear (Output 

Layer) 

Adam 0.001 
0.2 (Meta-

model) 

5-Fold Cross 
Validation 

Epochs: 20 (per 

model) 

Batch Size: 32 

 


