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 Symbol Classification in Receiver of OFDM Carrier Signal with 

Deep Learning and Whale Optimization Algorithm  

 

Highlights 

❖ Utilizes deep learning (CNN) combined with Whale Optimization Algorithm (WOA) for efficient symbol 

classification in OFDM receivers. 

❖ WOA is used to select optimal feature subsets to improve classification accuracy and reduce computational 

complexity. 

❖ Achieves over 95% accuracy, outperforming classical methods like MMSE and LS. 

Graphical Abstract 

A conceptual diagram combining: 

 

Figure . Graphical Abstract 

Aim 

The primary aim of this research is to develop a hybrid framework using deep learning and 

metaheuristic feature selection via the Whale Optimization Algorithm (WOA).  

Design & Methodology 

❖ A simulated OFDM communication environment is used to generate 10,000 samples. 

❖ Whale Optimization Algorithm (WOA) is used to select optimal subsets of features (e.g., amplitude, phase). 

❖ These features are fed into a CNN-LSTM architecture for training and classification. 

Originality 

❖ Introduces a novel integration of WOA with CNN-LSTM specifically tailored for OFDM systems. 

❖ Provides a comparative framework that demonstrates the superiority of WOA over other feature selection 

methods (PCA, ACO, PSO). 

Findings 

❖ The WOA-selected features significantly improved CNN performance, achieving symbol classification 

accuracy greater than 95%. 

❖ The proposed WOA-CNN model consistently outperformed traditional classifiers and other hybrid models 

across all test conditions. 

Conclusion 

The integration of WOA-based feature selection with deep learning significantly improves the 

performance of OFDM symbol classification tasks.  
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ABSTRACT 

Orthogonal Frequency Division Multiplexing (OFDM) remains a cornerstone in modern wireless communication systems, owing 

to its resilience to multipath fading and spectral efficiency. In OFDM systems, accurate symbol classification is paramount for 

successful data demodulation. This paper proposes a novel methodology for symbol classification in the receiver of an OFDM 

carrier signal, using a synergic combination of deep learning and feature selection with the Whale Optimization Algorithm (WOA). 

The deep learning component, embodied in a convolutional neural network (CNN), is adept at extracting intricate features from 

the received OFDM symbols, while the WOA facilitates efficient feature selection by optimizing a subset of attributes that 

contribute most to categorization accuracy. This dual approach not only enhances the discriminative power of the classification 

model but also reduces the computational complexity by focusing on the most relevant features. Experimental findings confirm the 

effectiveness of the proposed framework, demonstrating superior symbol classification performance compared to conventional 

methods. Moreover, the integration of feature selection with the WOA ensures the identification of an optimal subset of features, 

further improving classification accuracy and generalization capability. This study combines DL with metaheuristic feature 

selection to improve symbol classification in OFDM receivers, thereby making wireless communication systems more 

reliable and efficient. 

Keywords: Symbol Classification, OFDM, Deep learning, Whale optimization algorithm. 

 

Derin Öğrenme ve Balina Optimizasyon Algoritması 

ile OFDM Taşıyıcı Sinyal Alıcıda Sembol 

Sınıflandırma 

ÖZ 

Ortogonal Frekans Bölmeli Çoğullama (OFDM), çok yollu sönümlemeye karşı dayanıklılığı ve spektral verimliliği sayesinde 

modern kablosuz iletişim sistemlerinin temel taşlarından biri olmaya devam etmektedir. OFDM sistemlerinde, başarılı veri 

demodülasyonu için doğru sembol sınıflandırması çok önemlidir. Bu makale, Balina Optimizasyon Algoritması (WOA) ile derin 

öğrenme ve özellik seçiminin sinerjik bir kombinasyonunu kullanarak bir OFDM taşıyıcı sinyalinin alıcısında sembol 

sınıflandırması için yeni bir metodoloji önermektedir. Bir evrişimli sinir ağında (CNN) somutlaşan derin öğrenme bileşeni, alınan 

OFDM sembollerinden karmaşık özellikleri çıkarmada ustalaşırken, WOA, kategorizasyon doğruluğuna en çok katkıda bulunan 

bir alt özellik kümesini optimize ederek verimli özellik seçimini kolaylaştırır. Bu ikili yaklaşım sadece sınıflandırma modelinin 

ayırt edici gücünü artırmakla kalmaz, aynı zamanda en ilgili özelliklere odaklanarak hesaplama karmaşıklığını da azaltır. Deneysel 

bulgular, geleneksel yöntemlere kıyasla üstün sembol sınıflandırma performansı göstererek önerilen çerçevenin etkinliğini 

doğrulamaktadır. Ayrıca, özellik seçiminin WOA ile entegrasyonu, optimum özellik alt kümesinin belirlenmesini sağlayarak 

sınıflandırma doğruluğunu ve genelleme yeteneğini daha da geliştirmektedir. Bu çalışma, OFDM alıcılarında sembol 

sınıflandırmasını iyileştirmek için DL ile metasezgisel özellik seçimini birleştirerek kablosuz iletişim sistemlerinin daha güvenilir 

ve verimli olmasını sağlar. 

Anahtar Kelimeler: Sembol Sınıflandırma, OFDM, Derin öğrenme, Wale optimizasyon algoritması. 

 

1. INTRODUCTION 

In contemporary wireless communication, orthogonal 

frequency division multiplexing (OFDM) is a popular 

modulation technology due to its ability to minimize 

inter-symbol interference (ISI) and resist frequency-

selective fading [1]. Reliable and effective data decoding 

in OFDM depends on accurate symbol classification [2]. 

Traditional approaches, however, rely on manually 

created features and basic classifiers, which are 

insufficient to handle complicated data, particularly in 

noisy environments and with fluctuating channel 

conditions [3]. 
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Recent advances in computer vision, natural language 

processing, and speech recognition have been made 

possible by deep learning's (DL) capacity to 

automatically extract meaningful characteristics from 

raw data [4]. By enabling the direct extraction of intricate 

features from received signals, the application of DL to 

symbol classification in OFDM receivers can get around 

the drawbacks of conventional methods [5]. 

Furthermore, the caliber and applicability of the input 

features have a significant impact on how well DL 

model’s function [6]. Finding the most significant 

characteristics that improve classification accuracy while 

lowering computational costs and the possibility of 

overfitting requires the use of feature selection strategies 

[7]. But selecting the best feature subset can be difficult, 

especially in high-dimensional data settings like OFDM 

systems [8]. 

OFDM stands out as one of the most prevalent 

modulation schemes employed in contemporary wireless 

systems. The efficiency of OFDM systems largely relies 

on signal recognition and techniques for channel 

calculation [9]. Therefore, numerous studies have been 

conducted to design effective methods for channel 

estimation and signal recognition. OFDM is a modulation 

technique that uses numerous orthogonal signals for 

transferring digital information [10]. Therefore, The 

approach is a unique variant of FDM wherein the carrier 

is orthogonalized (i.e., the peak of a carrier coincides 

with the zero crossing of its adjacent carriers) between 

signals modulated on adjacent carriers [11]. 

Data intended for transmission at a high data rate is 

initially split into multiple sub-streams with lower data 

rates. Each of these data streams is independently 

partially encoded using a standard modulation technique 

like low-bandwidth Quadratic Amplitude Modulation 

(QAM), following which the modulated High-Frequency 

(HF) signals are amalgamated [12]. To discern individual 

signals Throughout the demodulation receiver's phase, 

the carriers must be perpendicular to each other in the 

function space. This results in minimizing the 

interference among the partial data streams. 

The strength of OFDM is its capability to adjust data 

transmission finely by breaking it down to match the 

specifics of a transmission channel, like a radio channel. 

In case narrowband interference emerges within the 

OFDM signal spectrum, carriers influenced by the 

interference might be disregarded from data 

transmission. Consequently, the total data transfer rate is 

reduced [13]. However, In situations utilizing wideband 

quadrature amplitude modulation with only one carrier, 

the presence of narrowband interference in the 

transmission channel can impede complete data 

transmission. Additionally, the challenge of destructive 

interference resulting from multipath reception pertains 

exclusively to single carriers. 

As the data is distributed across numerous subcarriers, it 

is considered multi-carrier modulation. Because these 

subcarriers are orthogonal to each other, they do not 

benefit from interacting, In contrast to the conventional 

FDM, even though they are arranged linearly, causing an 

intersection in the current frequency axis. Efficiency can 

be discerned by utilizing the Fast Fourier transform 

(FFT) technique [14] on subcarriers. 

To address these challenges, this study presents an 

innovative method for symbol categorization in the 

receiver of an OFDM carrier signal by integrating DL 

with feature selection using the WOA. The DL 

component, specifically a CNN, is used to automatically 

learn discriminative characteristics from received OFDM 

symbols, while the WOA is used to optimize the subset 

of features that maximize classification accuracy [15]–

[17]. This synergistic combination intends to improve 

symbol categorization performance while reducing 

computing complexity, thereby enhancing the reliability 

and efficiency of OFDM communication systems [18]. 

In this study, the selected features with WOA for feature 

selection will be used to test the data using a deep neural 

network (DNN) [19]. The long short-term memory 

(LSTM)-based neural network will be utilized to train in 

individual subcarriers [20], [21]. The symbol error (SER) 

will be calculated and combined with the least square 

(LS) and minimum mean square error (MMSE) to assess 

the system's performance.  In this research, an offline 

training system is deployed in the wireless channel. Each 

OFDM packet sent will include a randomly generated 

phase adjustment. The effects of the number of pilot 

symbols and cyclic prefix (CP) duration will be measured 

[22]. 

The following sections provide a literature overview of 

the theoretical principles of OFDM, DL, and feature 

selection strategies. The suggested approach for symbol 

classification will then be discussed, including the CNN 

architecture and the integration of feature selection with 

the WOA. The effectiveness of the proposed strategy will 

be validated by test data and comparative studies. Finally, 

the discussion will focus on its concepts and potential 

directions for future study. 

1.1. Literature review 

Symbol classification OFDM receiver is an essential for 

accurate data transmission in modern wireless 

communication [23]. Researcher have used different 

methods to address this challenge, ranging from 

traditional signal processing methods to advanced 

machine learning (ML) and optimization approaches 

[24]. Early studies primarily relied on conventional 

techniques, including maximum likelihood estimation 

(MLE), correlation-based classifiers, and decision-

theoretic approaches [25]. These methods used manually 

selected features, such as amplitude, phase, and 

frequency to classify symbols. While effective in some 

cases, these approaches struggle to adapt to dynamic 

channel conditions and noise variations [26]. 

ML, especially DL, has greatly improved symbol 

classification by enabling automatic feature learning 

feature extraction from raw data  [27]. Studies show that 

CNNs outperform traditional methods in terms of 

accuracy and efficiency, particularly in complex 

modulation recognition tasks [28]. The integration of 



 

 

CNNs with frameworks like the discrete Fourier 

Transform (DFT) allows for robust data manipulation, 

enabling real-time processing capabilities essential for 

modern communication systems [29]. For example, 

Kumar et al. (2023), suggested a CNN-based method for 

automatic modulation classification in OFDM systems, 

achieving better accuracy than conventional methods 

[30]. By learning key features directly from the time-

frequency representation of received signals, the CNN 

demonstrated robust resistance to channel issues and 

noise.  Similarly, Zhang et al. (2019) used a CNN with 

remaining connections for symbol classification in 

OFDM systems, achieved high accuracy even under 

challenging conditions such as frequency-selective 

fading and interference [31]. 

The WOA is simple, powerful optimization 

technique inspired by the hunting behavior of whales. It 

balances exploration and exploitation to find optimal 

solutions [32]. In OFDM symbol classification, WOA 

combined with DL to improve feature selection and 

optimize neural networks input [33]. Also, Wang et al 

(2020) Suggested a hybrid approach that combines 

CNN-based DL with feature selection using the gray wolf 

optimization (GWO) algorithm for modulation 

classification in OFDM systems [34]. The GWO 

improved CNN performance by selecting the 

most important features from time-frequency 

representation of received signals, resulting in better 

accuracy efficiency. The reference  [35], particle swarm 

optimization (PSO) is effective in selecting relevant 

features, classification accuracy in complex 

environments like OFDM receivers. The study [36], 

suggested an attribute selection technique employing an 

artificial bee colony (ABC). They incorporate a Kalman 

filter within the hadoop ecosystem to filter the noise.  

Reference [37], introduce a method for choosing 

attributes using a hybrid genetic algorithm (GA) with 

detailed data. They tested this approach on eleven 

standard financial datasets and compared it with 

advanced techniques. The results showed high 

classification accuracy. 

This study [38], presented the new feature selection 

method for classification using multi-objective PSO. The 

first method applied sorting, while the second added 

mutation and crossover. These methods were compared 

with two traditional techniques and tested on twelve 

datasets.  

Reference [39], introduced a novel feature selection 

approach that combines multi-cluster particle swarm 

optimization (MSPSO) with support vector machines 

(SVM), using the F1 score as the fitness criterion. 

The objective is to improve both kernel optimization and 

feature selection for better abstractions. Evaluation 

results show that the new techniques outperform the 

previous methods. Reference [40] proposed a feature 

selection method combining GA and PSO algorithms, 

using SVMs as the fitness function and precision as the 

suitability measure. 

The proposed method, tested on the Indian Pines Spectral 

dataset, effectively identifies key features for 

classification, leading to higher accuracy. However, it 

lacks a detailed analysis of benchmark datasets and 

comparison with more advanced methods.  the study in 

[41] presents a feature selection strategy 

that combines GA with NNs, applied to real and standard 

credit datasets. It 

outperforms the established classification methods in 

term of precision. 

The effectiveness of OFDM in terms of channel 

bandwidth is additionally enhanced using MIMO (Multi-

input multi-output) [42], [43]. MIMO incorporated into 

OFDM significantly increases the channel bandwidth of 

the communication network. However, channel 

estimation, ICI (intercarrier interference) cancellation, 

and overhead Average Power Ratio (PAPR) reduction 

become difficult due to the extra complexity added by the 

channel. Space Division Multiple Access (SDMA) [44] 

represents a distinctive type of MIMO where spatially 

separated users can leverage a single antenna for MIMO 

transmission. SDMA presents greater challenges when 

users access diverse antennas. Consequently, precise 

signal identification for each user becomes essential. 

Multi-user identification approaches are employed to 

address this requirement [45-46]. Table 1 lists the 

investigations from the literature about signal detection 

in OFDM systems. 

No heuristics were used for feature extraction in the 

researched articles. In this study, it will be shown that the 

proposed method has a good performance by using the 

Whale optimization method and other heuristic methods 

(ant colony, GA, and PSO). 

Overall, the integration of DL combined with feature 

selection strategies typically includes methods like the 

PSO presents a promising approach for enhancing 

symbol classification in the receiver of OFDM carrier 

signals. By leveraging the complementary strengths of 

automatic feature learning and optimal feature subset 

selection, these hybrid approaches offer the capacity for 

enhancing the reliability, Performance, and adaptability 

of OFDM communication networks in diverse operating 

environments. 

1.2. Existing Gaps and Research Motivation 

Several previous studies have emphasized the importance 

of integrating CNN and LSTM hybrid architectures in 

improving the performance of noisy communication 

systems. However, a close examination of these studies 

shows that many of them have encountered limitations in 

effectively integrating these hybrid architectures with 

metaheuristic-based feature selection methods to 

minimize the Symbol Error Rate (SER) in noisy 

transmission environments. 

In addition, another important aspect that is often 

neglected in previous studies is the computational cost of 

deploying complex models in resource-constrained 

communication systems. This can be a major challenge, 

especially in practical and real-time applications. In order 

to overcome the aforementioned limitations and fill the 



 

 

gaps in previous studies, the present study proposes a 

hybrid framework based on the CNN-LSTM 

architecture, which is improved by using WOA. The 

main objective of this proposed framework is to optimize 

the process of selecting effective features and, 

consequently, increase the overall performance of 

communication systems in the face of noise and possible 

disturbances. By integrating WOA as an efficient feature 

selection mechanism, this research attempts to improve 

the detection accuracy while also considering the 

computational costs associated with model deployment. 
 

 

Table 1. Literature review on signal detection in OFDM systems 
Ref Contribution to literature 

[42] They use a new DL method to estimate co-channel interference and detect signals in OFDM systems by the time-

frequency relationship of wireless fading channels. 

[43] They use DL to create an efficient signal detection scheme in an indoor VLC communication system, enabling reliable 

detection of the original signals in real time with limited channel. 

[44] They suggested the DL-based approach for joint channel estimation and signal detection in multi-user OFDM-non-

orthogonal multiple access (NOMA) systems over the Rayleigh fading channel. 

[45] They apply DL for signal detection in OFDM with index modulation (IM) systems and propose a Y-shaped network 

with fully connected layers (Y-FC) and bidirectional LSTM units (Y-BLSTM) to optimize the data retrieval. 

[46] The removal of the CP can improve the spectral efficiency of multi-input multiple-output (MIMO)-OFDM systems. To 

address this, they are developing a model-driven DL-based detector, using the orthogonal approximate message 

passing (OAMP) algorithm, which reduces interference but requires computationally complex matrix inversion. 

[47] To solve the drawback of the method of route removal QR decomposition-M (PEQRD-), They introduced an energy-

efficient low-complexity signal identification approach based on adaptive QR in MIMO-OFDM systems. 

[48] They introduce a method employing DL to aid signal identification in the transmission of OFDM networks across 

dynamic channels. Particularly, a recurrent neural network (RNN) featuring a two-way LSTM design is utilized for 

signal identification. 

[49] They introduce a complex deep neural network (C-DNN) with a complex architecture for intelligent signal detection in 

OFDM-IM. 

[50] Suggested adaptive slot assignment in packet-switched SDMA network. 

[51] Studied Efficiency evaluation of resource distribution strategies for SDMA system. 

[52] Examined CDF on the interference rate of the upstream connections in the mobile radio system. 

[53] Suggested the Constrained Least Square (CLS) technique for the multi-user recipient in an SDMA network. 

[54] A concise overview of transmission line prediction and multi-user Identification methods for the SDMA-OFDM 

network. 

[55] Limited solutions such as block diagonalization and sequential enhancement strategies for the downlink SDMA 

network. 

[50] Suggested adaptive slot assignment in packet-switched SDMA network. 

[51] Studied Efficiency evaluation of resource distribution strategies for SDMA system. 

[56] CFO forecast analyzed in SDMA-OFDM network. 

[57] Optimum throughput maximization method in a two-beam relay model with SDMA. 

[58] A new communication method for MIMO broadcast-oriented channels, called the Departure Angle Assisted 

Opportunistic Space-Division Multiple Access (AOD-OSDMA) technique. 

[59] A new  SDMA Approach using Multi-Beam capability of Time-Modulated Array (TMA). TMA yields fundamental 

and harmonic signals oriented in disparate pathways. 

 

2. MATERIAL AND METHOD 

The research paper aims to utilize the WOA to select 

features from OFDM signals, which will then be utilized 

to train a DL system. This proposed model, which 

harnesses WOA-optimized features alongside a CNN 

model, has proven to be a highly effective solution for 

symbol classification within OFDM receivers. Notably, 

it demonstrates superior performance across a wide range 

of channel conditions. 

2.1. Whale Optimization Algorithm for Feature 

Selection 

The features of the nature-inspired WOA are: 

Humpback whales are a group of types of whales in 

which social behaviors can be seen in a significant way. 

These creatures have spindle cells similar to humans and 

are capable of making decisions and learning. These 

creatures have interesting group and social behaviors in 

hunting clusters of fish and they try to hunt in groups for 

this purpose they use the Hunt Bubble mechanism. Hunt 

Bubble in humpback whales is a group behavior. The 

WOA operates as a collective method based on the mass 

hunting of whales and in this algorithm, the habits of 

whales are used to find the optimal point, that is the 

gathering of fish, to address improvement challenges. To 

hunt a cluster of fish or guide them to the optimal point, 

whales use two methods of hunting: upward spirals and 

double loops to surround the collection of fish to place 

the group at an optimal point and hunt them [60]. This 

algorithm uses upward spirals and double loops to seek 

out the problem space and assume that each solution 

behaves like a whale searching for the best outcome or 

nourishment with the support of other whales.  

Figure 1 illustrates the revolving and helical motion of 

whales intricately navigating the surrounding space, 

methodically exploring the nearby environment in search 

of the best resolution [60]:  



 

 

 
Figure 1. Rotational and spiral movements of the whales 

around the prey [60] 

 

The WOA is a metaheuristic algorithm inspired by how 

humpback whales hunt, designed to solve optimization 

problems efficiently. 

In the context of feature selection, the goal is to find the 

subset of features that optimally represent the dataset for 

a given task (e.g., classification or regression). Here's a 

brief explanation of how WOA can be applied to feature 

selection, along with equations: 

2.1.1. Initialization 

Initialize a population of candidate solutions. Each 

solution represents a subset of features.  

Define the maximum number of iterations (generations). 

Assign random positions to each whale in the search 

space. 

2.1.2. Objective function 

Define an objective function that evaluates the quality of 

each solution. This function quantifies how well a 

particular subset of features performs the given task. 

The objective function should be decreased or optimized 

by the problem's requirements. 

2.1.3. Main loop 

Iterate through generations until a cessation condition is 

reached (e.g., reaching an Upper repetition threshold, 

obtaining a satisfactory result). 

In each iteration, adjust the locations of whales according 

to their current positions and the positions of the best 

whales. 

2.1.4. Whale encircling prey 

Each whale follows a path leading to the prey (optimal 

solution) according to its current position and the location 

of the top-performing whale in the group. 

2.1.5. Update position 

Update the position of each whale using equations that 

incorporate the investigation and utilization stages of the 

technique. 

The position update equation in the WOA is typically 

given as: 

 𝑋𝑖(𝑡 + 1) = 𝛸𝑡
∗(𝑡) − �⃗⃗� . 𝐴                                           (1) 

Where: 

𝑋𝑖(𝑡 + 1) is the new position. 

𝛸𝑡
∗(𝑡) is the best-known position. 

𝐴  is a coefficient that controls the rate of linear decrease 

in the encircling mechanism. It is usually a value ranging 

from 2 to 0, decreasing linearly. 

�⃗⃗�  represents the distance between the whale's current 

position and the prey in the search space. In feature 

selection, the position update equation can also be 

modified to suit the problem, maybe incorporating 

additional terms or constraints specific to feature 

selection. Overall, the WOA for feature selection 

iteratively updates the positions of whales, explores the 

search space, and converges toward a feature subset that 

best represents the dataset. The algorithm maintains a 

balance between exploration and exploitation to 

efficiently identify the optimal feature subset. 

Inspired by the hunting behavior of humpback whales, 

the WOA is mathematically formulated in the form of the 

following equations: 

Equation (2): Whale Position Update 

�⃗⃗� . 𝐴 − 𝛸𝑡
∗(𝑡) = 𝛸𝑡 + 1                                         (2) 

This equation shows the main mechanism for updating 

the position of each whale during the optimization 

process. At each iteration (𝑡 + 1), the new position of the 

whale 𝛸𝑡 + 1 is calculated based on the position of the 

best solution found so far 𝛸𝑡
∗and the �⃗⃗� . 

Equation (3), Calculating the distance to the best solution 

�⃗⃗� = |𝛸𝑡
∗. 𝐶 − 𝛸𝑡|                                                    (3) 

The �⃗⃗�  measures the Euclidean distance between the 

whale's current position (𝛸𝑡) and the best solution found 

(𝛸𝑡
∗). This vector determines the rate at which the whale 

moves towards the prey (the best solution). 

The coefficient vector A is shown in equation (4). 

𝐴 = 𝑎 − 𝑟 . 2𝑎                                                                             (4) 

The 𝐴  plays an important role in the balance between 

exploration and exploitation in the algorithm. The value 

of this vector gradually decreases linearly with the value 

of a from 2 to 0 over the iterations, as well as the random 

vector 𝑟. The vector r is a random vector whose 

components are uniformly distributed in the interval 

[0,1]. 

Equation (5) represents the coefficient 𝐶 . 

𝐶 = 𝑟 . 2                                                                                         (5) 

The 𝐶  also plays a role in the search mechanism and is 

calculated using the random vector 𝑟. 

The above mathematical structure, especially equations 

(2) and (3), simulates the natural prey encirclement 

mechanism of humpback whales. The whales, upon 

recognizing the location of the prey (the best solution 

found), gradually move towards it and encircle it. 

This mathematical formulation, by striking a suitable 

balance between searching extensively in the solution 

space (exploration) and focusing on promising regions 

(exploitation), makes WOA an efficient method for 

feature selection tasks. The ability of WOA to find 

optimal subsets of features has made it a valuable tool in 

various fields of data science and ML. 

By effectively exploring the search space, the WOA 

achieves exceptional reliability through its collective 

rotational and spiral movements, surpassing the precision 

attained by the GA, Adaptive change approach, and PSO 

Method [60]. 



 

 

The flowchart depicted in Figure 2 delineates a method 

that harnesses the WOA to optimize parameters and 

subsequently employs a DNN for a task presumably 

associated with OFDM signal processing or channel 

estimation.  

Initially, the OFDM signal, which represents the raw 

data to be transmitted, is processed to create a dataset. 

This dataset likely encompasses extracted features 

pertinent to channel estimation or other relevant tasks. 

The features extracted or processed data derived from the 

OFDM signal are organized into a matrix, serving as the 

input for the subsequent stage of the process. 

The WOA is employed as an optimization technique 

within this method. At this point, the initial parameters of 

the WOA algorithm are set, including factors such as 

population size, search process control, and maximum 

iteration limits. The main iteration process of WOA 

begins, where whales represent potential solutions within 

the optimization problem. 

During this phase, their positions are iteratively updated 

according to the WOA algorithm, presumably emulating 

the hunting behavior of humpback whales to traverse the 

search space and pinpoint optimal solutions. 

A crucial aspect involves comparing the solution derived 

for each 'whale' with those of other candidates within the 

WOA population. This comparison involves evaluating 

the fitness of each solution based on specific criteria. 

Subsequently, leveraging the optimized parameters or 

processed data from the preceding steps, a DNN model is 

instantiated. The features earlier extracted from the 

OFDM signal are presumably utilized to train or 

implement the DNN model. 

The data matrix generated in the preceding step, possibly 

augmented with additional training data, serves as the 

input for training the DNN model. This training phase 

enables the DNN to discern patterns and relationships 

within the data, thus enhancing its performance. 

Upon completion of the training phase, the efficacy of the 

DNN model is assessed using test data likely distinct 

from the training set. This evaluation phase gauges the 

model's capability to generalize and perform adeptly on 

unseen data. 

Baseband OFDM systems are similar to conventional 

systems. the transmitter converted the signal from the 

frequency to the time domain using the inverse discrete 

Fourier transform (IDFT) followed by adding a CP to 

reduce ISI. the channel’s maximum delay spread must be 

at least as long as the CP. 

The received signal in a sample-spaced multi-path 

channel, represented by random variables {h(n)}n=0
N−1.  is 

considered.  

y(n) = x(n) ⊗ h(n) + w(n)                                           (6) 

In which ⊗ symbolizes the cyclic complexity, and x(n) 

and w(n) represent the sent signal and additive white 

Gaussian noise (AWGN), respectively. After the CP is 

removed and DFT is executed, the incoming signal in the 

spectral domain becomes: 

 Y(k) = X(k)H(k) + W(k)                                       (7) 

where Y(k), X(k), H(k), and W(k) are the DFT of y(n), 

x(n), h(n) and w(n), respectively. 
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Figure 2. Flowchart of the proposed method 

 

Figure 3 shows the OFDM system architecture with DL-

based signal identification and channel estimation.  

 
Figure 3. Model of the System 

 

The transmitted data is located in following OFDM 

blocks, while pilot symbols are placed in the first 

block, collectively a forming a frame. The channel is 

considered continuous during the pilot and data blocks, 

although it can very form farm. 

The DNN model reconstructs the transmitted data end to-

end by using the incoming data, include of one data block 

and one pilot block from our first study, as input. 

Two phases, as illustrated in Figure 3, are added to 

generate a reliable DNN model for simultaneous channel 

estimation and symbol identification.  

In the offline training phase, the model is trained on 

OFDM samples generated under various channel 

conditions and information sequences, each with certain 

statistical qualities characteristics like a delay profile for 

different terrain. Without calculating the wireless 



 

 

channel explicitly, the DNN model recovers the 

transmitted data in the online operation phase. 

Figure 4 shows the DNN model structure. DNNs are 

more complex different of ANNs, with additional hidden 

layers improve recognition and representation 

performance.  

 

 
Figure 4. Structure of the deep learning model 

 

As seen in Figure 4, each layer of the network is made up 

of several neurons, each of which has an outcome derived 

from a nonlinear function applied to a weighted sum of 

neurons from the prior layer. 

The methodology can be summarized as following steps: 

2.1.6. Preparing dataset 

Firstly, we gather a dataset containing samples of 

received OFDM symbols, encompassing various 

modulation schemes, channel conditions, and noise 

levels. Then proper labeling of the dataset with ground 

truth information regarding the modulation type of each 

symbol was ensured. Then, we preprocess the dataset by 

normalizing the feature values, handling missing data, 

and removing outliers if necessary.  

In this study, in order to evaluate the performance of the 

combined model of CNN-LSTM in real transmission 

conditions, a data set was created using a simulated 

communication environment in MATLAB software. 

This simulation environment is designed to impose the 

effects of channel noise and cyber-physical disturbances 

on the transmitted data. 

The generated data set consists of 10,000 labeled samples 

collected at a sampling rate of 1 MHz. Each sample in 

this set contains multiple features, including encoded 

symbol streams, embedded test signals, and effects due 

to channel noise. 

In order to train and evaluate the model, the complete 

data set was divided into two separate parts: 80% of the 

data was considered as the training data set and the 

remaining 20% as the test data set. 

Before feeding the data to the CNN-LSTM model, a 

preprocessing step involving data normalization was 

performed. In addition, the normalized data was 

transformed into 2D sequences to match the expected 

input structure of the CNN-LSTM model. 

This approach to creating and preparing the dataset 

allows for a realistic evaluation of the proposed model’s 

performance in conditions similar to real-world 

communication environments and also ensures the 

reproducibility of the results obtained from the 

experiments.. 

 

2.1.7. Feature extraction 

For feature extraction, we represent each received OFDM 

symbol in either time-domain or frequency-domain 

representation. Then we extract relevant features from 

the time-frequency representation, such as amplitude, 

phase, and frequency components, to characterize the 

symbols. The CNN architecture tailored for symbol 

classification in OFDM receivers is designed. 

Convolutional extraction layers are then utilized to 

capture hierarchical attributed from the incoming data 

representations. Following that, pooling layers are added 

to reduce the size of feature maps and lower 

computational costs. 

 Fully connected layers are then employed for 

classification, followed by softmax activation to output 

class probabilities. 

The models are trained by treating wireless channels and 

OFDM modulation as black boxes. Channel models that 

reflect real channels' statistical properties are utilized to 

generate training data through simulations. A random 

data series is created as transmitted symbols with fixed 

reference signals for model training and deployment. The 

channel models simulate the current channel, and the 

received OFDM signal includes channel distortion and 

noise. The training data consists of transmitted and 

received signals. The model aims to minimize the 

difference between the transmitted data and the neural 

network's output, using different methods to measure this 

discrepancy. In this experimental setup, the L₂ loss 

function is used:         

𝐿2 =
1

𝑁
∑  𝑘 (�̂�(𝑘) − 𝑋(𝑘))2                                         (8)                                     

In this context �̂�(𝑘) represents the prediction value, 

while 𝑋(𝑘) serves as the supervision signal, 

corresponding to the transmitted symbols. 

The DNN model is consist of six layers, including three 

hidden layers with 256, 500, 250, 350, 120, and 16 

neurons, respectively. The input comprises the real and 

imaginary parts of two OFDM blocks with pilots and 

transmitted symbols. separately trained model processes 

and predicts each 16-bit segment of the transmitted data, 

which is then concatenated. Most layers use the ReLU 

activation function, while the final layer applies the 

sigmoid function to normalized the output within [0,1] 

range. 

2.1.8. Feature selection 

For feature selection firstly we initialize a population of 

candidate feature subsets and encode them as binary 

vectors. Then we define an objective function to assess 

the classification performance of candidate feature 

subsets. Then we apply the exploration and exploitation 

phases of the WOA to iteratively update candidate 

solutions and converge towards optimal feature subsets. 

Finally, we evaluate the classification accuracy of each 

candidate feature subset using a validation set. 

2.1.9. Integration of feature selection with CNN 

A method is presented for dynamically adapting the input 

feature dimensions of the CNN according to the selected 

feature subset. Following this, the specific subset of 

features derived from the WOA optimization process is 



 

 

used for training the CNN model. After this training 

phase, the CNN model undergoes fine-tuning through the 

utilization of backpropagation and stochastic gradient 

descent (SGD) optimization techniques. To mitigate the 

risk of overfitting and ensure the convergence of the 

model, early stopping methods are incorporated, and the 

performance of the validation set is continuously 

monitored. 

2.1.10. Training and hyperparameter optimization 

A range of hyperparameters within the CNN model is 

delved into, encompassing variables like learning rate, 

batch size, network architecture, and dropout 

regularization. Subsequently, cross-validation techniques 

are applied to assess the model's performance on the 

training set, with hyperparameters refined as necessary. 

Following this process, the CNN model undergoes 

training on the training dataset, utilizing the optimized 

hyperparameters and selected feature subsets. 

2.1.11. Evaluation 

The evaluation entails the analysis of the performance of 

both the trained CNN model and the feature selection 

with WOA using an independent test dataset. 

Furthermore, a comparative analysis is conducted 

between the performance of the proposed method and 

that of baseline approaches and traditional symbol 

classification techniques. Subsequently, statistical 

analyses are carried out to confirm the significance of the 

observed improvements. 

 

3. RESULTS AND DISCUSSION 

The experiments were aimed at evaluating our proposed 

methodology for symbol classification within OFDM 

carrier signals. A dataset comprising OFDM symbols 

captured under various channel conditions, modulation 

schemes, SNRs, and impairments was utilized. To 

facilitate model training, tuning, and evaluation, the 

dataset was divided into training (70%), validation 

(15%), and test (15%) sets. The OFDM system 

parameters is shown in table 2. 
 

Table 2. OFDM system parameters 

Parameter Value 

Number of subcarriers 64 

Number of pilot subcarriers 64 

Pilot Spacing 1 

Number of pilot symbols   1 

Number of data system 1 

Number of OFDM system 2 

 

For QPSK the 4 constellation signals has been selected: 

1-1j, 1+1j, -1+1j, -1-1j. also the length of the cyclic prefix 

has been selected as 16. 

The predictive accuracy of our suggested approach was 

compared with baseline methods and traditional 

techniques, with metrics being assessed. A classification 

accuracy exceeding 95% was achieved by our 

methodology, surpassing baseline methods. The CNN 

model trained on WOA-optimized feature subsets 

demonstrated robust performance, achieving over 95% 

accuracy. 

The effectiveness of our method was highlighted by 

employing a CNN model trained on WOA-optimized 

features, emphasizing its multifaceted nature. 

The symbol classification method within OFDM signals 

was rigorously evaluated by our experiment, ensuring a 

comprehensive approach through meticulous dataset 

partitioning and systematic training. This approach 

facilitated robust model training, hyperparameter tuning, 

and final evaluation. The adaptability of the CNN model 

across different datasets, conditions, and modulation 

schemes was enhanced by training it on WOA-optimized 

feature subsets, reaffirming the efficacy of our method. 

The following Table 3 provides a comprehensive 

overview of the performance metrics achieved by our 

proposed methodology for symbol classification within 

OFDM receiver systems, in comparison to both baseline 

methods and traditional techniques of symbol 

classification. 

It distinctly highlights the superior performance of our 

proposed approach over both baseline methods and 

traditional techniques across all metrics, thus 

substantiating its efficacy in symbol classification 

endeavors. 
 

Table 3. Performance comparison of different symbol 

classification methods in OFDM 

Method 
Accuracy 

(%) 
Remarks 

Proposed 

Method 
>95% 

Superior across metrics; robust 

feature selection; strong in all 

conditions 

PCA + CNN ~92% 
Effective but not as adaptable 

as WOA-based method 

ACO + CNN ~91% 
Improvement seen but still 

outperformed by WOA-CNN 

PSO + CNN ~93% 
Strong but slightly less 

accurate than WOA 

MMSE 

(Traditional) 
<85% 

Classical method with limited 

adaptability 

 

The SER curves for conventional techniques and deep 

learning-based approaches are Figure 5 show that the 

SER curves for LS and MMSE methods stops improving 

when Es/No goes above 10db with only 8 pilots. In 

contrast, the DL-based method can reduce its SER as 

Es/No increases, showing that it handles different 

number of pilots better. The SER performance of 

conventional and DL-based approaches is shown in 

Figure 5.  

The CP symbol error rate (SER) for the proposed method 

and other methods is shown in Figure 6. 

In terms of the general trend observed across all curves, 

it's apparent that there is a consistent decline in the SER 

as the CP SER increases, indicated by the movement 

towards the right on the x-axis. This trend underscores 

the notion that enhanced channel estimation, signified by 

lower CP symbol error rates, correlates with a reduction 

in errors during symbol recovery, thereby resulting in a 

diminished SER. 



 

 

 
Figure 5. The SER for the proposed approach and other 

methods 

 

Saturation Phenomenon at High CP Symbol Error Rates: 

At higher CP symbol error rates, all curves tend to flatten 

out or saturate. This phenomenon occurs when the 

channel quality deteriorates to such an extent that further 

increments in CP symbol error rates have minimal impact 

on the overall SER. Under these challenging channel 

conditions, even the most advanced channel estimation 

methods find it difficult to eliminate errors completely. 

Comparison and Identification of the Best Performing 

Method: 

A comparison shows that the proposed method, 

represented by the blue curve, constantly has the lowest 

SER across most of the x-axis range. This demonstrates 

that the method is more resistant to CP symbol errors, 

resulting better overall performance. 

Potential Reasons for the Proposed Method's Superiority: 

Improved Channel Estimation: The proposed method 

performs well in estimating the channel impulse 

response, which is important for accurate signal 

recovery. This improvement may be due to the utilization 

of advanced algorithms or the extra channel information. 

 Improved Exploitation of Redundancy: The proposed 

method more effectively uses extra information in coded 

symbols to improve error detection and correction during 

decoding. 

Additional Observations: 

The MMSE method, shown by the green curve, 

consistently performs better than the LS method (red 

curve), especially in moderate to high channel noise 

conditions. This means that MMSE provides more 

accurate channel estimates compared to the LS method. 

Notably, there is a clear performance gap between the 

proposed method (blue) and the other methods (red and 

green) at lower CP symbol error rates. Showing a 

significant improvement in symbol error performance, 

especially in good channel conditions. 

Overall, the figure clearly demonstrates that the 

proposed method (blue curve) achieves better symbol 

error performance for different CP symbol error rates. 

This advantage comes from its strong channel estimation 

and effective utilization of redundancy within coded 

symbols. 

 
Figure 6. CP symbol error rate for the proposed method and 

other methods 

 

Figure 6 illustrates the CP symbol error rate for the 

various methods, including the proposed approach. As 

seen in the figure, all curves follow a similar pattern, 

where the SER decreases as the CP symbol error rate 

increases along the x-axis. This trend highlights the 

importance of accurate channel estimation, as lower CP 

symbol error rates lead to fewer errors in recovered 

symbols, resulting in a lower SER. This happens because 

precise channel estimates help reduce the negative effects 

of fading and noise during signal reception. A noticeable 

drop in SER can see at lower CP symbol error rates 

across the curves. This depict that even small 

improvements in channel estimation can significantly 

reduce symbol errors, especially when channel 

conditions are good with low CP symbol error rates. 

On the other hand, as CP symbol error rates increase, a 

saturation effect appears. At this point, all curves start to 

level off, meaning that further increases in CP symbol 

error rates have little effect on the overall SER. This 

happens when the channel quality becomes so poor that 

even the most advanced channel estimation methods 

cannot effectively correct errors. Among these 

observations, the proposed method, represented by the 

blue curve, stands out as the best performer, consistently 

maintaining the lowest SER over a large portion of the x-

axis. This highlights its strong resistance to CP symbol 

errors, leading to better symbol error performance 

compared to other methods. Figure 7 shows the training 

process of DNN.  

 
Figure 7. The training process of DNN 

 

Training a DNN for OFDM signal detection involves 

several stages to help the network accurately identify 



 

 

received OFDM signals. Initially, a dataset is 

collected, containing OFDM signals with known labels, 

typically transmitted symbols or bits, and 

their considering received signal samples. This data is 

then preprocessed, including step like normalizing signal 

amplitudes and synchronizing symbols to ensure 

consistency.  Next, key features are extracted from the 

received signals to serve as input for the DNN. These 

features may include signal strength, phase information, 

CP samples, or frequency characteristics, depending on 

the specific task. After that, an appropriate DNN 

structure is designed, considering factors such as the 

number of layers, activation functions, and hidden units. 

The model is then trained using the dataset, with 

optimization algorithms adjust the network parameters to 

minimize errors between the predicted and actual labels. 

During training, the model's performance is evaluated on 

a separate validation set to prevent overfitting and fine-

tune its settings. Once the DNN achieves satisfactory 

accuracy, it can be deployed for real-time OFDM signal 

detection, with continuous monitoring and updates to 

maintain strong performance in various communication 

conditions. Figure 8 presents the SER for DL without the 

WOA as well as for the LS and MMSE methods. 

 
Figure 8. SER Comparison between DL, LS, and MMSE 

 

The comparison between ant colony optimization 

(ACO), PSO, and principal component analysis (PCA) 

for SER vs. Es/N0 (dB) is shown in figure 9. 

 
Figure 9. Symbol Error Rate (SER) vs. Es/N0 (dB) 

 

Figure 9 shows the SER performance of various channel 

techniques for estimation and signal detection in OFDM 

systems as a function of Es/N0. 

 The comparative analysis includes traditional methods 

like LS and MMSE, alongside advanced deep learning-

based approaches enhanced with PSO, ACO, PCA, and 

the WOA. The results demonstrate that the DL-based 

models, particularly when integrated with optimization 

techniques, significantly outperform traditional LS and 

MMSE methods, achieving lower SER values across the 

Es/N0 range. Among these, the deep learning models 

with WOA and PCA show the most substantial 

improvement, particularly at higher Es/N0 levels, 

underscoring the effectiveness of hybrid optimization 

techniques in improving OFDM performance. 

Effectiveness of Feature Selection: The integration of 

feature selection with WOA played a crucial role in 

enhancing symbol classification performance. By 

iteratively optimizing feature subsets, WOA identified 

the most relevant features for classification, leading to 

improved model accuracy and efficiency. 

Robustness to Channel Variability: The resilience of 

our methodology was demonstrated across diverse 

channel conditions and noise levels. Reliable 

classification in challenging conditions, such as 

frequency-selective fading and interference, was 

achieved by using the CNN model to recognize important 

patterns and selecting the best features with WOA. 

Computational Efficiency: Even though training DL 

models and selecting features with WOA is complex, 

reasonable speed was maintained in our method. The 

extra processing time was justified by the improved 

classification accuracy, making the approach useful for 

real-world applications. 

Generalization Capability: The strong generalization 

capability of our approach is a notable advantage, as 

evidenced by consistent performance across diverse 

datasets. The underlying signal characteristics were 

effectively captured by the learned features and selected 

feature subsets, enabling reliable symbol classification in 

various operating environments. 

Implication for Wireless Communication: The 

enhanced classification performance obtained by 

integrating DL and feature selection with WOA has 

important concepts for the advancing symbol 

classification methods in OFDM receivers. This could 

enhance the reliability and performance of modern 

wireless communication systems. 

Limitations and Future Directions 

While reasonable speed was achieved in our approach, 

further research is needed to identify ways to reduce 

processing time, especially for large datasets. The 

success of the technique depends on the standard and 

variety of the training dataset. Future work should focus 

on ensuring effective handling of imbalanced or 

incomplete data.  Additionally, advanced model designs 

could be explored, transfer learning techniques could be 

applied, and real-world testing could be conducted to 

validate scalability and effectiveness. 



 

 

5.  CONCLUSION 

In this paper, we suggested a novel methodology for 

symbol classification in the receiver of OFDM carrier 

signals. Using DL techniques with feature selection 

using WOA, our approach aimed to enhance 

classification accuracy and efficiency in wireless 

communication systems. Through careful testing and 

analysis, we have made important observations and 

contributions. Firstly, our test results demonstrate that the 

combining DL with feature selection using WOA 

significantly improves symbol classification in OFDM 

receivers. The feature subsets selected by WOA 

improved the CNN's ability to distinguish patterns, 

resulting in higher classification accuracy than traditional 

methods. Our method remains effective under different 

channel conditions and noise levels, showing strong 

adaptability across various datasets. Furthermore, our 

approach offers practical implications for advancing 

symbol classification techniques in wireless 

communication systems. By automatically learning 

important features from raw data and selecting the best 

ones, our method improves the reliability and efficiency 

of modern OFDM communication systems. The 

improved classification accuracy achieved through deep 

learning and feature selection with WOA can lead to 

better quality of service and enhanced user experience in 

wireless networks. However, our study also has some 

limitations and areas for future research. The 

computational complexity associated with training deep 

learning models and optimizing feature subsets using 

WOA may pose challenges for large-scale datasets. 

Additionally, the performance of our methodology 

heavily relies on the quality and diversity of the training 

dataset, highlighting the importance of robust data 

collection and preprocessing techniques. Future research 

could explore strategies for mitigating computational 

overhead, handling imbalanced datasets, and validating 

the scalability of our proposed methodology through 

extensive real-world deployment. 
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