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Recent advancements in deep learning have significantly contributed to the development of high spatial 

resolution (HSR) land cover mapping. However, the distinct geographic patterns between urban and 

rural areas have limited the generalizability of deep learning algorithms across these domains. To address 

this challenge, separate datasets for rural and urban environments have been proposed in the literature, 

aiming to achieve more reliable results in real-world applications. In this study, we utilize the publicly 

available LoveDA HSR dataset for model and parameter comparison. Experiments were conducted on 

two distinct scenarios: rural and urban areas. The combination of the Adam optimizer, Dice loss 

function, and UNet++ architecture exhibited the highest performance in both datasets. A weighted 

average of this combination, based on the number of test samples, was calculated for both groups, 

yielding a final performance score of 62.14% in terms of mean Intersection over Union (IoU). 
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1. INTRODUCTION 

Image analysis in remote sensing is becoming more and more widespread as artificial intelligence advances in 

the field of computer vision.  In addition, with the help of various sensors, satellite vehicles and platforms, 

remote sensing technology is renewing itself day by day. Remote sensing image segmentation aims to segment 

images with semantic labels. Deep learning (DL) algorithms with a representation learning approach have been 

used for many segmentation problems including remote sensing in recent years and these algorithms have been 

observed to be very useful. 

High spatial resolution (HSR) land-cover datasets are land-cover data created using high-resolution satellite 

imagery or aerial photography. HSR data allow the study of fine details and small areas, usually on images 

with a resolution of 1 meter or higher. Such data play an important role in various fields such as urban planning 

(Zou et al., 2024), environmental management(Zhang et al., 2023), agricultural traceability (Aksoy et al., 

2023), climate change (Abunnasr & Mhawej, 2023), natural disaster assessment (Xia et al., 2023). HSR data 

can be collected from spaceborne sensors such as Sentinel 2, Landsat or airbone sensors such as LiDAR. 
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Spaceborne sensors are devices usually located on satellites and collect data by observing the Earth from space, 

while airborne sensors are sensors usually located on aircraft such as airplanes, helicopters or drones. 

Spaceborne sensors are in space, usually on orbiting satellite systems. Because they are well positioned on 

fixed platforms, spaceborne sensors have fewer problems with degradation than airbone sensors and offer 

continuous monitoring of large areas. Visiting a given area at regular intervals, these sensors can be affected 

by the state of the atmosphere, but are weather independent. On the downside, they sometimes provide coarse 

resolution data as an image can cover several hundred square kilometers. 

In the literature, it has been emphasized that spatial resolution is more important than spectral resolution when 

extracting urban land cover information from remote sensing image (RSI) data (Neupane et al., 2021).  It has 

been concluded that an image pixel with good resolution is more useful for analyzing RSI data than a larger 

number of spectral bands or a narrower wavelength range (Myint et al., 2011). The rapid accumulation and 

availability of high-resolution RSI and the advancement of DL methods have shifted HSR data from traditional 

pixel-based and object-based methods to DL-based semantic segmentation. Semantic segmentation is an 

approach based on assigning a class label to each image pixel in order to make the image highly interpretable. 

Land cover semantic segmentation in remote sensing aims to identify the type of land cover in each image 

pixel. The main objective of the remote sensing image segmentation process is to divide the image into a 

homogeneous set of segments according to certain criteria and map the separate regions to real world objects 

such as buildings, rivers, fields, roads, etc.(Long et al., 2015). 

In traditional pixel-based approaches, pixel size may be insufficient to identify an object in an image. Although 

significant progress has been made with convolutional neural network (CNN)-based DL, the high intra-class 

variation and low sensor resolution of remote sensing images make segmentation difficult (Chan et al., 2021).  

To overcome these challenges, various strategies such as hierarchical feature structures (Tao et al., 2020), 

polymorphism (Peng et al., 2019) and fusion schemes (Yu et al., 2018) have been used to extend the pipeline.  

Kemker et al. (Kemker et al., 2018) improved performance with a hybrid architecture based on SharpMask 

and RefineNet for six-band multi-spectral image segmentation.  Kampffmeyer et al. (Kampffmeyer et al., 

2016) performed land cover mapping segmentation in urban areas by combining Monte Carlo dropout 

uncertainty maps with three CNN models. Sun and Wang (Sun & Wang, 2018) utilized a digital surface model 

based on geometry information to improve the segmentation results of HSR images with a fully convolutional 

network (FCN).  Yuan et al. (Yuan et al., 2021) designed a multichannel fusion module for water body 

detection using RGB, NIR and SWIR bands of Sentinel-2. To cope with different image resolutions, they 

proposed that the multichannel water body detection network (MC-WBDN) is more robust to changes in light 

and weather conditions and can better distinguish small water bodies compared to other models. Baek et al. 

(Baek et al., 2024) implemented a modified U-Net architecture, called SiU-Net, with two separate inputs for 

Sentinel-2's RGB and NIR data. They also performed a comparison with DeepLabV3+ and U-Net to evaluate 

the performance of their model.  Hossain et al. (Hossain & Chen, 2022) introduced a hybrid segmentation 

algorithm that integrates homogeneity and heterogeneity simultaneously to identify buildings. In that 

https://doi.org/10.54287/gujsa.1664093


481 
H. ACEMLI, N. KUMBASAR  

GU J Sci, Part A 12(2) 479-502 (2025) 10.54287/gujsa.1664093  
 

 

algorithm, since no prior knowledge about the shape of building footprints is required, all building shapes are 

included in the analysis and a donut-filling technique is introduced to extract roof elements. The algorithm 

resulted in homogeneity within segments and heterogeneity between segments. Finally, the study segmented 

small and large buildings without using scale or object size parameters. 

The development of convolutional networks with existing HSR land cover datasets such as Gaofen Image 

Dataset (Kampffmeyer et al., 2016), DeepGlobe (Demir et al., 2018), which contain pixel-wise information 

for remote sensing applications, has been encouraged. However, these datasets ignored the different styles 

between the geographical areas of urban and rural areas. Wang et al. (J. Wang et al., 2021)prepared the 

LoveDA dataset based on the knowledge that urban and rural land covers have large differences in class 

distributions, object scales and pixel spectra, and aimed to improve model generalizability separately. In the 

HSR images of different cities in China, they observed different patterns, especially in buildings, roads and 

wetlands. For example, they emphasized that buildings in rural areas are more irregularly arranged than in 

urban areas, and roads in rural areas are narrower than in urban areas. They noted that agricultural areas are 

large-scale and continuous in rural areas, while in urban areas they are found in the spaces between buildings. 

Wetlands are located in the form of small-scale ponds and ditches in rural areas and large-scale rivers and lakes 

in urban areas. In their study, they emphasized that UNet++ performs better than UNet due to its nested 

structure. 

In this study, the LoveDA dataset was used to compare the most preferred models and parameters in the 

literature for urban and rural areas. UNet, UNet++, MANet and DeepLabv3+ were used as architectures; Dice 

Loss, Cross Entropy Loss and Weighted Cross Entropy Loss were used as loss functions; Adam and Stochastic 

Gradient Descent (SGD) were used as optimizers. 

The rest of the paper is organized as follows: Section 2 describes the dataset, DL architectures, loss functions 

and optimizers used in the study. Section 3 presents the performance evaluation criteria, the experimental 

results and the comparison between the experimental groups. Section 4 discusses the limitations, with a 

comparison to the literature, and emphasizes the importance of the work. Finally, conclusions and future work 

are presented in Section 5. 

2. MATERIAL AND METHOD 

This section describes the dataset, DL approaches, loss functions and optimizers used in the study. 

2.1. Dataset 

In this study, we utilize the publicly available LoveDA dataset (J. Wang et al., 2021), introduced in the 

literature by Wang et al. in 2021. The LoveDA dataset was collected in July 2016 from 18 diverse urban and 

rural scenes in Nanjing, Changzhou, and Wuhan, covering a total area of 536.15 km². The dataset comprises 

5,987 high spatial resolution (HSR) images, each with a size of 1024x1204 pixels and a spatial resolution of 
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0.3 meters. The original dataset contains 166,768 objects and is divided into training, validation, and test sets. 

However, since ground truth (GT) masks for the test data were unavailable for performance evaluation, this 

study focuses on the training and validation data. To this end, the training and validation dataset was shuffled 

and then randomly split into 80% for training and 20% for testing. As summarized in Table 1, a total of 4,191 

RGB remote sensing image-mask pairs were used in this study. 

Table 1. Image distribution in training and test sets 

 Train Test Total 

Rural Dataset 1886 472 2358 

Urban Dataset 1466 367 1833 

Total 3352 839 4191 

Sample images and corresponding masks from rural and urban scenes, considering the segmentation task with 

a total of 8 classes, including the "No Data" class, are presented in Figure 1. 

 

Figure 1. Example images and corresponding segmentation masks from the LoveDA Dataset 

Wang et al. (J. Wang et al., 2021) emphasized that objects of the same category have completely different 

patterns in different scenes. In their dataset, urban and rural scenes have different class distributions. Urban 

scenes with high population density contain many artificial objects such as buildings and roads, while rural 

scenes contain more natural elements such as forests and water. 

2.2. Method 

The models, loss functions and optimization algorithms used for comparison in the study are briefly mentioned 

in this section. 

https://doi.org/10.54287/gujsa.1664093
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2.2.1. Models 

CNN architectures are able to distinguish land covers by classifying pixels thanks to their ability to learn spatial 

relationships in images. UNet, UNet++, MANet, and DeepLabv3+ DL models, which are frequently preferred 

in the literature for segmentation in HSR data, are briefly described in this section. 

UNet: 

The UNet architecture (Ronneberger et al., 2015) consists of an encoder block that coarsens the image 

resolution and a decoder block that increases the image resolution. The UNet architecture consists of 

convolution layers, pooling layers, feature fusion layer, upsampling layer and softmax layer. The structure of 

the encoder and decoder parts is symmetric with jump connections between them, which positively affects 

fine-grained segmentation. At the same time, UNet is able to preserve the feature maps with the same size as 

the original image. 

UNet++: 

UNet++ (Zhou et al., 2018) is developed by integrating multi-depth UNet(Ronneberger et al., 2015) models 

and linking all encoder and decoder blocks with the same resolution. The decoders in the UNet++ architecture 

combine multi-scale feature maps at the same and different image resolutions. Interwoven with jump links, 

this architecture exploits the UNet structure at different depths. Thus, low-level attributes are preserved in 

complex tasks.  Furthermore, these jump links help to bridge the semantic gap between the attribute maps of 

encoders and decoders in the UNet model. 

MANet: 

Multiscale attention network, MANet (Fan et al., 2020), is a multiscale network that can capture local attributes 

with their global dependencies based on the attention mechanism. It consists of two blocks: position-wise 

attention block (PAB) and multiscale fusion attention block (MFAB). The detection of spatial and channel 

dependencies of the feature maps of the PAB and MFAB blocks is based on the self-attention mechanism. 

While the PAB is used to model attribute dependencies capturing spatial dependencies between pixels, the 

MFAB handles channel dependencies between any attribute map with multiscale semantic attribute fusion. In 

addition to high-level, MFAB also takes into account the channel dependencies of low-level attribute maps. 

Finally, the channel dependencies of high and low level attribute maps are fused to obtain multiscale semantic 

information and improve network performance. 

DeepLabv3+: 

DeepLabv3+ (Chen et al., 2018) is roughly based on adding a decoder module to DeepLabv3 (Chen et al., 

2017) and extending DeepLabv3 to improve segmentation results along object boundaries. DL uses a spatial 

pyramid pooling module or an encoding-decoder structure for semantic segmentation. The spatial pyramid 
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pooling module can multi-scale encode incoming features at multiple rates with filters or pooling operations, 

while the encoder-decoder architecture can capture sharper object boundaries by gradually recovering spatial 

information. DeepLabv3+ combines the advantages of both approaches. By applying depth-separable 

convolution to both atrous spatial pyramid pooling and decoder modules, DeepLabv3+ achieves a faster and 

more powerful encoder-decoder network. 

2.2.2. Losses 

Loss functions play an important role in determining model performance. However, it is not possible to decide 

on a single universal loss function, especially for multi-class segmentation problems (Jadon, 2020). In this 

study, Dice Loss, Cross Entropy Loss and Weighted Cross Entropy Loss, which are widely used in 

segmentation applications, are compared. 

Dice Loss 

The Dice coefficient is a widely used metric for calculating the similarity between two images. It was later 

adapted as a loss function known as Dice Loss (Sudre et al., 2017). For multi-class problems, the calculation 

of Dice Loss over the i-th instance in the dataset is presented in Equation 1: 

 𝐿𝐷𝑖𝑐𝑒(y, �̂�) =
1

𝐶
∑(1 −

2 ∑ (𝑦𝑖,𝑘�̂�𝑖,𝑘
 
𝑖 )

∑ 𝑦𝑖,𝑘
 
𝑖 + ∑ �̂�𝑖,𝑘

 
𝑖

)

𝐶

𝑘=1

 (1) 

In Equation 1, 𝑦 is the true value, 𝑦 is the predicted result and C is the number of classes. 

Cross Entropy (CE) Loss 

Cross entropy (CE) is a measure of the difference between two probability distributions for a given random 

variable or set of events (Yi-de et al., 2004).  CE loss is widely used especially in classification problems and 

is the most preferred loss function in segmentation, since segmentation is considered as pixel-level 

classification. The CEL calculation is presented in Equation 2 for the i-th sample in the dataset, 

 𝐿𝐶𝐸(𝑦, �̂�) = − ∑ 𝑦𝑖,𝑘𝑙𝑜𝑔(�̂�𝑖,𝑘)

𝐶

𝑘=1

  (2) 

where, 𝑦 is the true value, 𝑦 is the predicted result and C is the number of classes. 

Weighted Cross Entropy (WCE) Loss 

Weighted cross entropy (WCE) is a variant of binary cross entropy in which positive samples are weighted by 

coefficients (Pihur et al., 2007).  WCE loss is calculated over the i-th sample in the dataset as in Equation 3, 

 𝐿𝑊𝐶𝐸(𝑦, �̂�) = − ∑  𝑤𝑘 𝑦𝑖,𝑘𝑙𝑜𝑔(�̂�𝑖,𝑘)

𝐶

𝑘=1

 (3) 
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where  𝑦  is the actual value, 𝑦 is the predicted result and  𝑤𝑘 is the weighting coefficient for the k-th class. In 

case of class imbalance, larger weights are assigned for rare classes. 

2.2.3. Optimizer approaches 

In DL algorithms, optimizers are used to obtain the best match between the actual values and the 

estimated outputs (Bottou, 2010).  The difficulties in satellite imagery can be taken into account in the 

optimization of CNN-based segmentation, allowing the development of more accurate and generalizable 

models (Pan et al., 2020) (H. Wang et al., 2022). In this study, experiments were conducted with Adam 

and SGD approaches. An overview of these optimizers is presented in this section.  

Adam 

The Adam optimizer (Kingma & Ba, 2014) is an iterative optimization algorithm used to minimize the loss 

function during the training of neural networks. In Adam optimizer, faster convergence is guaranteed by bias 

in the early stages of training and the training process is stabilized. Adam helps faster convergence by adjusting 

the learning rate for each parameter and is therefore preferred for problems with sparse gradients or noisy data 

(Goodfellow, 2016). 

Stochastic Gradient Descent (SGD) 

Gradient descent (GD) is one of the basic optimization algorithms used to minimize the loss of the model. GD 

tries to minimize the loss function in the learning process. The model parameters are updated and the learning 

process is performed. SGD (Bottou, 2010) introduces randomness into the optimization process by randomly 

selecting a data point at each step instead of using all data points when calculating the gradient. The size of the 

batch size, the frequency of parameter updates and the convergence process are determined in the gradient 

descent (Kingma & Ba, 2014). 

3. RESULTS 

In this section, evaluation criteria and experimental results are presented. Resnet50 (He,2016) was used as the 

backbone in all models and the input size was set to 256x256 to reduce computational complexity. In all 

scenarios pretrained Resnet50 weights were used and fine-tuned according to the datasets. 

3.1. Evaluation criteria 

In segmentation tasks, accuracy is a commonly used metric to evaluate the proportion of correctly classified 

pixels to the total number of pixels in the image. However, accuracy can be misleading in imbalanced datasets, 

where the model might classify the majority class correctly while neglecting smaller, less frequent regions. So 

such as IoU (Intersection over Union) to get a more comprehensive understanding of model performance, 

especially in cases of class imbalance.  

https://doi.org/10.54287/gujsa.1664093
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IoU metric is commonly used to evaluate the performance of predicted regions in segmentation tasks (J. Wang 

et al., 2021). IoU is computed as the ratio of the intersection of the predicted and GT segmentations to the 

union of these areas. This metric provides a quantitative measure of how well the predicted masks align with 

the GT masks.  

In this study, detailed results are presented on iou and accuracy is used as a support.  

The formulas for Accuracy and IoU are presented in Equation 4-5, respectively.   

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4) 

 𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 (5) 

The definitions of True Positive (TP), False Positive (FP), and False Negative (FN) in Equation 4-5 are as 

follows: TP are pixels for which the model correctly predicts the target region. FP are pixels where the model 

positively predicts a region that does not actually exist. FN are pixels where the model incorrectly predicts a 

region with a positive true label. 

3.2. Experimental results 

In this section, the results of the experimental studies conducted separately for rural and urban categories are 

presented and compared using Intersection over Union (IoU) as the evaluation metric. 

3.2.1. Rural Dataset 

This section presents the results for the rural regions of the dataset. Figure 2 illustrates the IoU values of four 

models and three loss functions on the test data, using the Adam optimizer, while Figure 3 presents the IoU 

values obtained with the SGD optimizer. 

Rural landscapes exhibit gradual transitions between land cover types such as forest, agriculture, and barren 

land. These transitions often lack clear geometric boundaries, requiring models to generalize broader spatial 

patterns rather than focus on sharply defined features. In this context, as illustrated in Figure2, UNet++ 

consistently outperforms the other models across all loss functions, particularly under Dice Loss (IoU = 

0.6601). This suggests that UNet++’s nested architecture and dense skip connections are well-suited for 

modeling the multi-scale, continuous transitions often found in rural regions such as irregular forest edges or 

variable agricultural fields. Conversely, models like DeepLabv3+ and MANet, which rely on dilated 

convolutions and attention mechanisms respectively, may struggle with such gradual class boundaries, 

potentially overemphasizing texture or failing to capture context over large areas. 
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Figure 2. IoU performance on the rural dataset using the Adam optimizer 

Dice Loss outperforms CE and WCE, particularly for UNet++ and UNet, likely due to its sensitivity to class 

imbalance and ability to focus on region-level overlap. This is important in rural areas where classes like barren 

or roads are often underrepresented and exhibit ambiguous visual features. 

Overall, model architectures that allow for deep, context-aware feature fusion and fine-scale localization 

perform better in rural domains, where semantic boundaries are not as crisp, but broader regional patterns carry 

strong class cues. 

 

Figure 3. IoU performance on the rural dataset using the SGD optimizer 

In rural area segmentation tasks, the performance of models trained with the SGD optimizer shows (Figure 3) 

notable variation depending on both architecture and loss function. Among the evaluated models, DeepLabv3+ 

achieved the highest IoU score of 0.6422 when trained with the standard CE loss, indicating its strength in 

handling broad and visually ambiguous rural land classes. UNet++ closely follows, particularly excelling under 

WCE and Dice Loss, which highlights its robustness in managing class imbalance and capturing multi-scale 
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contextual features. MANet, on the other hand, consistently underperforms across all loss types, suggesting 

that its attention mechanisms may be less effective in rural settings where class boundaries are less distinct 

and visual patterns are more heterogeneous. 

While SGD provides reasonable performance, especially with CE-based training, it appears less capable of 

handling the nuanced spatial transitions and imbalanced class distributions characteristic of rural environments 

compared to adaptive optimizers like Adam. Rural landscapes pose unique challenges for segmentation due to 

their class ambiguity, spatial variability, and class imbalance. Our experiments reveal that optimizer choice 

has a significant impact on model performance in such settings. Specifically, Adam optimizer consistently 

yields higher IoU scores across all models and loss functions, with UNet++ showing the largest gain (10% 

improvement in Dice Loss). This suggests that adaptive optimization strategies are better suited to handling 

the complex, diffuse class boundaries and imbalanced distributions typical of rural regions. In contrast, SGD 

results in lower Dice-based IoU scores, possibly due to its fixed learning rate and sensitivity to sparse gradients, 

which are common in rural image segmentation tasks. 

In all experiments; for Adam optimizer, we use 0.003 as learning rate and 0.0001 as weight decay while For 

SGD optimizer, we use 0.05 as learning rate and 0.9 as momentum. 

When the aforementioned figures are evaluated, it is clear that the highest performance of 0.66 is obtained in 

the UNet++, Dice loss, Adam optimizer combination. The GT and predict masks of this combination on the 

test data are presented in Figure 4 along with the RGB images. 

 

Figure 4. RGB images, GT, and predicted segmentations from the rural dataset 

Figure 5 displays the confidence interval (CI) plots for both the IoU and accuracy metrics on the rural test set. 

These plots offer a statistical perspective on the model's performance, illustrating the range of values that can 

be expected for each metric with a specified level of confidence. To enhance visual interpretability, the graphs 

are summarized. Each point in the plot corresponds to a batch, with each batch representing 16 test samples. 
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Figure 5. CI analysis using different metrics on the rural test set 

The complexity matrix for analyzing the pixel-based correct and incorrect decisions of the proposed model is 

presented in Figure 6. 

As shown in Figure 7, the class-based accuracy values indicate that the segmentation model performs at a 

relatively high level across most categories. Notably, the "no-data" class exhibits exceptional performance 

with an accuracy of 99.67%, highlighting the model's proficiency in handling missing or unlabeled areas. 

Furthermore, the "forest" class, with an accuracy of 83.37%, stands out as one of the best-performing classes, 

suggesting effective segmentation of forested regions. The "water" and "agriculture" classes also demonstrate 

solid results, with accuracy rates of 83.08% and 82.25%, respectively, reflecting the model's capability to 

accurately identify these land cover types. In contrast, the "barren" class shows the weakest performance, with 

an accuracy of only 60.66%, indicating that further improvements are needed in this area. The "building" 

(80.20%) and "road" (69.35%) classes exhibit moderate accuracy, revealing room for improvement in 

distinguishing these features from other land types. Overall, while the model achieves high accuracy for most 

classes, there is clear potential for enhancement, particularly for more challenging categories such as “barren”. 

Grad-CAM (Gradient-weighted Class Activation Mapping) visualizes which areas the model is focusing on. 

The areas marked with vibrant colors represent the regions that have the most influence on the model's 

decisions. This map helps us understand which features the model is concentrating on while making its 

predictions. 

As shown in Figure 8 the rural test image, the Grad-CAM heatmaps show distinct and well-localized attention 

patterns for high-performing classes such as forest, water, and agriculture. The model's attention in these cases 

aligns closely with semantically meaningful regions for instance, forest areas activate dense regions with tree 

coverage, and agriculture areas correspond to regular, patch-like field textures. 
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Figure 6. Confusion matrix of the rural test set 
 

 

Figure 7. Class-wise Accuracy performance of the rural segmentation model 
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Classes with lower accuracy, such as barren and road, exhibit more scattered or ambiguous Grad-CAM 

activations. For example, road segments in rural areas may be less defined (e.g., dirt paths), leading to broader 

or less confident attention distributions in the visualizations. Similarly, barren regions often overlap visually 

with agricultural or background areas, making it harder for the model to consistently focus on them. 

3.2.2. Urban Dataset 

After rural dataset models are trained, it is obvious some models give worse than other results. Therefore, we 

omit some models in order to decrease time spent for training and GPU resources.  According to result, we 

prefer only use Adam optimizer instead of Adam and SGD because most models having SGD as optimizer has 

imbalance class prediction or poor focal loss result (increasing gradually instead of decreasing). Also, SGD 

has slow converge compared to Adam. Also, we prefer not to use UNet because we have already used UNet++, 

and UNet++ is more complex and advanced version of UNet. Figure 9 shows the IoU values of three models 

and three loss approaches on the test data according to the Adam optimizer. 

According to Figure 9, in the segmentation of urban regions, the models trained with the Adam optimizer 

display moderate performance, with IoU scores ranging between 0.5172 and 0.5717. Among the tested 

architectures, UNet++ achieves the highest IoU across all three loss functions, with its best performance 

observed under Dice Loss (0.5717). This result reflects the architecture's ability to capture multi-scale spatial 

features and preserve fine-grained details essential characteristics in urban settings where class boundaries 

such as roads, buildings, and water bodies are relatively well-defined. DeepLabv3+ and MANet follow closely, 

though their scores remain slightly lower, especially when trained with WCE loss, which may overcompensate 

for class imbalance in well-structured urban environments. The marginal differences in performance also 

suggest that while urban areas provide clearer visual cues for segmentation, accurately delineating narrow or 

adjacent classes (e.g., roads vs. buildings) remains challenging. Adam’s adaptive learning capabilities 

contribute to stable convergence and generally consistent results across architectures, though the overall IoU 

levels indicate room for further enhancement, particularly through architectural improvements or targeted post-

processing. As a result, the combination of UNet++, Dice loss, and Adam optimizer was the most successful 

model with 0.5717 IoU in the urban dataset as in the rural dataset. 

The GT and predict masks of this combination on the test data are presented in Figure 10 along with the RGB 

images. 

Figure 11 presents the CI plots for both the IoU and accuracy metrics on the urban test set. As in Figure 6, 

each point in the graph represents a batch, with each batch corresponding to 16 test samples. 

The complexity matrix for analyzing the pixel-based correct and incorrect decisions of the proposed model is 

presented in Figure 12. 
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Figure 8. Grad-CAM visualization for a rural test image 

As presented in Figure13, the per-class accuracy results for the urban region reveal considerable variation in 

model performance across land cover types. The model achieves relatively high accuracy for water (84.56%), 

road (76.83%), building (75.21%), and forest (75.13%), suggesting that these classes possess distinct spectral 

or structural characteristics that the model can effectively learn and distinguish. The no-data class (99.88%) is 

classified with near-perfect accuracy, likely due to its clearly separable visual traits from other categories. In 

contrast, accuracy is notably lower for the background class (64.75%) and dramatically low for agriculture 

(6.25%). The background class likely suffers from high intra-class variability and semantic overlap with 

adjacent classes, leading to increased confusion. The extremely low performance for agriculture may indicate 

several challenges: agricultural regions in urban environments are often fragmented, spectrally similar to other 

vegetative classes (e.g., forest or gardens), and underrepresented in the training dataset. This underperformance 

points to the difficulty of learning robust representations for agriculture in heterogeneous urban landscapes. 
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Figure 9. IoU performance on the urban dataset using the Adam optimizer 
 

 

Figure 10. RGB images, GT, and predicted segmentations from the urban dataset 
 

 
 

Figure 11. CI analysis using different metrics on the urban test set 
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Figure 12. Confusion matrix of the urban test set 

Overall, the model demonstrates strong classification performance for well-defined, structurally distinct 

classes, while accuracy declines sharply for classes with ambiguous boundaries or sparse representation. These 

findings highlight the importance of addressing data imbalance and intra-class variability when mapping high-

resolution urban environments. 

 

Figure 13. Class-wise Accuracy performance of the urban segmentation model 
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In urban areas, the model's attention was strongly focused on man-made structures such as roads and buildings, 

indicating that it successfully learns discriminative features relevant to urban classification. Generally, the 

Grad-CAM outputs for the urban test images show stronger, more concentrated activations for building, road, 

and water classes. Buildings and roads tend to have clear geometric edges and consistent textures in urban 

settings, which the model can more easily detect. This is visible in the Grad-CAM maps, where high-attention 

areas align closely with structured city blocks and well-defined roads. 

Interestingly, despite the relatively high accuracy for barren and water classes, agriculture shows a drastically 

low performance. The corresponding Grad-CAM output reveals that the model does not effectively focus on 

agricultural zones, likely due to their visual similarity with barren or undeveloped land in urban fringe areas. 

This lack of focused attention is a key reason behind the low classification accuracy and supports the need for 

further domain-specific refinement. Figure 14 illustrates the activation map generated using Grad-CAM for a 

urban image. 

4. DISCUSSION 

Timely and accurate information on urban and rural land covers is critical for authorities. Urban and rural area 

analysis plays an important role in land cover change, population forecasting, environmental management, 

disaster management. (Guo & Du, 2017) HSR land cover data contribute to our interpretation of the 

geographical and ecological environment through remote sensing technology. These data often provide 

detailed information on the use of a particular area. Datasets in the literature are used to classify various types 

of land cover such as forests, agricultural areas, water bodies, settlements, etc. 

In this study, we utilize the publicly available LoveDA HSR dataset, which presents challenges such as multi-

scale objects, complex backgrounds, and inconsistent class distributions. The study focuses on comparing 

models and parameters across different geographical environments, specifically urban and rural areas. A total 

of 5,987 high-resolution (0.3 m) remote sensing images from Nanjing, Changzhou, and Wuhan cities are used 

for semantic segmentation tasks. Various models, loss functions, and optimization techniques are applied to 

perform land cover segmentation in both rural and urban settings. The study investigates the impact of different 

model configurations and parameter combinations on segmentation performance. Additionally, the influence 

of the geographic differences between rural and urban areas on segmentation success is explored, along with 

how the selected parameters reflect these differences. 

Significant differences were observed between the segmentation results obtained from rural and urban areas 

using the models employed in this study. It was found that the type of area (rural or urban) influenced the 

performance of the DL models; however, the same model (UNet++) achieved higher performance in rural 

areas. This highlights the importance of optimizing the same model for different geographical contexts. The 

effect of optimization algorithms (Adam and SGD) on segmentation performance demonstrated notable 

differences in both rural and urban areas. The Adam optimizer exhibited faster and more stable convergence 
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in rural areas, which proved advantageous for optimizing the more complex and irregular land cover structures 

typically found in rural environments. The choice of loss function (Dice loss, CE loss, and WCE loss) also had 

a significant impact on segmentation success. Specifically, it was observed that the Dice loss function, when 

combined with the Adam optimizer, outperformed the SGD optimizer, particularly for smaller area segments. 

As a result, experiments in urban areas were conducted exclusively using the Adam optimizer. For both rural 

and urban areas, the combination of UNet++, the Adam optimizer, and Dice loss yielded the highest 

performance. 

   

   

 
  

Figure 14. Grad-CAM visualization for an urban test image 

In this study, ResNet50 was selected as the backbone architecture due to its strong balance between depth and 

computational efficiency, making it a widely adopted standard in various remote sensing and semantic 

segmentation tasks. Its residual connections enhance gradient flow and facilitate learning deeper 

representations, which are essential for capturing hierarchical features in complex scenes. Furthermore, all 

images were resized to 256×256 pixels prior to training. This resizing was a practical necessity to ensure 

feasible training under limited GPU resources and to maintain a consistent input size across batches. While 
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this transformation may introduce some degree of spatial information loss—particularly affecting small or 

elongated objects—visual inspection and empirical performance indicate that key semantic structures remain 

sufficiently preserved. Nevertheless, this trade-off is acknowledged as a limitation, and future work may 

explore adaptive tiling or patch-wise strategies to retain higher spatial fidelity without compromising 

computational feasibility. 

To compare the performance of the LoveDA dataset with the existing literature, a weighted average of the 

combination (UNet++, Adam optimizer, and Dice loss) was calculated based on the number of test samples 

for both rural and urban groups. The final performance, in terms of mean Intersection over Union (IoU), was 

62.14%. Table 2 presents a comparison of the proposed method with UNet-based techniques from the 

literature. 

Table 2. Comparison of the proposed method with existing methods in the literature 

Literature Model mean IoU (%) 

(J. Wang et al., 2021) UNet 47.84 

(L. Wang et al., 2022) UNetFormer 52.40 

(Dimitrovski et al., 2024) UNet Ensemble 57.36 

The proposed method UNet++ 62.14 

Wang et al. (J. Wang et al., 2021) obtained 47.84% mean IoU with UNet when introducing the LoveDA dataset. 

Wang et al. (L. Wang et al., 2022) achieved a mean IoU score of 52.40% with UNetFormer, a version of U-

Net combined with transformer attention mechanisms. Dimitri et al. (Dimitrovski et al., 2024) utilized a U-

Net ensemble model with three different backbones (Multi-Axis Vision Transformer, ConvFormer, and 

EfficientNet) to achieve a mean IoU of 57.36%. In this study, the combination of UNet++, which is a more 

advanced version of UNet with a hopping link structure, with Dice score and Adam optimizer proposed a mean 

IoU of 62.14%. 

The comparative analysis between urban and rural regions highlights the sensitivity of classification 

performance to contextual landscape characteristics, particularly in the context of high spatial resolution (HSR) 

imagery. Rural areas exhibit notably higher accuracy in classes such as agriculture (82.25%), forest (83.33%), 

and background (72.20%), which can be attributed to the relative spectral homogeneity and spatial consistency 

of these land cover types in non-urban settings. In contrast, agriculture in urban regions is classified with 

extremely low accuracy (6.25%), underscoring one of the key challenges in HSR mapping the difficulty of 

detecting fragmented, spatially sparse, and spectrally ambiguous land cover patches. In urban environments, 

agricultural areas are often interspersed with other vegetated classes (e.g., parks, roadside greenery), and their 

small patch size further complicates the model’s ability to learn distinctive representations. Likewise, building 

(80.20%) and water (83.08%) classes achieve better performance in rural settings compared to their urban 
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counterparts (75.21% and 84.56%, respectively). On the other hand, roads are more accurately classified in 

urban regions (76.83%) than in rural ones (69.35%), likely due to their more regular, linear structure and higher 

frequency of representation in urban high-resolution imagery. Interestingly, the barren class performs 

substantially better in urban areas (75.99%) than in rural ones (60.66%), which may reflect the more visually 

coherent and structured nature of urban barren areas such as construction sites or vacant lots, as opposed to the 

more heterogeneous barren landscapes in rural zones. 

These findings emphasize the specific challenges of HSR mapping, especially in urban environments. Class 

confusion due to spectral overlap, high intra-class variability, fragmented spatial patterns, and limited class 

representation all contribute to reduced model performance for certain land cover types. Therefore, it is crucial 

to consider these HSR-specific limitations when interpreting classification results, and future work may benefit 

from incorporating class-aware sampling strategies, multi-modal data sources, or architecture-level 

enhancements to better address these issues. 

The limitations of this study include the following: GT labels for the test data are not available in the dataset, 

necessitating the random generation of the test partition from the available data. Additionally, some of the 

images in the dataset exhibit spatial correlation, and the scenario was executed hierarchically due to the large 

number of experiments across all possible combinations. 

5. CONCLUSION 

DL approaches for land cover segmentation with HSR data yield more accurate, precise, and efficient results 

compared to manual methods such as visual interpretation or fieldwork. HSR data, with its high resolution and 

rich visual details, serves as a crucial data source for accurately distinguishing land cover classes. This study 

demonstrates that in land cover segmentation using HSR imagery, factors such as the differences between rural 

and urban patterns, as well as variations in model architectures, loss functions, and optimization techniques, 

significantly impact segmentation performance. It was observed that the geographic distinctions between rural 

and urban areas notably influence the optimization of model parameters and the overall success of the 

segmentation task. Future research should focus on further refining model configurations, incorporating larger 

datasets, and evaluating the developed models on diverse datasets to enhance generalizability. 
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