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ABSTRACT

We study biharmonic homogeneous real hypersurfaces in complex projective space and quaternion
projective space. We provide a classification of biharmonic homogeneous real hypersurfaces in
quaternion projective space. We also classify pseudo-harmonic, subelliptic biharmonic, and Levi-
harmonic homogeneous Hopf hypersurfaces in complex space forms.
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1. Introduction

Let (M, g) and (M, §) be Riemannian manifolds. For a smooth map f: M — M, its Dirichlet energy E(f;Q)
over a relatively compact domain © C M is defined by

B = [ Ghsdu,

Then f is said to be harmonic if it is a critical point of the Dirichlet energy with respect to compactly supported
variations [32]. The Euler-Lagrange equation of this variational problem is

7(f) = try(Vdf) = 0.

Here 7(f) is the tension field of f (see Section 2.2).

The theory of harmonic maps is a central topic in geometric analysis with numerous applications in
differential geometry. Examples include Siu’s strong rigidity theorem on Kihler structures with strongly
negative curvature [86], Corlette’s superrigidity over archimedean fields [26], Mok-Siu-Yeung’s geometric
superrigidity [65].

If a smooth map f: M — M is an isometric immersion, i.e., f*g = g, then f is harmonic if and only if f is a
minimal immersion. Thus, minimal submanifolds are specific example of harmonic maps.

However, some mapping spaces do not contain harmonic maps. For example, Eells and Wood [34] proved
that the space Map, (T?,S?) of all smooth maps of mapping degree 1 from a 2-torus T? into a unit 2-sphere
S? does not contain harmonic maps. To find alternative representatives in each homotopy class, another
variational problem was proposed by Eells and Sampson [32]. They suggested to the following functional

(bienergy):
Bafs) = [ 3l v,
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Jiang [54] deduced the Euler-Lagrange equation

m2(f)=0

for the bienergy (see (2.4)). A smooth map f is said to be biharmonic if it satisties 7 (f) = 0. Over the last two
decades, there has been growing interest in the theory of biharmonic maps and biharmonic submanifolds. For
a general theory and fundamental results on biharmonic maps, see the monograph [75] by Chen and Ou. In
particular, we refer to [100] for a recent study on biharmonic maps from 2-tori into the unit 2-sphere.

In this article, we revisit the biharmonic hypersurface geometry of complex as well as quaternion projective
spaces. Additionally, we study other types of harmonicity and biharmonicity of real hypersurfaces in complex
projective space. Specificaly, we study pseudo-harmonicity (Section 8), subelliptic biharmonicity (Section 8)
and Levi-harmonicity (Section 9) of homogeneous (Hopf) hypersurfaces of CP".

This article is organized as follows: In Section 2, we recall fundamental facts on vector bundle calculus,
harmonic maps and biharmonic maps as well as hypersurface geometry. Section 3 is devoted to CR-
manifolds (Cauchy-Riemann manifolds) and contact metric manifolds. We recall fundamental theory of real
hypersurfaces in complex space forms in Sections 4-6.

We study biharmonic real hypersurfaces of complex projective space CP™ in Section 7. We give a (correct)
classification of biharmonic homogeneous hypersurfaces in CP™ (Theorem 7.9).

Section 8 turns our attention to harmonic maps and biharmonic map in CR-geometry. The notion of
harmonicity for smooth maps between Riemannian manifolds was adapted to smooth maps from strongly
pseudo-convex CR-manifolds into Riemannian manifolds as the “pseudo-harmonicity” in [4]. Next, the
biharmonicity is adapted for those maps as “subelliptic biharmonicity" in [30]. In Section 8, we study pseudo-
harmonicity and subelliptic biharmonicity of homogeneous real hypersurfaces in CP".

The notion of Levi-harmonicity for smooth maps from almost contact metric manifolds into Riemannian
manifolds was introduced by Dragomir and Perrone [31]. In Section 9, we study Levi-harmonicity of
homogeneous Hopf hypersurfaces in the complex projective space CP™ and the complex hyperbolic space
CH™.

In the final section, we return to the original (Riemannian geometric) harmonicity and biharmonicity of
isometric immersions. We provide the (correct) classification of biharmonic homogeneous real hypersurfaces
in the quaternion projective space HP".

Throughout this article, we denote by I'(E) the space of all smooth sections of a vector bundle E.

2. Preliminaries

2.1. Vector bundles

Let E be a vector bundle over a manifold M. Take a pair (h¥, V¥) consisting of a fiber metric h¥ and a
connection V¥ of E satisfying the condition VFr¥ =0, i.e.,

forall X € I'(TM) and V,W € I'(E). Such a pair is called a Riemannian structure on E and (E,h¥, V¥) is called
a Riemannian vector bundle. The curvature form RV” of E is defined by

RV (X,Y)V = VEVEY - VEVE _ ViV, X, Y e (TM), V € I'(E).
Let us denote by A"(E) = I'(A"T*M ® E), the space of all E-valued smooth r-forms. The exterior-covariant
differential V" : A"(E) — A™+(E) is defined by

r+1
AV (X1, Xo oo, X)) = D (-DFIVE w(Xy, Xo, o Xy Xg)
i=1
+ Z(—l)“‘%u([Xh Xj]aXhXQa ce ,Xi, cee ,X]‘, N ,Xr—i-l)-

i<j
Let us assume that M is an oriented Riemannian m-manifold with Riemannian metric g. Then the codifferential
§V" . A"(E) — A"~Y(E) is defined by

0V W) (X1, X, Xomr) = = 3 (VEw)(eq, X1, Xo, ..., X, ),

=1
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where {ej,ea,...,e,} is a local orthonormal frame field of (M, g). The rough Laplacian A = A" and Hodge-de
Rham Laplacian A¥ are defined by

A= (Vo) vP=-%" (vng vE. ) LAY — ViV 6V Y7, 2.1)

i=1

respectively. These two operators are related by Weitzenbock formula:
AV =R+ 8V°, 2.2)

where . 5 —
(SY W) (X1, Xa, .., X,p) = Y (=DFTHRY (e, Xp)w) (e, X1, Xay ooy Xy, Xo).
ik
In particular, for an E-valued 1-form w, we have

m

(A w)(X) = (Bw)(X) + (ST w)(X),  (SV w)(X) =D (RY" (&1, X)w)(er). 2.3)

i=1
2.2. Harmonic maps

Let (M, g) and (M, ) be Riemannian manifolds. We denote by V and V the Levi-Civita connections of M and
N, respectively. The Riemannian curvatures of M and N are denoted by R and R, respectively. For a smooth

map f: M — M, the Levi-Civita connection V induces a connection V/ on the pull-back bundle f *T'M over
M described explicitly by

ViVof)=(Vasx)V)of
foral X e I'(TM)and V € F(f*TM). For any sections X and Y € I'(T M),

VEAF(Y) = V9,0 df(Y)
holds (see [33, p. 4]). The second fundamental form Vdf is defined by
(VAN)(X,Y) = VEd[ (V) = df(TxY).

The tension field 7(f) is a section of f *TM defined by

m

T(f) = trg(VAf) = > (Vdf)(es ),

i=1

where {ej,es, ..., e} is a local orthonormal frame field of M (m = dim M). Then f is said to be harmonic if its
tension field vanishes. The harmonicity has a variational characterization. Indeed, f is harmonic if and only if
it is a critical point of the Dirichlet energy:

B9 = [ ghsPan, = [ 53 gt drte))du,

over any relatively compact domain  C M with respect to compactly supported variations. The first
variational formula for E is given by

d

dt

ﬂhm=—AﬂNﬁVM%

t=0

Here {f,} is a variation through f = f; and V is the variational vector field of { f,}, i.e.,

0

V:a

.

t=0

295 dergipark.org.tr/en/pub/iejg


https://dergipark.org.tr/en/pub/iejg

Biharmonic Hypersurfaces in Projective Spaces Revisited

Example 2.1. Let (M,g,J) and (]\7 ,3,J) be Kahler manifolds. Then a smooth map f: M — M is said to be
holomorphic if it satisfies df o J = J odf. Lichnerowicz [61] proved that any holomorphic map is a Dirichlet
energy minimizing harmonic map in its homotopy class.

The differential d f is regarded as an f*T'M M-valued 1-form. The symmetry of Vdf is expressed as av’ (df) =
0e Az(f*TM) On the other hand, the tension field 7(f) is expressed as 7(f) = —5v’ (df) € Ao(f*TM) Hence

if f is a harmonic map, then its differential df is a f *TM-valued harmonic 1-form. By Weitzenbock formula
(2.3), we get

(AY(@))(X) = (Bsdf)(X) — trgRY (-, X)df,

where the curvature term
m

trgRY (, X)df = S (RY (e:, X)df)(es).

i=1

is computed as

m

Z(va(e“ Ydf)(e:) = Z (df(ei),df(X))df(e;) —df <Z R(X, ei)ei> .

i=1 i=1
Note that we denote the rough Laplacian
ANV NS (vhvf vl
A - 72 Veivel - vve.ei
i=1
of f*TM by Aj.

The second variational formula for a harmonic map f is given by

d2
— | E(fsQ) :/g(jf(V),V)dvg.
dt t=0 Q

Here the operator J; acting on I'(f *T'M) is defined by
Ti(V) = AV =t R(V.df)df,
and called the Jacobi operator of a harmonic map f.

2.3. Biharmonic maps

As we mentioned in the Introduction, some mapping spaces do not contain any harmonic maps. To look
for alternative representatives in each homotopy class, the notion of bienergy as well as biharmonicity were

proposed [32, 33]. The bienergy of a smooth map f: (M, g) — (M, ) over a relatively compact domain € is

defined by
Ey(f;9) / Zg )) dvg.

The Euler-Lagrange equation of the bienergy is
n(f) = =J3(7(f)) = 0. (2:4)

The section 75(f) € I'(f*TM) is called the bitension field of f. A smooth map f is said to be biharmonic if its
bitension field vanishes. Clearly, harmonic maps are biharmonic.

2.4. Hypersurfaces

When a map f: (M,g) — (M ,§) is an isometric immersion, then Vdf coincides with the (vector valued)
second fundamental form of f in the sense of submanifold geometry. The tension field 7(f) is expressed as
7(f) = mH, where H is the mean curvature vector field. Thus, an isometric immersion f is a harmonic map if
and only if it is a minimal immersion.

dergipark.org.tr/en/pub/iejg 296


https://dergipark.org.tr/en/pub/iejg

J. Inoguchi & T. Sasahara

This article focuses on hypersurfaces. Let f : (M™,g) — (M™+1, ) be an orientable hypersurface immersion
with unit normal vector field v. Then the Levi-Civita connections V and V are related by the Gauss formula:

VIdf(Y) =df(VxY)+g(AX,Y)y, X,Y € I(TM).
The endomorphism field A is called the shape operator derived from v and defined by the Weingarten formula:
Vxv =—df(AX), X e I'(TM).

The second fundamental form of the immersion f is represented as (Vdf)(X,Y) = g(AX,Y)v. An eigenvector
X of the shape operator A is called a principal curvature vector. The corresponding eigenvalue A of A is called a
principal curvature. The function H = tryA/m is called the mean curvature of M. The mean curvature vector field
H is expressed as H = Hv. For any section W of the normal bundle T+ M, we have the splitting

VIW = —df(Aw X) + V&W

of VL W into its tangential part —df(Ay X) and normal part V4 W. This formula defines an endomorphism
field Ay on M (called the Weingarten map) and the connection V+ on T+ M (called the normal connection). A
section W € I'(T+ M) is said to be parallel if it satisfies VW = 0 for any X € I'(TM).

2.5. Ou’s formula

Ou derived the following criterion for biharmonicity of hypersurfaces in Einstein manifolds.

Theorem 2.1 ([74]). Let f: (M™,g) — (M™+1,§) be an orientable hypersurface with shape operator A. Assume that

the ambient space N is an Einstein manifold with Ricci tensor field Ric = Aj and f has constant mean curvature H. Then
the isometric immersion f is biharmonic if and only if either f is minimal or non-minimal with

|A? =\
Furthermore, in the latter case, both the hypersurface and the ambient space must have positive scalar curvatures:
p=(m—-2A+m?*H*>0, p=(m+1)A>0.

Ou’s formula implies that the only biharmonic hypersurfaces of constant mean curvature in an Einstein
manifold of non-positive scalar curvature are minimal ones.
For more information on biharmonic maps, we refer to the book by Ou and Chen [75].

3. CR-manifolds and contact metric manifolds

3.1. Contact structures

Let M be a manifold of odd dimensionm = 2n — 1 > 1. A 1-form 7 is said to be a contact form if n A (dn)"~* #0
on whole M. A (2n — 1)-manifold M together with a contact form 7 is called a contact manifold.
On a contact manifold (M, n), there exists a unique vector field ¢ such that

77(5) =1, d77(§7 ) = 0.

The vector field ¢ is called the Reeb vector field of a contact manifold (M, 7). A diffeomorphism f of M is said to
be a contactmorphism if there exists a non-vanishing smooth function A on M such that f*n = An. In particular,
a strict contactmorphism is a contactmorphism satisfying f*n = 7.

3.2. CR-manifolds

Let M be an m-manifold. An almost CR-structure (also called a partial complex structure) is a real vector
subbundle D C T'M of the tangent bundle of M together with a bundle morphism J satisfying J? = —I. For an
almost CR-structure (D, J), we obtain a complex vector subbundle

S={X-V-1JX|X €D} (3.1)

297 dergipark.org.tr/en/pub/iejg


https://dergipark.org.tr/en/pub/iejg

Biharmonic Hypersurfaces in Projective Spaces Revisited

of the complexified tangent bundle 7M. Conversely, let S be a complex vector subbundle of TCM satisfying
8N S = {0}, then we obtain an almost CR-structure (D, J) satisfying (3.1). Thus S is also called an almost
CR-structure. The pair (D, J) is called the real expression of S.

A manifold M equipped with an almost CR-structure is called an almost CR-manifold. An almost CR-structure
is said to be integrable if S satisfies the integrability condition [I'(S),I'(S)] C I'(S). An almost CR-manifold
M = (M,S) is said to be a CR-manifold (Cauchy-Riemann manifold) if its almost CR-structure is integrable. A
diffeomorphism f : M — M of a CR-manifold M is said to be a CR-diffeomorphism if its differential d f preserves
(D, J), that is,

dfp(Dp) = Dy, dfplp o Jp = Jypy 0 dfpln

atany point p € M. The group Aut(M) of all CR-diffeomorphisms is called the CR-automorphism group of M.

Example 3.1 (Complex manifolds). Let (M, J) be an almost complex manifold. Then (7'M, J) is an almost CR-
structure. Obviously (7'M, J) is integrable if and only if (M, J) is a complex manifold. On a complex manifold
(M, J), the complex vector subbundle

T'M={X —V-1JX|X € TM}
of T®M is called the holomorphic tangent bundle of (M, J).

Example 3.2 (Real hypersurfaces). Let M be a real hypersurface of a complex n-manifold (M,J) with
holomorphic tangent bundle 7" M. Define a subbundle S of 7€M by

S,=T,MNTEM, pe M.
Then (M, S) is a CR-manifold.

Example 3.3 (CR-submanifolds). Let M be a submanifold of an almost Hermitian manifold (1\7 ,g,J). Then M
is said to be a CR-submanifold (complex-real submanifold) in the sense of Bejancu [5] if there exists a non-trivial
distribution D on M satisfying:

* J,(D,) C D, forany p € M.
* Jo(Dy) C T, M forany p € M.

On a CR-submanifold M, (D, J|p) is an almost CR-structure, in general. Blair and Chen [12] proved that any
CR-submanifold of a K&hler manifold is a CR-manifold.

Assume that a CR-manifold M is orientable, dim M = 2n — 1, rank D = 2n — 2 and there exists a 1-form ¥
annihilating D, that is, D = Ker 9. Then, the Levi-form Ly (with respect to 1)) is defined by

1
Ly(X,Y) = —2dd(X,JY), XY € (D).

An almost CR-manifold (M, D) is said to be non-degenerate if Ly is non-degenerate for some ¢ (and in turn all).
In case (M, D) is non-degenerate, 9 is a contact form on M, i.e., 9 A (d9)"~! # 0. In particular, if L is positive
definite, then (M, D, n) is said to be a strongly pseudo-convex CR-manifold [93]. On a strongly pseudo-convex
CR-manifold M, L is extended to a Riemannian metric gy on M by gy = Ly + 9 ® ¥. The metric gy is called the
Webster metric.

3.3. Contact metric manifolds

Let M be a manifold of odd dimension m = 2n — 1. Then M is said to be an almost contact manifold if its
structure group GL(m, R) of the linear frame bundle is reducible to U(n — 1) x {1}. This is equivalent to the
existence of an endomorphism field ¢, a vector field £ and a 1-form 7 satisfying

> =-I+n®¢ nE) =1 (3.2)

From these conditions, one can deduce that ¢ = 0 and o ¢ = 0.
Moreover, since U(n — 1) x {1} C SO(2n — 1), M admits a Riemannian metric g satisfying

9(¢X,9Y) = g(X,Y) = n(X)n(Y)
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forall X,Y € I'(T'M). Such a metric is called an associated metric of the almost contact manifold M = (M; ¢, &, n).
With respect to the associated metric g, n is metrically dual to &, that is g(X,§) =n(X) for all X € I'(TM). A
structure (¢, &, 1, g) on M is called an almost contact metric structure, and a manifold M equipped with an almost
contact metric structure is said to be an almost contact metric manifold.

A plane section II at a point p of (M; ¢, &, 7, g) is said to be a ¢-section if it is invariant under ¢,. The sectional
curvature function of ¢-sections are called the ¢-sectional curvature.

On an almost contact metric manifold M, we define an endomorphism field h by h = (£:¢)/2. Here £;
denotes the Lie differentiation by &.

The fundamental 2-form ® of (M; ¢,€,n, g) is defined by

B(X,Y)=g(X,¢Y), X,Y €I(TM).

An almost contact metric manifold M is said to be a contact metric manifold if ® = dn/2. On a contact metric
manifold, n is a contact form, i.e., (dn)"~' An # 0. Thus every contact metric manifold is orientable. More
precisely, the volume element dv, induced from the associated metric g coincides with the following volume
element ([96, p. 200]):

dv, = 2,1(_18:_1)!17 A (dp)™t (3.3)

determined only by 7. Even if M is not contact metric, we may orient M by the volume element

_1\n—1
1) AL (3.4)

e

On an almost contact metric manifold (M; ¢, &, 1, g),
D={XeTM|n(X)=0}, J=¢p

defines an almost CR-structure on M. This almost CR-structure is referred to as the standard almost CR-structure
of (M; ¢,&,n,g). One can see that the standard almost CR-structure is integrable if and only if

[0X, 0Y] + 0*[X,Y] = 60X, Y] — 61X, 6Y] + 2dn(X,Y)E = 0

for any X,Y € I'(D). More strongly, an almost contact metric manifold M is said to be normal if
[0X, 0Y] + &*[X,Y] — 60X, Y] — 61X, Y] + 2dn(X,Y)E = 0

forany X,Y € I'(TM).

Definition 3.1. An almost contact metric manifold is said to be a quasi-Sasakian manifold if it is normal and
d® = 0.

Definition 3.2. A contact metric manifold is said to be a Sasakian manifold if it is normal. In particular, Sasakian
manifolds of constant ¢-sectional curvature are called Sasakian space forms.

Sasakian manifolds are quasi-Sasakian, since ® = dn/2. With respect to the Levi-Civita connection V of g,
Sasakian property is characterized as follows:

Proposition 3.1. An almost contact metric manifold M is Sasakian if it satisfies
(Vx@)Y = g(X,Y)§ —n(Y)X
forall XY € X(M).
For more information on contact metric geometry, we refer to Blair’s monograph [11].

3.4. Tanno tensor fields

Let (M; ¢,&,n,9) be a contact metric manifold. Then the standard almost CR-structure of M is integrable if
and only if the Tanno tensor field

QX,Y) = (Vy )X +{(Vyn)(6X)} £ +n(X)o(VyE), XY € I'(TM)
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vanishes [95].
Assume that the standard almost CR-structure on a contact metric manifold A is integrable, then we can
choose ¥ = 1 and hence the Levi-form L,, with respect to n is

L,(X,Y)=g(X,Y), X,YeI(D)

Thus the standard CR-structure is strongly pseudo-convex. In particular, the Webster metric g, coincides with

g.
Conversely, let M = (M, D, J) be a strongly pseudo-convex CR-manifold with contact form ). Then by
choosing n = ¥, we get a contact structure on M. Denote by g = g,, the Webster metric. Let £ be the Reeb vector
field of 1. Then we can extend J to a bundle morphism ¢ of TM by ¢¢ = 0 and ¢X = JX for X € I'(D). Then
(¢,€,m, g) is a contact metric structure compatible to 7. The integrability of the CR-structure yields the vanishing
of the Tanno tensor field.
From these observations, we can regard strongly pseudo-convex CR-manifolds as contact metric manifolds
with a vanishing Tanno tensor field.

Remark 3.1. On a strongly pseudo-convex CR-manifold M = (M, S), the contact form ¥ has the opposite sign
to the one used in [13]. Under the formulation of [13], » and ¥ is related by n = —¢. Note that the Levi-form of
[13] and ours are identical.

If the standard almost CR-structure of a contact metric manifold (M; ¢, &, 7, g) is integrable, then
Vxé=—-¢(I+h)X, XeI(TM) 3.5)
holds.
Proposition 3.2. The standard almost CR-structure of a contact metric manifold (M; ¢,&,n, g) is integrable if and only

if
(Vx@)Y =g((I + )X, Y)E = n(Y)(I + h)X
holds forall X,Y € I'(TM).

Since the normality of (¢,&,n) is stronger than the integrability of the standard almost CR-structure, we
obtain the following well-known fact.

Proposition 3.3. The standard almost CR-structure of a Sasakian manifold is integrable and strongly pseudo-convex. In
particular, a strongly pseudo-convex CR-manifold is Sasakian if and only if h = 0.

On the other hand, in [93], the notion of normality for strongly pseudo-convex CR-manifolds is introduced
as the condition:
€, (S cI(S) and [§,72] = J[¢, 7]

for all Z € I'(S). One can confirm the following fundamental fact (cf. [93]).
Proposition 3.4. A strongly pseudo-convex CR-manifold is normal if and only if it is a Sasakian manifold.

Theorem 3.1 ([94]). Let M = (M; ¢,&,n, g) be a contact metric manifold. If a diffeomorphism f of M is ¢-holomorphic,
ie,df o¢ = ¢odf, then there exists a positive constant a such that

[fg=ag+ala—1)n®n, df(§) =a&, [f'n=an.

On a strongly pseudo-convex CR-manifold M, a CR-diffeomorphism f is said to be a CR-isometry if it is an
isometry with respect to the Webster metric. A local CR-isometry o, defined around a point p € M is called a
local CR-symmetry at p if p is a fixed point of o, and satisfies (do),|p, = —Ip,.

A strongly pseudo-convex CR-manifold M is said to be locally CR-symmetric if there exists a local CR-
symmetry o, at any point p € M.

More strongly, M is said to be CR-symmetric if there exists a globally defined CR-symmetry o, at any point
p € M [56]. Dileo and Lotta obtained the following two fundamental results.

Theorem 3.2 ([28]). Let M be a non-normal strongly pseudo-convex CR-manifold of dimension 2n — 1 > 3. Then M is
locally CR-symmetric if and only if the underlying contact metric structure satisfies the (k, p)-condition:

R(X,Y)¢ = (kI 4+ ph)(n()X —n(X)Y), X, Y eI(TM). (3.6)

Here k < 1 and . are constants.
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Remark 3.2. A contact metric manifold M is said to be a contact (r, u)-space if it satisfies (3.6). The Boeckx invariant
T of a contact (, p)-space M isZ = (1 — §)/v1 — k.

The local CR-symmetry of Sasakian manifolds is characterized by the local ¢-symmetry in the sense of
Takahashi [91].

Theorem 3.3 ([28]). Let M be a normal strongly pseudo-convex CR-manifold of dimension 2n — 1 > 3. Then M is
locally CR-symmetric if and only if the underlying Sasakian structure is locally ¢-symmetric:

»*{(VvR)(X,Y)Z} =0, X,Y,ZV €I(D).

3.5. Tanaka-Webster connection

The Tanaka-Webster connection V of a strongly pseudo-convex CR-manifold M together with associated
contact metric structure (¢, &, 7, g) is a linear connection defined by [92, 101]:

VxY = VxY +9(X)¢Y —n(Y)VxE+{(VxnY},, XY € I(TM).
The Tanaka-Webster connection satisfies
V=0, VE=0, Vnp=0, Vg=0.
Take a section X € I'(D), then by using the formula V& = —¢(I + h), we obtain
(Vxn)X =9(Vx¢, X) = g(ho X, X),
(VoxmoX =g(Vx§, ¢X) = —g(o(I + h)¢ X, ¢X) = —g((I + h)¢pX, X) = —g(h¢ X, X).

Hence we deduce that
(Vxn)X + (Vexn)9X =0 (3.7)

holds for all X € I'(D). The formula (3.7) implies that
VxX 4 Vox (6X) = Vx X + Vyx (6X). (3.8)

Let M be a strongly pseudo-convex CR-manifold. We denote by R the curvature tensor field of Tanaka-Webster

connection. For a ¢-section II, the sectional curvature of IT with respect to R is well-defined. More precisely,
take an orthonormal basis { X, X} of II, then

Ky(I) = Ly(R(X, X)X, X)

is independent of the choice of {X, $.X }. The sectional curvature of a ¢-section with respect to R is called the
pseudohermitian curvature. A strongly pseudo-convex CR-manifold M is called a contact CR-space form in the
sense of [24] if the pseudohermitian curvature is a constant.

3.6. Three dimensional contact (k, u)-spaces

Blair, Koufogiorgos, and Papantoniou [14] classified 3-dimensional contact (x, 1)-spaces. They proved that
3-dimensional contact (x, j1)-spaces are either Sasakian or locally isomorphic to a 3-dimensional unimodular
Lie group equipped with left invariant contact (x, )-structure.

Let G be a 3-dimensional unimodular Lie group with a left invariant metric (-,:). Then there exists an
orthonormal basis {e1, €2, e3} of the Lie algebra g of G such that

[61,62] = C3€3, [62,63] = (1€, [63,61] = C2€2, c1,c2,c3 €R. (3.9)

Three-dimensional unimodular Lie groups are classified by Milnor as follows:

Signature of (c1, ¢, ¢3) | Simply connected Lie group Property
(+,+,+) SU(2) compact and simple
(= —+) SL,R non-compact and simple
(0,+,+) E(2) solvable
(0, —,+) E(1,1) solvable
(0,0,+) Heisenberg group Nil; nilpotent
(0,0,0) (R3,4) Abelian
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To describe the Levi-Civita connection V of G, we introduce the following constants:

1
Mi25(01+C2+C3)_Ci, l:17273
Proposition 3.5. The Levi-Civita connection is given by

Ve, e1 =0, Ve €2 = pre3, Ve ez = —puies
Ve,e1 = —pig€3, Ve,e2 =0, Ve,€3 = tzer
Vese1 = pzea, Vezea = —pger Ve,e3=0.

The Riemannian curvature R is given by
R(e1,e2)er = (papz — csps)ez,  Rlex,ez)ea = —(papz — capis)en,
R(ez,e3)e2 = (pops — crpa)es,  Rlez,es)es = —(uzps — cipin)es,
R(e1,e3)er = (u3pn — copo)es,  R(er,es)es = —(papn — copz)er.
The basis {e1, ez, 3} diagonalizes the Ricci tensor field Ric. The principal Ricci curvatures are given by
p1=2pops, P2 =2p1p3,  p3 = 2p1 o

According to a result due to Perrone [77], simply connected homogeneous contact metric 3-manifolds
are classified by the Webster scalar curvature W = (p — Ric(£,€) +4)/8 and the torsion invariant |7|* =
—2Ric(¢, &) + 4 as follows:

Theorem 3.4. Let (M3, ¢,&,n, ) be a simply connected homogeneous contact metric 3-manifold. Then M is a Lie group
G together with a left invariant contact metric structure (¢,€,n, g). If G is unimodular, then G is one of the following;

1. the Heisenberg group Nilz if W = |7| = 0.

2. SU(2) if 4V/2W > |7].

3. E(2) if 4v2W = |7] > 0.

4. SLoR if —|7| # 4V2W < |7|.

5. BE(1,1) if 4/2W = —|7| < 0.
The Lie algebra g of G is generated by an orthonormal basis {e1, ez, e3} as in (3.9) with cs = 2. The left invariant contact
metric structure is determined by

{=e3, ¢e1=ez, oea=—e;, P{=0.

Proposition 3.6 ([49]). The endomorphism field h, the Webster scalar curvature and the torsion invariant of a
unimodular Lie group G = G(c1, c2) equipped with a left invariant homogeneous contact metric structure are given

by

1 1 1
h61 = —5(01 — 62)61, h62 = E(Cl — 02)62, W = Z(Cl + 02)7 |’7'|2 = (C1 — 02)2.

The ¢-sectional curvature Ky of G is

1
K¢ =-3+ E(Cl — C2)2 +c1 +co.

Corollary 3.1 ([49]). If a unimodular Lie group G is non-Sasakian, i.e., c1 # co, then G is a contact (k, p)-space with
1 2
/ﬁzl—i(cl — )’ u=2—(c1+c2).

Proposition 3.7 ([49]). Let G(c1,c¢2) be a 3-dimensional unimodular Lie group equipped with a left invariant contact
metric structure. Then the Tanaka-Webster connection V of G(cy, cy) is described as

1 A
V6361 = 5(61 + 62)62, V6362 = —5(61 + 02)61, all other Veiej =0.

dergipark.org.tr/en/pub/iejg 302


https://dergipark.org.tr/en/pub/iejg

J. Inoguchi & T. Sasahara

From this table, the torsion T of the Tanaka-Webster connection V is computed as

1
T(€1,€2) = —2¢, T(elveii) = *5(01 - 02)627 T(€2,€3) = *5(01 - 02)61-

The curvature tensor field R of V is given by

R(e1,ea)er = —(c1 + ca)ea, R(er,ez)es = (c1 + co)er, all other ]:E(ei,ej)ek =0.

The pseudohermitian curvature of G is Ky = ¢1 + co. Thus we get = 2 — K.
X 1 )
K¢=K¢—3+Z(Cl—02).

In particular, when G(c, co) is Sasakian, then
Ky = -3+ K,.

When i = 2, we have K, » = 0 (Compare with [24, Theorem 11]).

4. Real hypersurfaces

4.1. Hopf hypersurfaces

Let M be a real hypersurface of a Kdhler manifold M, = (1\77“ g, J) of complex dimension n. We can assume

that M is orientable, as we are working in local theory. Take a unit normal vector field v of M in M,,. We denote
by g the Riemannian metric (the first fundamental form) on M induced from Kéhler metric g of the ambient space

M,,. The second fundamental form Vd. of the inclusion map ¢ : M C M, is given by
(Vd)(X,Y) = g(AX,Y)v.

Define a vector field £ on M by & = —eJv with e = +1. We call e the sign of M relative to v. The sign ¢ is chosen
to align the orientation determined by v and that from (3.4).
The vector field ¢ is called the structure vector field. Next, define the 1-form n and the endomorphism field ¢
on M by
n(X) = g€, X) = §(JX,v), g(6X,Y) =§(JX,Y), X,Y € [(TM),

respectively. Then one can see that (¢, €, 7, g) is an almost contact metric structure on M, that is, it satisfies (3.2).
The structure (¢, &, n, g) will be called the induced almost contact metric structure. Note that

Jdu(X) =du(¢pX) +en(X)v, X eIl (TM) (4.1)

holds. It follows that
(Vx@)Y =e(n(Y)AX — g(AX,Y)E), Vx{=epAX. (4.2)

Proposition 4.1 ([9]). Let M be an orientable real hypersurface of a Kihler manifold M,,. Then the fundamental 2-form
of M with respect to the almost contact metric structure induced from M,, is closed.

A real hypersurface is said to be Hopf if its structure vector field £ is a principal curvature vector field.
Throughout this article, the principal curvature corresponding to £ of a Hopf hypersurface is denoted by c.

4.2. Contact hypersurfaces

Let M be an orientable real hypersurface M of a Kdhler manifold M,,. Denote by (¢, £, 1, g) the induced almost
contact metric structure. Then the standard almost CR-structure (D, J = ¢|p) of (M; ¢,&,n, g) is automatically
integrable. Thus, we can consider M to be a CR-manifold in this manner. It should be noted that (M; ¢,&,n, g)
is not necessarily strongly pseudo-convex.

Definition 4.1 ([9, 70]). An orientable real hypersurface of a Kdhler manifold is said to be a contact hypersurface
if its induced almost contact metric structure (¢, £, 7, g) satisfies dn = 2y® for some everywhere nonzero smooth
function ~.
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One can see that 7 is actually a contact form on a contact hypersurface. In particular, a contact hypersurface
M is called a contact metric hypersurface if dn = 2P.

Example 4.1. Let S*"~!(c) C C" be the sphere of radius 1/,/c. Then we can take a unit normal vector field
v = y/cx, where x is the position vector field of C". Then the shape operator is given by AX = —/c X for any
X € I'(TS?"~1(c)). Thus the second fundamental form is given by

(dL)(X>Y) = _\/Eg<X7 Y)V'

Let us introduce a vector field { by £ = —Jv. Then the induced almost contact metric structure (¢,¢, 7, 9)
satisfies
dn = 2yc®.

Thus (S?"~'(c); ¢,€,m,9) is a contact hypersurface. In particular, the unit sphere S*"~! is a contact metric
hypersurface. Moreover (S*"~!;¢,¢,n, g) is Sasakian. The CR-structure on S*"~! introduced in this manner
is called its standard CR structure of S*»~1,

According to Burns and Schneider [15], a strongly pseudo-convex CR-manifold M is said to be spherical
if it is locally CR-equivalent to S*"*! equipped with the standard CR-structure. A strongly pseudo-convex
CR-manifold M is spherical if its Chern-Moser-Tanaka invariant vanishes [21, 92, 96]. Dileo and Lotta [28]
classified complete, simply connected spherical CR-symmetric spaces of dimension greater than 3. Note that
every 3-dimensional strongly pseudo-convex CR-manifold is spherical.

The following criterion is obtained independently by Berndt and Suh [9], Okumura [70, Lemma 2.1] and,
Nagai and Ko6jy0, [67, Theorem 2.1].

Proposition 4.2 ([9, 67, 70]). Let M be an orientable real hypersurface in a Kihler manifold M,. Then M satisfies
dn = 2y® for some everywhere nonzero smooth function  if and only if A + pA = —2ev¢. In this case M is Hopf.

Significant differences exist between the cases where n = 2 and n > 2.

Proposition 4.3 ([9, 70]). Let M be an orientable real hypersurface in a Kihler manifold M, of complex dimension
n > 2. If M satisfies dn = 2y® for some everywhere nonzero smooth function ~, then +y is a non-zero constant.

Remark 4.1 ([9]). Let M be an orientable real hypersurface of a Kihler surface M. Then M is a contact
hypersurface if and only if M is a Hopf hypersurface and try A # a everywhere.

Proposition 4.4 ([9]). Let M be an orientable real hypersurface in a Kihler manifold M, of complex dimension n > 2.
Then the principal curvature « corresponding to £ is constant if and only if M is of constant mean curvature.

Assume that dn = 2y® for some nonzero constant v. Then 1 is a contact form on M. Put ¢ = sgn(y) n. Then the
Levi-form L = Ly with respect to 9 is

L(X,)Y)=|vl¢9(X,Y), X, YeI(D).

Thus the CR-structure S is strongly pseudo-convex. The resulting Webster metric is |y|g.

5. Real hypersurfaces in complex space forms

Now let us assume that the ambient space M, is a complex space form of constant holomorphic sectional
curvature ¢ and complex dimension n. As is well known, a complete and simply connected complex space

form M, (c) is a complex projective space CP"(c), a complex Euclidean space C™ or a complex hyperbolic space CH™(c),
according as ¢ > 0, ¢ = 0 or ¢ < 0. Our general references for real hypersurfaces in complex space forms are [19]

and [68]. The Gauss equation which describes the Riemannian curvature R of the real hypersurface M C M,,(c)
is given by

ROXY)Z = gV, 2)X = g(Z, X)Y + 9(6Y, 2)0X — g(6X, 2)0Y = 29(9X, )97} (5.1)
+g(AY, Z2)AX — g(AX, Z)AY.
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The Ricci operator is expressed as
SX = 2{(2n+1)X—3n®§}+(2n—1)HA—A2. (.2)

The next lemma is well known.

Lemma 5.1. If M is a Hopf hypersurface in a non-flat complex space form. Then the principal curvature o corresponding
to £ is a constant.

Okumura and Vernon proved the following result (see also [9]).

Proposition 5.1 ([70, 98]). If M is a complete Hopf hypersurface in a complex space form M, (c) withn > 2. Then M is
homogeneous.

In case n = 2, non-homogeneous contact hypersurfaces exist (see [9] for C? case).
Sharma showed the following fundamental fact.

Theorem 5.1 ([84]). Let M be the contact metric hypersurface of a complex space form M,,(c). Then either
1. M is a Sasakian manifold of constant ¢-sectional curvature and is n-umbilical, or

2. M is locally isometric, up to a pseudo-homothetic deformation, to the unit tangent sphere bundle of some space of
constant curvature different from 1.

Remark 5.1. A real hypersurface M is said to be n-umbilical if its shape operator A has the form A = M 4+ un® &
for some functions A and u [59] (cf. [66]).

Okumura proved the following fact (compare with Proposition 6.3).

Proposition 5.2 ([69]). Let M be a contact hypersurface of a complex space form M,,(c) withn > 2. Then M has at most
three distinct principal curvatures and all of those are constant.

In the next section, we give more detailed description of these real hypersurfaces.

6. Homogeneous real hypersurfaces in complex projective space

6.1. Homogeneous orbits
Homogeneous real hypersurfaces in complex projective space are classified by Takagi.

Theorem 6.1. ([88]) Let U/K be a compact Hermitian symmetric space of rank 2 and complex dimension (n + 1) with
associated Cartan decomposition u = €& p. We identify p with complex Euclidean (n + 1)-space C"** via the Killing
metric. Denote by 11 : S*"*1 C p — CP"(4) the Hopf fibering. Take a unit regular element A € p and consider its Ad(K)-

orbit M = Ad(K)A. The orbit M is a homogeneous hypersurface of S C p. Then the Hopf image
M =TI(M) c CP™(4) = $*"+1/U(1)

is a homogeneous real hypersurface of CP™(4).

u 14 dim M
A su(p+1) +su(g+1), s(u(p) ©u(1)) +s(u(g) @u(l)) | 2n -1
ptgq=n—1
B| op+2),p>3,n=p-1, o(p) + R 2p -3
C|sulp+2),p>3,n=2p—1, s(u(p) +u(2)) 4p — 3
D 0(10) u(5) 17
E ¢ 0(10) + R 29

Table 1. Homogeneous real hypersurfaces in CP™(4), n > 2

Conwversely, every homogeneous real hypersurface in CP™(4) is congruent to these orbits.
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Remark 6.1. The orbits M C S?"*! are appeared in [44, Theorem 5, Table II].

Takagi [89, 90] gave the list of principal curvatures and their multiplicities of homogeneous real
hypersurfaces.
By performing homothetic change of the Fubini-Study metric of CP"(4), we obtain the following table:

« )\1 )\2 )\5 )\4

A, Vceot(y/er) %cot ‘/QET — — —

Ay Veeot(y/er) £ cot \/QET —% tan \/QET — —

B Vecot(ver) | Bcot(Ygt — ) | Ycot(5E 4+ ) — —
CD,E | ecot(y/cr) % cot(‘/gr - % Cot(@ + 1) % cot ‘/QET —% tan ‘/QZT

Table 2. The principal curvatures of homogeneous real hypersurfaces in CP"(c), n > 2

6.2. Takagi’s list

Cecil and Ryan extensively studied Hopf hypersurfaces, which are realized as tubes over certain Kéhler
submanifolds in CP"(c) [18]. Kimura proved the equivalence of the extrinsic homogeneity and the constancy
of principal curvatures in the class of all Hopf hypersurfaces in CP"(c) [57]. As a result, we know the following
classification table.

Theorem 6.2 ([89, 57]). Let M be a Hopf hypersurface of CP"(c). Then M has constant principal curvatures if and only
if M is locally holomorphically congruent to one of the following real hypersurfaces:

(A1
(Ay
(

) a geodesic sphere of radius r, where 0 < r < w/\/c,

) a tube of radius r over a totally geodesic CP*(c) (1 < ¢ < n — 2) via Segre imbedding, where 0 < r < 7/(\/c),

B) a tube of radius r over a complex quadric Q,,_1, where 0 < r < w/(2:/c),

(C) a tube of radius r over a CP(c) x CP""~1/2(c), where 0 < r < 7/(2y/c) and n > 5 is odd,

(D) a tube of radius r over the Pliicker imbedding of complex Grassmannian Gra(C?) C CP%(c), where 0 < r <
7/(2/0),

(E) a tube of radius r over a Hermitian symmetric space SO(10)/U(5) C CP®(c), where 0 < r < 7/(2+/c).

It should be remarked that a tube of radius r over a complex quadric Q,,_; is realized also as a tube of
radius 7/(2y/c) — r over a totally geodesic Lagrangian real projective space RP"(c/4) [18]. This classification is
referred to as Takagi’s list. Note that the tube around CP*(c) (1 < ¢ < n — 2) of radius r = 7/(2+/c) are quadric in
the sense of Tanaka [92] and Yamaguchi [102, 103].

6.3. Montiel’s list
Corresponding table for CH™(c) was obtained by Berndt.

Theorem 6.3 ([7]). Let M be a Hopf hypersurface of CH™ (c). Then M has constant principal curvatures if and only if
M is locally holomorphically congruent to one of the following real hypersurfaces:

(Ag) a horosphere,
(A1) a geodesic sphere (A1) or a tube over a complex hyperbolic hyperplane CH™(c) (A11),
(A3) a tube over a totally geodesic CH(c) (1 < £ <n —2),

(B) a tube over a totally geodesic Lagrangian real hyperbolic space RH™(c/4).

We call simply type (A) for real hypersurfaces of type (A1), (A2) in CP™(c) and ones of type (Ag), (A1) or
(Ag) in CH"(c). In some literature, the above list is referred to as Montiel’s list (e.g., [19]).

It should be emphasized that homogeneous real hypersurfaces are not exhausted by Montiel’s list. Indeed,
there exist homogeneous ruled hypersurfaces, see [13, 10].

6.4. Contact (k, p)-condition

From the Gauss equation (5.1) for a real hypersurface M C M,(c), we have

R(X,Y)E = g(n(Y)X —n(X)Y) +g(AY,§)AX — g(AX, §)AY. (6.1)
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o N "
Ag Ic] 2\c| ~
A1,0 Ve[ coth(y/]e] r) @ coth @ _
Avy | Videoth(y/lelr) | ¥ tanh YEL® -

2
As v/ || coth(/|c|T) @ coth @ \/Q—H tanh @

B Vle[tanh(y/[e[ ) \/Tm coth @ Vel tanh @

2

Table 3. The principal curvatures of homogeneous real hypersurfaces in CH"(¢), n > 2

The operator h is computed as
hX = S(n(X)AE — (9A9)X — AX).

When M is a Hopf hypersurface satisfying A¢ = o€, we have

R(X,Y)¢ = {(2 + %a) j eah} (V)X — n(X)Y). 6.2)

From this formula, we obtain:

Theorem 6.4 ([22]). Let M C M,,(c) be an orientable real hypersurface in a non-flat complex space form with sign e. If
M is a contact hypersurface satisfying the condition A¢ + ¢A = ~¢ for some nonzero constant ~y. Then M satisfies

R(X,Y)§ = (kI + ph)(n(Y)X = n(X)Y)
with k = ¢/4 4+ vy /2 and p = —ea.
In particular, contact metric hypersurfaces are (k, ut)-spaces. More precisely, we obtain the following result.

Corollary 6.1. Let M C M,(c) be an orientable real hypersurface in a non-flat complex space form with sign e. If M is
contact metric, that is dn = 2®, then M is a contact (k, u)-space with k = ¢/4 — e and p = —ec.

Real hypersurfaces with A¢ + ¢A = v¢ (v € R*) are classified by Adachi, Kameda and Maeda (see also Suh
[87, Lemma 3.1] for the case ¢ < 0 and n > 2):

Lemma 6.1 ([2]). Let M C Mn(c) be an orientable real hypersurface with n > 2 and ¢ # 0. Then M satisfies A + A¢p =
~¢ for some nonzero constant ~y if and only if M is of type (Ao), (A1) or (B).

Remark 6.2. In [87], Hopf hypersurfaces in non-flat complex space form M,(c) with n-parallel Ricci operator
are investigated. However, as Maeda [62] pointed out, Suh’s classification is true under the condition n > 2.
Maeda obtained classification of Hopf hypersurfaces with n-parallel Ricci operator in CP?(4) and CH?(—4).

Let M be a real hypersurface of type A, in CP"(c), type Ag in CH"(c) or type A; in CH™(c). Then M is Hopf
and has two distinct principal curvatures a and X := \;. It is easy to see that M satisfies A¢ + ¢ A = 2A¢. Berndt
showed that these real hypersurfaces are Sasakian space forms up to homothety [6] (see also Ejiri [35] for A,
case). Adachi, Kameda and Maeda classified all Sasakian hypersurfaces in CP"(¢) and CH"(c).

Theorem 6.5 ([2]). Let M C M,,(c) be an oriented real hypersurface with n > 2 and ¢ # 0. Then with respect to the
induced almost contact metric structure, the following conditions are mutually equivalent:

1. M is a Sasakian manifold;
2. M is a Sasakian space form of ¢-sectional curvature Ky = ¢+ 1;
3. M is locally holomorphically congruent to one of the following homogeneous real hypersurfaces;

(A1) a geodesic sphere of radius r = (2/+/c) tan='(y/¢/2) in CP"(c) with sign e = —1 (K4 > 1),
(A1) a geodesic sphere of radius r = (2/+/—c) tanh™'(y/—c/2) in CH"(c) with sign e = —1, where —4 < ¢ <0
and -3 < Ky < 1,
(Ag) a horosphere in CH™(—4) with sign e = —1 (K4 = —3),
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(A1) a tube around totally geodesic CH™ ' (c) of radius r = (2/\/—c) coth™ ' (v/—¢/2) in CH,(c) with sign
e=—1, where c < —4, (Ky < —3).
Let us pick up Sasakian geodesic sphere M = M, of radius r = (2//c)tan~'(y/c/2) in CP"(c). Then M has
principal curvatures
a = +/ccot(yer), A= % cot (fr)

with multiplicities m, = 1, m) = 2(n — 1). One can confirm that M satisfies A¢ + pA = 2A¢.
Non-Sasakian contact metric hypersurfaces are classified as follows:

Theorem 6.6 ([2]). Let M C M,,(c) withn > 2and ¢ # 0 be a real hypersurface. If M is contact metric but not Sasakian,
then M is locally holomorphically congruent to one of the following homogeneous real hypersurfaces of type B :

e atubeof r = (2/\/c)tan " {(Ve + 4 — \/c)/2} < m/(2+/c) around the complex quadric Q,,_; C CP™(c) with sign
e=1;
e a tube of radius r = (1/y/—c)tanh ™' (y/—c/2) around the totally geodesic Lagrangian real hyperbolic space
RH"(¢/4) C CH™(c) withsign e = —1and —4 < ¢ < 0.
These tubes have three distinct principal curvatures unless ¢ = —3. In case ¢ = —3, the tubes have two distinct principal
curvatures 3/2 and 2.

Corollary 6.1 implies that these hypersurfaces of type B are contact (x, u1)-spaces, especially CR-symmetric
spaces. We compute the values of x and p of these hypersurfaces [22].
Let M be a tube of radius r around RP"(¢/4). Then M has principal curvatures

Alﬁcot<\/gr>, Ag\/gtan<ﬁr>, a = y/ctan(y/cr)

2 2 2 2
with multiplicities
my=mo=n—1, my,=1.
Note that if we regard M as a tube around Q,,_;, then (see Table 2):

Alzgcot (‘fr—D, Ang‘ﬁ&ﬂ(f?“—i-z-), a = y/ccot(y/cr)

with multiplicities
mi=me=n-—1, mqg=1.

Thus the tube M around Q,,_; satisfies A¢ + ¢pA = ~v¢ if and only if v = Xy + Ao If we put t = tan(y/cr/2), then

2
2 _1=2y

\ﬁ
Hence A¢ + ¢pA = 2¢k¢ if and only if

(Ve Ak — 2k

r = —=tan _ .
Ve Ve

Proposition 6.1. Let M be a tube of radius r = (2/y/c)tan™{(v/c+4 — \/¢)/2} < m/(2y/c) around the complex

quadric Q,_, C CP™(c) with sign e = 1. Then M is a contact metric Hopf hypersurface. The principal curvature o

corresponding to £ is o = ¢/2. M is a non-Sasakian (k, p)-space with k = —c/4, u = —\/c/2. The Boeckx invariant is

I=+/1+c/4>1

On the other hand we know the following fact for CH"(c).

Proposition 6.2 ([22]). Let M be a tube of radius v = (1/v/—c) tanh ™" (y/—c/2) around the totally geodesic Lagrangian
real hyperbolic space RH™(c/4) C CH™(c) with sign e = —1 and —4 < ¢ < 0. Then M is a contact metric Hopf
hypersurface. The principal curvature corresponding to § is oo = —c/2. Hence M is a contact (k, pu)-space with k =
3c/4 <0, u = —c/2 > 0. The Boeckx invariant is 0 <Z = (¢ +4)/(2v/4 — 3¢) < 1.

Cho and Kimura [24, Theorem 3] characterized the contact (k,u)-space of Boeckx invariant Z > 1 as a
tube of radius /2/ctan~1(2v/2/c) € (0,7/v/2¢) around S™*! in the complex quadric Q,;(c) of maximal
sectional curvature ¢ > 0. On the other hand, the contact (k, it)-space of Boeckx invariant Z € (0, 1) as a tube of

radius 1/2/c|coth™"(2v/2/|c|) around RH"*! in the complex quadric 9}, (c) of maximal sectional curvature
c € (—8,0). Here Q; _  (c) is the dual Riemannian symmetric space of Q,,11(c).
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6.5. Normal real hypersurfaces

Okumura classified real hypersurfaces in CP" (4) whose induced almost contact metric structures are normal.
Together with a characterization theorem due to Maeda and Udagawa, we get the following result (see also
Olszak [73]).

Theorem 6.7 ([63, 69, 71,72, 73]). Let M be a real hypersurface of CP"(c) (n > 2). Then the following properties are
mutually equivalent:

1. M is locally holomorphically congruent to type A real hypersurface.

2. ¢ is a Killing vector field.

3. £ep =0 holds.

4. Ap = ¢A holds.

5. The induced almost contact metric structure is quasi-Sasakian.

6. The induced almost contact metric structure is normal.

Okumura proved the following fact (compare with Proposition 5.2).

Proposition 6.3 ([69]). Let M be a real hypersurface of a complex space form M,,(c) withn > 2. If the induced almost
contact metric structure is normal, then M has at most three distinct principal curvatures and all of those are constant.

7. Biharmonic homogeneous real hypersurfaces in complex projective space

Biharmonic homogeneous real hypersurfaces were investigated in [47, 48]. The second named author
obtained the correct classification of those hypersurfaces [82]. In this section, we recall the classification of
biharmonic homogeneous real hypersurfaces in CP"(4). This procedure will be useful in later sections.

7.1. The biharmonic equation

Let us consider biharmonic real hypersurfaces with constant mean curvature in the complex projective n-
space CP™(4). Then by using Ou’s formula, the following criterion is obtained (see also [47, 13 Theorem], [48,
Theorem 4]).

Theorem 7.1. A real hypersurface M C CP™(4) with non-zero constant mean curvature is biharmonic if and only if
|A|?2 =2(n+1).

Corollary 7.1. Let M C CP"(4) be a real hypersurface with non-zero constant mean curvature. Then M is biharmonic
if and only if M has constant positive scalar curvature

p=4n*—1)+ (2n - 1)?H? = 2(n + 1).
Proof. From the Gauss equation, the scalar curvature p of a real hypersurface M c CP"(4) is given by
p=4n*—-1)+(2n —1)2H? — |A]~

Thus the result follows. O

Jiang obtained the following result.

Theorem 7.2 ([54]). Let f:M™ — CP"™(4) be a weakly stable biharmonic isometric immersion of a compact
Riemannian m-manifold. If f satisfies |H| > 6m, then f is harmonic.
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7.2. Type A real hypersurfaces

Let us consider the Hermitian symmetric space U/K = {SU(p+ 1) x SU(¢+ 1)}/{S(U(p) x U(1)) x S(U(q) x
U(1))}. Then Ad(K)A is the Riemannian product of odd-dimensional spheres:

]/\/[\pyq(r) = §% T (cosr) x ST (sinr) c ST c C" T,
where 0 <r < 7/2,pg>0and p+ q=n— 1. Then M, ,(r) = H(M\p,q(r)) is a homogeneous real hypersurface
in CP™(4). The real hypersurface M, ,(r) is a tube of linear subspace CP? with radius r € (0, 7/2). In particular,
M, := My ,,—1(r) is a geodesic sphere of radius r € (0,7/2). Note that M,,_; ¢ is also a geodesic sphere. A real
hypersurface M, ,(r) is said to be of type A, if it is a geodesic sphere and of type A, otherwise.

Remark 7.1. The geodesic sphere M, C CP"(4) of radius r = 7 /4 is a Sasakian space form of constant ¢-sectional
curvature 5. Type A, real hypersurfaces are non-Sasakian quasi-Sasakian manifolds. See §6.4 or [2, 6, 22].

The real hypersurface M, ,(r) has constant principal curvatures \; = cotr with multiplicity m; = 2¢, Ao =
— tanr with multiplicity ms = 2p and o = 2 cot(2r) with multiplicity 1.
Remark 7.2. 1f a real hypersurface M C CP"(4) (n > 2) has two distinct constant principal curvatures, then M
is holomorphically congruent to an open part of a geodesic sphere M, [89]. Note that under the limit » — 0,
M, collapses to a point. On the other hand, under the limit ¢ — /2, M, collapses to the projective line CP".
For n > 2, Cecil and Ryan generalized the above result for n > 2 by requiring that A/ has at most two distinct
principal curvatures at each point [18].

Theorem 7.3. The only minimal tube M, ,(r) is the tube of radius

r=tan~"\/(2¢ +1)/(2p + 1).

In particular the tube M, ,(7/4) is minimal if and only if p = q.

Proof. The mean curvature of M, ,(r) is

1
H= 51 {(2¢+1)cotr — (2p+ 1) tanr}.

Thus the tube M,, ,(r) is minimal if and only if its radius is 7 = tan™' /(2¢ + 1) /(2p + 1).
In other words, the minimal tube M, ,(r) is the Hopf projection of

SV (2p +1)/(2n)) x > (V/ (2 + 1)/ (2n).

O
Corollary 7.2. The only minimal geodesic sphere is a geodesic sphere of radius
r =tan" ! \/2717—1 .
Non-minimal biharmonic tubes M, ,(r) are classified as follows.
Theorem 7.4. A tube M, ,(r) is non-minimal biharmonic if and only if its radius is
— \/(n+2)j: Vo—aP A1)
1+ 2¢q
Proof. The square norm of the second fundamental form of M, ,(r) is
|A]? := (2 + 1) cot?r + (2p + 1) tan®r — 2.
Assume that |A|> = 2(n + 1) = 2(p + ¢ + 2). Then t = cot r is a solution to:
(2 + 1)t* —2(p+q+3)t* + (2p+1) = 0.
Solving this algebraic equation, we get
cotr:\/(nJrQ)i\/(pq>2+4(n+1) > 0. (7.1)
1+ 2¢q
O
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Corollary 7.3. A geodesic sphere M, in CP™(4), (n > 2) is non-minimal biharmonic if and only if

t_l\/n+2i\/n2+2n+5
T =co :

2n—1

Remark 7.3. Type A, real hypersurfaces M, ,(m/4) satisfy |A|> = 2(p + ¢) = 2(n — 1). Thus the only biharmonic
tube M,, ,(m/4) is the minimal one M,, ,(7/4).

7.3. Type B real hypersurfaces

Let us consider the Hermitian symmetric space U/K = (A}}nH(R”JF?’) =S0(n+3)/SO(n+ 1) x SO(2). The
Hermitian symmetric space is identified with the complex quadric Q,; C CP"*2. Homogeneous real
hypersurfaces of type B are obtained by the Hopf projection of

{SO(n +1) x SO(2)}/{SO0(n — 1) x Zs} € S 1.
The type B real hypersurface M, is realized as a tube around a totally geodesic and Lagrangian embedded real

projective space RP™ with radius r € (0,7/4) or a tube around a complex quadric Q,,_; with radius 7/4 — r.

Remark 7.4. The tube M, around the complex quadric with radius r = tan~!(v/2 — 1) is a contact (k, u)-space
with kK = p = —1 (see §6.4 or [22]).

The principal curvatures of M, are A\; = — cot r with multiplicity m; = n — 1, Ay = tanr with ms =n —1and
a = 2 tan(2r) with multiplicity 1.

Theorem 7.5 ([47, 48]). A tube M, of radius r around RP™ C CP™(4) is biharmonic if and only if it is minimal and of

radius
1 -1
r=cot™" \/ﬁ—’_ = tan"! \/ﬁ < E.
vn—1 vVn—1 4

In particular, a tube M, of radius r around RP™ C CP?(4) is biharmonic if and only if it is minimal and of radius = /8.

Proof. Let us compute the mean curvature H of a tube M,.. Since the principal curvatures of M, are rewritten
as

1 4t
A = —cotr=—t, Xy =tanr = —, athan(ZT)Zﬁ,
we have ( " ( 2
n—1 4t n—Dt* —2n+ )t +n—-1
o —1)H = —(n— 1)t S .
(2n—1) (=Dt ==+ 5 12— 1)

Hence M is minimal if and only if (n — 1)t* — 2(n + 1)t> + n — 1 = 0. Thus

n+1+2/n n+1\>
t2
n—1 vn—1) °

Here we notice that

\/ﬁ+1>1 \/ﬁ—1<1
vn—1 ToVn—1 '

Now, we look for biharmonic real hypersurfaces. The square norm of the second fundamental form is

o e, n—1 1662 (n—1)(¢* —1)2(t* + 1) + 16t*
|A‘ —(n 1)t + 2 +(t2—1)2_ t2(t2—1)2 '

Hence, M is biharmonic if and only if ¢ = cot 7 > 1 is a solution to

(n—1)(#* — D2(t* + 1) + 16t* = 2(n + D) (t* — 1)

Equivalently
(n — Dt —4nt® +6(n + 3)t* —4nt* + (n — 1) = 0.
From this we get
t8 —8t° +30t* — 82 +1
GENE
Since the right hand side of this formula is positive for any ¢ > 1. Hence there are no non-minimal biharmonic
tubes. O

2—n=
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7.4. Type C real hypersurfaces

Type C real hypersurfaces are derived from the complex Grassmannian manifold

1
n—|->

U/K = Gry(C1) = SU(p+2)/S(U(2) x Up), p="2-23

The type C hypersurface M is the Hopf projection of
S(U(2) x U((n+1)/2)) /(T? x SU((n —3)/2)) C S*™1, n>5.

These hypersurfaces are tubes over the Segre imbedding of CP! x CP*~! with radius r € (0,7 /4). The principal
curvatures and their multiplicities are

A =—cotr, mp =n—3,
)\2:C0t(177’>’ m2:2,
4
)\3:C0t(g*7‘>, mg =n — 3,
)\4:cot<?m—7"), my = 2,
4
a = —2cot(2r), Mme = 1.

Put ¢ = cot r. Then the principal curvatures are rewritten as

Ct+1

1 1—-1¢ 1
A=t A -
1 ) 2 t_17 t

A = — - —t —.
) 4 n I 17 @ + n
Theorem 7.6. The only biharmonic tube around CP* x CP"=Y/2 is the minimal tube of radius

r=cot™! 7\/ﬁ+ V2

. n=5709,....
vn—2 "
Proof. The mean curvature H is computed as

20t+1) n—3 21—t 1
2n — 1)H = — (n — 3)t s
(2n = 1) O 1

n—2 (t+1)2 — (t —1)2

(n=2)t+——+ { t+1)(t—1)
-2 8t

A T Ty

(n—2)t" —2(n+2)t> +n—2
tt+1)(t—1)

Hence M, is minimal if and only if

n+2+2V2n  /n+V2

cotr =

n—2 Vn—2
Here we notice that
— V2 2
M < 17 M > 1
n—2 Vn—2

for all n > 3. Thus the tube of radius
r = cot™? 7\/5 +v2
vn—2

is the only minimal tube.
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The square norm |A|? is computed as

2
|A|2(n3)t2+2<§i_1> n_3 +2<2;f) +< t+1>
g2, N2 t+1 1
=(n—2)t* + o) +2{<t—1> +<t—|—1
:(n—2)t2+n_2 A(t* 4 6t +

2 T EorE s 1)
(=2t — 1)+ (n—2)(t2 — 1)% + 42 (¢ 4 662 + 1) — 202 (¢2 — 1)2
B t2(t2 — 1)2 '

Hence M is biharmonic if and only if
(n—2)t*(t? = 1)> + (n = 2)(t* — )2 + 4£2(t* + 6% + 1) — 2t%(t* — 1)% = 2(n + DE*(t* — 1)~

Namely
(n—2)t4t* — 1) + (n = 2)(t* — 1)? +4£2(t* + 6t + 1) — 2(n + 2)*(t* — 1)? = 0.

The left hand side of this equation is rewritten as

(n—2)(t* = D)* —4t>(t* — 1062 + 1) = (2 — 1)*n — 2% + 45 + 28¢* + 4% — 2.

Thus we get
2% — 4% — 281" — 41 4 2
n =

RN

Hence we have
3t® — 16t° + 58t* — 161> + 3
S—n= >0

GRS

for any n > 5 and ¢? > 1. Thus this equation has no solutions for t* > 1. Thus the result follows. O

7.5. Type D real hypersurfaces

The type D real hypersurfaces are associated to U/K = SO(10)/U(5). The resulting real hypersurfaces are the
Hopf image of
U(5)/(SU(2) x SU(2) x U(1)) c S**.

One can see that the type D real hypersurfaces are tubes over the Pliicker imbedding of the Grassmannian
manifold Gry(C®) into CP?(4) with radius r € (0, 7/4).
The principal curvatures and their multiplicities are

A1 =—cotr, my = 4,

)\2 :COt(ng), m2:4,

)\3:C0t(g*7’), mz = 4,

Ay =cot <37T—7”>, my =4,
4

a = —2cot(2r), Mme = 1.

Theorem 7.7 ([82]). A type D real hypersurface is biharmonic if and only if it is minimal and a tube around Gry(C®) of
radius r = tan=*(1/+/5).

Proof. The type D real hypersurface has constant mean curvature

1 t+1 11—t 1 5t* — 262 + 5 (5t2 — 1)(t? — 5)
H=—|4{(-t)+ —+ -4+ ——t+-| =— =— t = cotr.
17{ {( )+t—1+t+1+t} +t] 17t(2 — 1) 172 —1) corr

Hence, a type D real hypersurface M is minimal if and only if cot r = /5 > 1, since 0 < r < 7/4.
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Next, the square norm |A|? is

2 2 2
t+1 1 1—t 1
AP =4t + | —— =+ — - —t
s () g+ (50 1+ ()
5  8(tt+6t2+1) 5t8 — 4t6 4+ 62t — 412 + 5

=52+ -+ — 7 9=
et T e e 22 1)

Thus M is biharmonic if and only if

568 — 4% 4+ 62t* —4t> +5 90
2(t2 — 1)2 -

This is equivalent to
5t° — 24t° 4+ 102" — 24> + 5 = 0.

The left hand side of this equation is rewritten as
t4(5t* — 24¢% + 51) + 51" — 24¢* + 5 > 0.
Thus there are no non-minimal biharmonic real hypersurfaces of type D. O

7.6. Type E real hypersurfaces

Type E real hypersurfaces are associated to U/K = Eg/SO(10) - SO(2). These hypersurfaces are tubes over
the canonical imbedding of the Hermitian symmetric space SO(10)/U(5) C CP'*(4) with radius r € (0,7 /4).
The type E real hypersurfaces are Hopf image of

U(1) x Spin(10)/U(1) x SU(4) C S3.

The principal curvatures of a type E real hypersurface are

A1 =—cotr, my = 8,
T
AQ:cot<Zfr), mg = 6,
)\3:C0t<gf’l")7 m3:87
)\4:cot(37r—r>, my = 6,
4
a = —2cot(2r), My = 1.

The mean curvature is given by

1 t+1 1 1—t 1] 3(3t*—142+3)

Hence M is minimal if and only if

2v/1
tz:%\/*o>

1.

Thus, the radius is determined as

V3
V2+V5

r=tan" !

We look for biharmonic ones.

2 2 2
t+1 8 1—t 1
AP =8t* +6 | —— —+6(— —t+ =
= * (t—1> e <1+t> +< +t>
9 12(t*+6t2+1) 98 — 86 + 94¢* — 8% + 9

=924+ 42 7 ) 9=
Tt T ey PE 1)

dergipark.org.tr/en/pub/iejg 314


https://dergipark.org.tr/en/pub/iejg

J. Inoguchi & T. Sasahara

Thus the biharmonicity condition |A|?> = 2(n + 1) = 2(15+ 1) = 321is

9t% — 8t° 4 94¢* — 82 +9 -
212 —1)2 T

Hence t = cot r is a solution to
9% — 40t° + 158t* — 40t + 9 = 0.

The left hand side of this equation is rewritten as
t4(9t% — 40t% + 79) + 79t* — 402 + 9 > 0.
Thus there are no non-minimal biharmonic real hypersurfaces of type E.

Theorem 7.8 ([82]). A type E real hypersurface is biharmonic if and only if it is minimal and a tube around
SO(10)/U(5) € CPY?(4) of radius r = tan={+/3/(v/2 + V/5)}.

Hence the correct classification of proper biharmonic homogeneous real hypersurfaces in CP"(4) is
described as follows:

Theorem 7.9 ([47, 48, 82]). Let M be a homogeneous real hypersurface of CP™(4) with n > 2. Then M is proper
biharmonic if and only if it is holomorphically congruent to an open part of a tube around CP™(4) (0 < m <n —2) of
radius

b ot n+2+/2m—-n+12+4(n+1)
B 2n —2m — 1

7.7. Ruled real hypersurfaces
According to [58], a real hypersurface M C CP"(4) is said to be ruled if its holomorphic distribution

D={XecTM [p(X)=0}

is integrable and each leaf of its maximal integral manifolds is locally congruent to the hyperplane CP"~!(4).
The second named author proved the following theorem.

Theorem 7.10 ([82]). Let M be a ruled real hypersurface in CP™(4), where n > 2. If M is biharmonic, then it is minimal.

Ruled hypersurfaces in CP™(4) are incomplete. Minimal ruled hypersurfaces of CP"(4) are investigated in
[1]. Pérez-Barral [76] proved that biharmonic ruled hypersurfaces of CH"(—4) are minimal.

7.8. Three dimensional Hopf hypersurfaces

Here we restrict our attention to real hypersurfaces in CP?(4). Wang proved the following fundamental fact.

Theorem 7.11 ([99]). Let M be a real hypersurface of CP?(4) with three distinct constant principal curvatures. Then M
is holomorphically congruent to an open part of a tube of radius r € (0,7 /4) around the complex quadric Q; C CP?(4).

The tube M, is diffeomorphic to the lens space L(4,1) = S*/Z,4. Under the limit r — /4, the tube M, around
Q; collapses to RP? (see [17]). In particular, we notice the following fact.

Proposition 7.1. Let M be a real hypersurface of CP?(4) with three distinct constant principal curvatures. Then the
following properties are mutually equivalent:

* M is contact metric.

* M is minimal.

* M is biharmonic.

* M is holomorphically congruent to an open part of a tube of radius w /8 around the complex quadric Q; C CP?(4).
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7.8.1. Sasakian 3-sphere As is well known, the unit 3-sphere S? is identified with the special unitary group
SU(2) = {P € SL,C | PP =1}

with bi-invariant Riemannian metric of constant curvature 1. Here 1 denotes the identity matrix. The bi-
invariant metric g/ of constant curvature 1 on SU(2) is induced by the following inner product (-,-); on the
Lie algebra Ty SU(2) = su(2):

1 1
(X,Y)1 = —gB(X,Y) = =3 tr(XY), XY €su(2).

Here B denotes the Killing form of su(2). We call g the normalized Killing metric. Take a quaternionic basis of

su(2):
() () (5 )

By using this basis, the Lie group SU(2) is described as

_ o ++vV—-1x3 —x9++/—121 2 2 2 2 _
SU(2>{<$2+\/?1:101 o — /=T 3 xota]taos+az=1,.

In the spinor representation of the Euclidean 3-space E3, we identify E? with su(2) via the correspondence
vV—1lzxs —xz9++/—12x71
5824’\/71171 — 71583 .

Denote the left translated vector fields of {,j,k} by {E, E2, Es}. The commutation relations of {E1, Es, E3}
are

(w1, T2, 23) ¢— 11 + 225 + 23k = (

[Ela EQ] = 2E37 [E27E3] = 2E1) [E3) El} = 2E2

The left invariant 1-form
n =g (Es, )

is a contact form with Reeb vector field
W .= B3,

The metric ¢; is compatible to 7;. The contact metric condition
1
gV (X, 0Y) = Sy V(X,Y), X,V €su(2)
induces a left invariant endomorphism field ¢ as

¢(Er) = Ea,  @(E2) = —E1, ¢(E3)=0.

It should be remarked that ¢; is a unit Killing vector field. The resulting left invariant contact metric structure
(¢,6M, n) g1} is Sasakian. The Lie group SU(2) acts isometrically on the Lie algebra su(2) by the Ad-action.

Ad: SU(2) x su(2) — su(2); Ad(a)X =aXa !, acSU?2), X €su(2).

The Ad-orbit of k/2 is a 2-sphere S?(4) of curvature 4 in the Euclidean 3-space E? = su(2). The Ad-action of
SU(2) on S?(4) is isometric and transitive. The isotropy subgroup of SU(2) at k/2 is

V=1t
Klz{exp(tk):<eo 6_3_—”>‘t€R}%U(1):{e\/j”

Hence S?(4) is represented by SU(2)/U(1) as a Riemannian symmetric space. The natural projection

teR}.

m S5 S2(4),  mi(a) = Ad(a)(k/2)

is a Riemannian submersion and defines a principal U(1)-bundle over S?(4). This fibering is nothing but the
well known Hopf fibering. Moreover it is the Boothby-Wang fibering of S* as a regular contact 3-manifold.
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7.8.2. Berger 3-sphere M3(c) Next, let us deform the Riemannian metric g() of the unit 3-sphere S* as

4 c—1
OX, V)= — (¢W(X,Y) - — W (X)W (v
g(,)c+3<g(,)c+3n()n(),

where ¢ > —3 is a constant. The resulting Riemannian 3-manifold M?(c) = (S%, () is called the Berger sphere.
Precisely speaking, the original one due to Berger is (S%, <2 (<)) and ¢ # 1. Note that under the limit ¢ — —3
c+3

in Gromov-Hausdorff sense, (S?, <2 ¢) converges to S? equipped with the Carnot-Carathéodory metric. On
1 8 quipp y

the other hand, under the limit ¢ — 1, (S?, <2 g) collapses to S%.
Let us deform the contact form 7; and the Reeb vector field ¢V as
10 e - ¢F3

Al 1

(1)
c+3 &

n(©) =
Then ¢(®) is compatible to (). The Berger sphere M?(c) with ¢ # 0 is no longer a space form, but the ¢-sectional
curvatures are constant c. In particular, M?(c) is a Sasakian space form.

The Reeb vector field £(¢) generates a one parameter group of transformations on M3(c). Since ¢ is a Killing
vector field with respect to the Berger metric, this transformation group acts isometrically on G = SU(2). The
transformation group generated by ¢(°) is identified with the following Lie subgroup K = K. of G:

ko {on (5204 er) 20,

Furthermore, the action of the transformation group generated by . corresponds to the natural right action of
K. on SU(2):
SU(2) x K. — SU(2); (a,k) — ak.

By using the well-known curvature formula for Riemannian submersion due to O’'Neill, one can see that
the orbit space G/K. is a 2-sphere S?(c + 3) of curvature ¢ + 3. The Riemannian metric g, is not only SU(2)-
left invariant but also K -right invariant. Hence SU(2) x K, acts isometrically on SU(2). The Berger sphere
M3(c) is represented by (SU(2) x K.)/K. as a naturally reductive homogeneous space. For ¢ # 1, M3(c) has
4-dimensional isometry group. In particular, g is G-bi-invariant if and only if ¢ = 1. In this case M3(1) is
represented by (SU(2) x SU(2))/SU(2) as a Riemannian symmetric space. Note that M?(1) has 6-dimensional
isometry group.
Consider an orthonormal frame field {e1, ez, e3} of M?3(c) by

ve+3 ve+3 c+3
€1 = B El, €9 1= 9 Ez, €3 = 1 E3.

Then the commutation relations of this basis are

c+3e e e}_c—l—?)
2 1, 3,C1| — 9

le1,e2] = 2e3, ez, e3] = €2.

The Levi-Civita connection V of (M?(c), g{)) is described by

Ve e1 =0, Vger=e3, Veez3=—ey,
Vezel = —€3, vezeZ = 07 vezeS = €1,
c+1 c+1
Vese1 = 5 €2 Ve€2 = — e1, Veez =0.

The Riemannian curvature R of (M3(c), g(), V) is described by
Ri212 =¢, Rizi3 = Rasesz =1,

and the sectional curvatures are:
Kig=¢c, Kiz=Ky=1

The Ricci tensor field Ric and the scalar curvature p are computed to be

Ricij; = Ricga =c+1, Ricgz =2, p=2(c+ 2).
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7.8.3. Generalized Berger 3-spheres Let us consider immersions of SU(2) into the complex projective plane
CP?(4). Let us take the quaternion basis {4, j, k} of the Lie algebra su(2). Denote by {9', 9% 93} the dual basis of
{2,7,k}. The dual basis {9',9%,93} is regarded as a left invariant frame field on SU(2). The bi-invariant metric
g1 is represented as

g =9 @9 +092 209 +93 9.

The Berger sphere metric g. is represented as

2
_ 4 1 1 2 2 4 3 3
gc_—c+3(q9 @9 +9* @ 9?) + 3 9 @093,

Let us equip a left invariant metric of the form
Jas,azas = (1)*0" @9 + (a2)*9? © 9% + (a3)*0° © 0°,

where a1, s, a3 are positive constants. Then we obtain a unimodular frame {e{, e3, €5} by

1 1 1
ef = —F, ey =—FEy ey=—F;s.
1 I 2 9 3
aq Qa2 a3

Then we have the commutation relations

a ol o« a ol o« a ol o«
[61762]*03637 [62733]*61€1a [63a61]*02627
where o o o
o 1 a 2 o 3
cl = , Cy = , €5 = .
e510%:} [e%:1e5] a0

We introduce a left invariant almost contact structure (¢, (%, n®) compatible to the metric ga, a,,q05 DY
% = 6?, 77a = Yaq,a2,03 (ga’ ')a ¢6(1X = ega QSGS = _etlxa d)eg =0.

Then one can see that (¢,{%, 1%, gay,as,05) iS contact metric if and only if a3 =ajas. In such a case,
(SU(2); 6, €%, 1%, gar 00,0 ) 1S @ contact (k, p)-space with
(of — a3)? af +a3

k=1 7% o .
(1ag)? . (1a)?

The Berger 3-sphere M?3(c) is obtained by the choice
2 4
a3 = .
Vers 7T c+3

Li determined isometric immersions of (SU(2), ga; as.a5) into CP?(4) under the assumption that the resulting
real hypersurfaces are Hopf.

] = Qg =

Theorem 7.12 ([60]). Let f: (SU(2),gay,a0,05) — CP%(4) be an isometric immersion. Assume that the image
M = f(SU(2)) is a Hopf hypersurface. Then M is holomorphically congruent to one of the following homogeneous
hypersurfaces:

* A geodesic sphere of radius r € (0,7/2). The induced metric is isometric to
g =sin’r (191 @9+ 092 @92 + cos?r® @ 193) . (7.2)
The metric g is a contact metric if and only if r = 7 /4 and the resulting metric is a Sasakian metric of constant

¢-sectional curvature 5. The image M is minimal if and only if r = 7 /3.
e The tube M, of radius r € (0, /4) around the complex quadric Q; = CP'. The induced metric is isometric to

g=4 (sin2 (r — %) 9! @ 9t + sin? (r + %) 9? @ 9% +sin?r9® @ 193) . (7.3)

The metric g is a contact metric if and only if r = w/8 and M is minimal in CP?(4).
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One can see that the Hopf hypersurfaces in Theorem 7.12 are equivariant. On the other hand, Hu, Yin and Li
classified full equivariant CR minimal immersions f : (SU(2), ga, ,as.a5) — CP%(4).

Theorem 7.13 ([45]). Let f: (SU(2), gay.a0.05) — CP?(4) be a full equivariant CR minimal immersion. Then up to an
inner automorphism of SU(2) and a holomorphic isometry of CP?(4), f is

* g geodesic sphere of radius r = /3 or
® a tube of radius 7 /8 around Q.

The second named author obtained the following classification.

Theorem 7.14 ([82]). Let M be a Hopf hypersurface in CP?(4). Then M is proper biharmonic if and only if it is
holomorphically congruent to an open part of a geodesic sphere of radius

44++/13

r = cot ™!
3

8. Subelliptic biharmonic maps

Harmonic maps from or into strongly pseudo-convex CR-manifolds have been studied by several authors.
For instance, lanus and Pastore [46] proved that every holomorphic map between contact metric manifolds is
harmonic. For more information on the harmonicity of holomorphic maps, we refer to [37, 38, 39, 50].

8.1. Pseudo-harmonic maps

Now let M = (M, S) be a (2n — 1)-dimensional strongly pseudo-convex CR-manifold equipped with Tanaka-
Webster connection V. We denote by (¢v, T, ¥, gg) the associated contact metric structure. The real expression
of S is denoted by (Dy, J). Take a smooth map f: (M,S) — (M, g) of M into a Riemannian manifold (H,g).
The pseudo-second fundamental form Vdf of f is defined by Petit [80]:

(Vxdf)Y = VLdf(Y)—df(VxY), X,Y eI (TM).

The pseudo-energy Ey(f) of f over a relatively compact domain (2 is defined by [4]:

2n—2

Ey(f;92) Z/Q; Z(f*g)(ei,ei)dvﬁ-

Here {e1, €2, ..., €e2,-1} is a local frame field of M which is orthonormal with respect to Webster metric gy and
of the form

Cn+i—1 = (;51961* (Z = 1, 2, ey, — 1), €opn—1 = T. (81)
The Euler-Lagrange equation of the pseudo-energy is obtained in [4]:

2n—2

n(f) = trp, (Vdf) = > (Vdf)(ei,e:) = 0.

=1

The section 7,(f) € I'(f*T'N) is called the pseudo-tension field. A smooth map f is said to be pseudo-harmonic (in
the sense of [4]) if 7,(f) = 0. It should be remarked that

2n—2

n(f) = trp, (Vdf) = Y (Vdf)(ei e:), (8.2)

i=1

because of (3.8) (see (2.10) of [97]).
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8.2. Subelliptic biharmonic maps

The Jacobi operator 7, ¢ associated to a pseudo-harmonic map f is given by [4, p. 227]:

Tog (V) = AJV —trp, R(V,df)df,

where - -
Alv==3%" (vavg - vgm) V, trp,R(V,df)df = > R(V,df(e:))df(es).
i=1 ! i=1

Here V is the Tanaka-Webster connection as before.
The pseudo-bienergy of a smooth map f is introduced by Dragomir and Montaldo [30]:

Bua(£:9) = [ Sanf). () dus.

The Euler-Lagrange equation of the pseudo-bienergy is [30]:
To,2(f) = =T, 5 (1s(f)) = 0.

A smooth map f is said to be subelliptic biharmonic if its pseudo-bitension field 7, »(f) vanishes.

8.3. Subelliptic biharmonic real hypersurfaces

Urakawa studied subelliptic biharmonicity of real hypersurfaces in complex projective space CP"(c). For the
sake of accuracy, here we explain Urakawa’s setting in [97].

Let (M, S) be a strongly pseudo-convex CR-manifold of dimension (2n — 1) and M, = (]\7,1, g,J) a Kihler
manifold of complex dimension n > 2.

We consider isometric immersions f : M — M, To distinguish the almost contact structure associated to the

CR-structure (M, S) and the almost contact structure induced from M,,, we denote the real expression of S by
(Dy, ¢9). The associated contact form and Reeb vector field are denoted by ¥ and T', respectively.

Urakawa studied isometric immersions f : M — M, of a strongly pseudo-convex CR-manifold (M, S) into

a Kahler manifold M,. Although the Kihler structure (§,) induces an almost contact metric structure
(6,&,m, £*3) by (see also (4.1)):

JAf(X) = df(pX) +en(X)v, df(§) =—eJv, g=["3 (8.3)

Urakawa only demands the condition f*§ = gy. In other words, he did not demand any relations between
(¢195 T7 19) and (¢a 57 77)

Here we recall some terminologies.
The pseudo-tension field 7,(f) and the tension field 7( f) are related by (cf. [4, Example 5.2]):

n(f) = 7(f) = (VAT T).
The pseudo-mean curvature vector field Hy, of f is defined by

Top_1

Hy ).

Equivalently, H, and the mean curvature vector field H are related as

Hy = H —

anr,T).
- (VAN)(T.T)
Note that 7,,(f) is called the pseudo mean curvature vector in [97].

According to Urakawa [97, Definition 5.1], an isometric immersion f : M — M, of a (2n — 2)-dimensional

strongly pseudo-convex CR-manifold M = (M;¢y,T,9,gy) into a Kdhler manifold (M,,g,J) of complex
dimension n is said to be admissible if its second fundamental form satisfies

(VA (X, T)=0
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for any X € I'(Dy). Urakawa showed that f is admissible if and only if T" is a principal vector field.
Since f is an isometric immersion, the second fundamental form Vdf is expressed as (Vdf)(X,Y) =
99(AX,Y)v. Hence the tension field and pseudo-tension field are rewritten as (cf. [97, p. 160])

7(f)=(2n—1)Hv, m7,(f)=(2n—1)Hyv,

where
1 1 2n—2
H = mtrgﬂA, Hy, = 51 ; go(Aei, e;).
Here {e1,e2,...,e2,-1} is a local orthonormal frame field of the form (8.1). Set
Aij = go(Aeiye;), i=1,2,...,2n—1
and

ay = Aop_1 2n—1.
Then we have
2n—2 2n—1

2n—1)Hy,= Y Ay, @n—1)H= Y Ay=2n-1)H,+ay.
=1 1=1

Since f is admissible, T'is a principal vector field with corresponding principal curvature ay.
Since the pseudo-mean curvature vector field H; is normal to the immersion f, we have

VIH, = —df(An, X) 4+ Vi Hs.

Here V+ is the normal connection and Ay, is the Weingarten operator derived from H,.
The pseudo-mean curvature vector field Hy is said to be pseudo-parallel in the sense of [97] if

VyH, =0
for any X € I'(Dy) (see [97, p. 159]). The derivative V/H, is computed as
VI Hy = (dHy)(X)v + HyVi v = (dHy)(X)v — Hydf(AX).

Hence H,, is pseudo-parallel if and only if (dH;)(X) = 0 for any X € I'(Dy). Hence we deduce the following
fundamental fact:

Proposition 8.1. If all principal curvatures other than oy of an admissible isometric immersion f: M — M, are
constant, then the pseudo-mean curvature vector field is pseudo-parallel.

Now, let f: M — J\A/fn(c) be an isometric immersion of a (2n — 1)-dimensional strongly pseudo-convex CR-

manifold M = (M, ¢y, T, 9, g) into a complex space form ]\A/_fn(c) of constant holomorphic sectional curvature c.
Urakawa obtained the following result.

Theorem 8.1. Let M be a (2n — 1)-dimensional strongly pseudo-convex CR-manifold and f : M — M,(c) is an
admissible isometric immersion with unit normal vector field v. Assume that the pseudo mean curvature vector field
is pseudo-parallel but does not vanish. Then M is subelliptic biharmonic if and only if either

1. g(Jdf(T),v) = 0and

(Vo 2 = B o
2. JAf(T) = g(Jdf(T),v)v and
(Vaf)lp, 2= L

This result allows us to only consider real hypersurfaces in complex projective n-space CP"(c). Let us
compare the contact metric structure (¢yg, T, ¥, gy) associated to (M, S) and the almost contact metric structure
(¢,&,m, g) induced from CP™(c).
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The case 1: Since f is an isometric immersion, we have g = f*§ = gy. Next, ¢ is defined by df(£) = —eJv, hence
g(Jdf(T),v) = =g(df(T), Jv) = —g(df(T), —edf(§)) = en(T).

Thus the condition (1) of Theorem 8.1 is equivalent to n(T") = 0.

The case 2: On the other hand, the condition (2) of Theorem 8.1 is
JAf(T) =en(T)v.
Here we notice that
g(JAf(T), Jdf(T)) = g(df(T),df(T)) = g(T,T) = 1.

On the other hand,
g(en(T)v,en(T)v) = n(T)*g(v,v) = n(T)*.

Hence n(T') = £1. Without loss of generality we may assume that n(T") = 1. Hence
T = 57 U= 7, ¢19 = d)

In this case, M is a contact metric hypersurface.
Let us study subelliptic biharmonicity of contact metric hypersurfaces in CP"(c). According to Theorem 6.5
and Theorem 6.6, contact metric hypersurfaces are one of the following list:

e a geodesic sphere of radius r = (2//c) tan~'(/c/2) with sign e = —1.
e atube of r = (2/y/c) tan"{(vc + 4 — \/c)/2} < 7/(2y/c) around the complex quadric Q,,_; C CP,(c) with

signe = 1.

For simplicity of description we normalize the holomorphic sectional curvature as ¢ = 4.

Case (1) Sasakian geodesic sphere: Now let us investigate subelliptic biharmonicity of geodesic sphere of radius
r = m /4. This geodesic sphere has principal curvatures

a=2cot(2r), A= —tanr

with multiplicities m, = 1 and m) = 2(n — 1).

The pseudo-mean curvature is given by
2(n
2(n

D
)

Hence this geodesic sphere is not pseudo-harmonic. Next we have

mAN) = —=——— tanr # 0.

2(n—1) (
(VASf)|p|? = maX2 = 2(n — 1) tan r = 2(n — 1) tan> % =2(n - 1).
This shows that the geodesic sphere of radius 7/4 in CP"(4) is subelliptic biharmonic.
Case (2). non-Sasakian contact metric tube: Next we consider a tube M of radius r around complex quadrics. The

tube M is contact metric if and only if r = tan™!(v/2 — 1).
The principal curvatures are

1
A =—cotr=:—t, Ao =tanr= o a= 2tan(2r)

with multiplicities
mi=me=n—1, mqg=1.

The pseudo-mean curvature is computed as

-1 1
(m1/\1 + mQ)\g) = i <—t + ) .

2(n—1) 2(n—1) t
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This shows that the tube is pseudo-harmonic if and only if ¢t = £1, that is, r = 7/4. This contradicts r =
tan~!(v/2 — 1). Hence M is not pseudo-harmonic.
Next, we check the subelliptic biharmonicity. The subelliptic biharmonicity equation of M is

1
(VAf)|p|> = miAT + mad3 = (n— 1) (t2 + ) =2(n—1).
From this equation, we deduce that » = 7/4 again. Thus M is not subelliptic biharmonic. Summing up above

discussions, we get the following result.

Theorem 8.2. Let M C CP"(4) be a contact metric hypersurface in the complex projective space of constant holomorphic
sectional curvature 4. Then the inclusion map of M is subelliptic biharmonic if and only if it is locally holomorphically
congruent to a geodesic sphere of radius 7 /4. The geodesic sphere is a Sasakian space form of constant ¢-sectional curvature
5 and not pseudo-harmonic. In addition there are no pseudo-harmonic contact metric hypersurfaces in CP™(4).

This theorem is interpreted as a variational characterization of Sasakian hypersurface in CP™(4).
Okumura [72] proved the following pinching theorem:

Theorem 8.3. Let M be a compact orientable real hypersurface of CP™(4) (n > 2). If M satisfies the inequality
A2 < 2(n —1) + (2n — 1) Hg(AE,€),
then |A|?> = 2(n — 1) + (2n — 1)Hg( A&, €) holds and M is holomorphically congruent to M, , for some p and q.
Motivated from Okumura’s theorem, we propose the following problem:

Problem 1. Prove or disprove the following statement:
Let M be a compact strongly pseudo-convex CR-manifold and f : M — CP"(4) be an ismoteric immersion into the
complex projective space of constant holomorphic sectional curvature 4. Assume that M satisfies the inequality

(Vdf)lp,|* < 2(n—1).
then |(Vdf)|p,|? = 2(n — 1) holds and M is holomorphically congruent to the geodesic sphere of radius /4.

Problem 2. Can we construct explicit examples of the case 1 of Theorem 8.1 ? For instance, let M be a 3-
dimensional 3-Sasakian manifold with mutually orthogonal Reeb vector fields &1, &2, &3 (see e.g., [78, 83]). Can
we find any isometric immersion f : M — CP?(4) such that df(£3) = —eJv and |(Vdf)|p,, |* = 5?

For recent studies on pseudo-harmonic maps due to Dong, Ren and their collaborators, see [25, 29, 81].

9. Levi-harmonicity of homogeneous real hypersurfaces

9.1. Levi-harmonic maps

Let (M; ¢, &, n, g) be an almost contact metric manifold and (M , §) be a Riemannian manifold. A smooth map
f:+ M — M is said to be Levi-harmonic in the sense of Dragomir and Perrone [31, 79] if it satisfies

2n—2

p(f) == trp(Vdf) = > _ (Vdf)(ei,e:) = 0.

=1

For a smooth map f : (M;¢,&,1,9) — (]Tf ,§), Dragomir and Perrone introduced the following functional E;,
for f over a relatively compact region Q@ C M

2n—2

P = [ 530 (e du,

i=1
Then f is a critical point of Ey, if and only if it satisfies the Euler-Lagrange equation:

mp(f) — df(Ve€ + (div €)€) = 0.
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Thus if M satisfies V¢ = 0 and div { = 0, then the Levi-harmonic maps are characterized as critical points of
Er.
Here we investigate the Levi-harmonicity of the inclusion maps of homogeneous Hopf hypersurfaces in
CP™(4) and CH™(—4). N
Let M be a homogeneous Hopf hypersurface of M, (c). Then we have
Ve = epAE = ep(af) = 0.

Next, take a locally defined unit principal vector field V' orthogonal to £ corresponding to the principal
curvature )\;. Then we have
9(VvE V) = g(egpAV, V) = e i g(¢V, V) = 0.
Thus we deduce that div £ = 0.
Proposition 9.1. Let M be a Hopf hypersurface of a complex space form M, (c). Then the inclusion map ¢ is Levi-
harmonic if and only if it is a critical point of E..
9.2. Type A hypersurfaces in CP™(4)
Let M, , be a type A real hypersurface of CP™(4), then the inclusion map . satisfies
g(tp(L),v) = miAL + maAy = 2(gcotr — ptanr).

First we consider geodesics spheres. In case p = 0 or ¢ = 0, we have §(7p(¢), v) # 0. Thus geodesics spheres can
not be Levi-harmonic. Next, in case p # 0 and ¢ # 0, §(7p(¢), ¥) = 0 holds if and only if

r=tan ! \/E
p

Proposition 9.2. A real hypersurface M, , of type A in CP"(4) is Levi-harmonic if and only if its radius is r =

tan=! \/q/p.

9.3. Type B hypersurfaces in CP™(4)
Let M, be a real hypersurface of type B in CP"(4). Then we have
d(mp(t),v) = miA1 + mady = (n — 1) (—cotr + tanr).

The solution ¢ of §(rp(¢),r) =0 is t = cotr = £1. This is impossible, since r € (0,7/4). Thus we obtain the
following result.

Proposition 9.3. A real hypersurface M, of type B in CP™(4) can not be Levi-harmonic.

9.4. Type C hypersurfaces in CP™(4)
Let M be a tube of radius r € (0, 7/4) around Gry(CP*+2) with p = (n + 1)/2. Then we have

9(tp (1), V) =miA1 + mada + madz + mady
t+1 n—-3 2(1-1t) (n—3)t* —2(n+1)t2+ (n — 3)
= — — 2 e p—
(n=3)t+ it t+1 tt+1)(t—1) ’
where t = cot r as before. Thus §(rp(¢),v) = 0 if and only if

t2:n+1:t2\/2(n—1)
3 .

n —

We notice that

1+24/2(n—1 1+24/2(n—1
ntlt VS(" o1 mzs), dim T VS(” )4,
—

n— oo

1-2/2(m 1 14221
n =D 1 (), fm AT 3(" ) 4,
p—

n—3 n— 00

Hence M is Levi-harmonic if and only if

= ot \/n+1+2w/2(n1)
= 3 .

n —
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Proposition 9.4. A real hypersurface M, of type C in CP™(4) is Levi-harmonic if and only if its radius is

I \/n+1+2\/2(n—1)
= 3 :

n —

9.5. Type D hypersurfaces in CP™(4)
Let M be a tube of radius r € (0, 7/4) around the Pliicker image of Grs(C®). Then
g(’TD(L)7 V) =miA1 + mada +m3A3 + mads
4t+1) 4 41 —1t) -4t 4242 -4 AT - 612+ 1)

D+ S T B —t tt+1)(t—1)

where ¢ = cot r as before. Thus §(7p (1), v) = 0 if and only if ¢ = 3 £ 21/2. Since t? > 1, we get t? = 3 + 2v/2 and
hence t = 1 4+ /2. The possible solutionist =1 + V2, thatis, r == /8.

Proposition 9.5. The only Levi-harmonic real hypersurface M, of type D in CP™(4) is the tube of radius w/8 around
the Pliicker image of Gra(CP).

9.6. Type E hypersurfaces in CP™(4)
Let M be a tube of radius r € (0, 7/4) around SO(10)/U(5). Then

G(tp (), V) =miA + made + mads + mady
6(t+1) 8 6(1—t) —8(*—5t2+1)

A t+1 tt+1)(t—1) °
where ¢ = cot r as before. Thus the solutions to g(7p(¢),v) = 0 are
o BEV
5

Since t? > 1, we have t> = (5 + v/21)/2 and hence t = (v/7 + v/3) /2.
Proposition 9.6. The only Levi-harmonic real hypersurface M, of type D in CP"™(4) is the tube of radius

r=cot ! 7\ﬁ+ \/§
2

around SO(10)/U(5).

9.7. Type Ao hypersurfaces in CH™(—4)

From now on, we study Levi-harmonicity of homogeneous Hopf hypersurfaces in CH"(—4) =
SU(1,n)/S(U(1) x U(n)). Let SU(1,n) = NAK be the Iwasawa decomposition of SU(1,n) with K = S(U(1) x
U(n)). The nilpotent part N is the Heisenberg group. The complex hyperbolic space CH"(—4) is identified
with the solvable part § = N A. The orbit of the Heisenberg group N is a homogeneous real hypersurface of
type Ay called the horosphere of CH™ (—4).

The horosphere M has principal curvatures a = 2 of multiplicity m, = 1 and A\; = 1 of multiplicity of 2n — 2.
Obviously, M is neither minimal nor Levi-harmonic.

9.8. Type A, o hypersurfaces in CH™(—4)

The type A, o hypersurfaces are geodesic spheres and have principal curvatures a = 2 coth(2r) of multiplicity
mq = 1 and A\; = cothr of multiplicity m; = 2n — 2. Put ¢t = cothr, then a = (1 + ¢?)/t. The mean curvature H
is given by
(2n—1)t2+1

t

(2n —1)H = miA +maa = > 0.
Hence M can not be minimal. On the other hand,
§(rp(v),v) = miAr =2(n — 1)t > 0.

Hence the geodesic sphere M is not Levi-harmonic.
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9.9. Type Ay hypersurfaces in CH™(—4)

A tube M = M, of radius r > 0 around CH" ! has principal curvatures a = 2 coth(2r) of multiplicity m, = 1
and \; = tanhr of multiplicity m; = 2n — 2. The mean curvature H is given by

t2+2n—1
(2n —1)H = mi\ + mea = % >0, t=cothr.
Hence M can not be minimal. On the other hand,
2(n—1)

g(tp(L),v) = miA; = > 0.

t

Hence the tube M, is not Levi-harmonic.

9.10. Type A hypersurfaces in CH™(—4)

A tube M = M, of radius r > 0 around CH* (1 < ¢ < n —2). A tube M = M, of radius r > 0 around CH" !
has principal curvatures a = 2 coth(2r) of multiplicity m, =1, Ay = coth(r) of multiplicity m; =2(n —1—¥)
and Ay = tanh(r) of multiplicity m, = 2/. The mean curvature H is given by

(2n —20—-1)t2+20+1
t

(2n — 1)H = miA + made + maa = >0, t=cothr.

Hence M can not be minimal. On the other hand,

2(n — £ — 1)t% 4+ 2¢
t

> 0.

g(mp(L),v) = miA1 + mag =

Hence the tube M, is not Levi-harmonic.
Note that tubes M, around CH* (0 < ¢ < n — 1) are orbits of S(U(1,£) x U(n — ).

9.11. Type B hypersurfaces in CH™(—4)

A tube M, of radius r around the totally geodesic Lagrangian real hyperbolic space RH"(c/4) is an orbit
of SOT(1,n). The tube M, has principal curvatures a = 2tanh(2r) of multiplicity m, =1, A\; = coth(r) of
multiplicity m; = n — 1 and Ay = tanh(r) of multiplicity m; = n — 1. The mean curvature H is given by

442 + (n—1)(t* + 1)?

(2n—1)H:m1)\1+m2)\2+maa: t(1+t2)

>0, t=cothr.

Hence M can not be minimal. On the other hand,

(n—1)(1 +t?)

9(tp(1),v) = miA1 + moXy = > 0.

Hence the tube M, is not Levi-harmonic.

It should be remarked that when r = coth™" v/3 = log(2 + v/3)/2, A1 = a holds and hence M, . s has
two distinct principal curvatures \; = /3 of multiplicity m; = n and A\ = 1/v/3 of multiplicity ms =n — 1.
Moreover we have

(n—1) +nt?

(2n—1)H = "

>0, g(rp(),v)=(n-1) (t+ 1) > 0.

As a conclusion, we obtain

Proposition 9.7. There are no Hopf hypersurfaces with constant principal curvatures in CH™(—4) which are minimal
or Levi-harmonic.

For recent study on minimal real hypersurfaces in complex hyperbolic space, we refer to [40] and references
therein.
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10. Biharmonic real hypersurfaces in quaternion projective space

10.1. The quaternion projective space

The quaternion projective n-space HP" is represented by Sp(n + 1)/Sp(n) x Sp(1) as a homogeneous space.
We equip HP" with the metric g induced from a negative constant multiple of the Killing form. Then the
resulting homogeneous Riemannian space is a real 4n-dimensional compact Riemannian symmetric space of
rank 1. Moreover HP" is a quaternionic symmetric space. We normalize the metric of HP" so that the maximal
sectional curvature of HP" is 4 and denote the resulting Riemannian symmetric space by HP"(4). Since HP!
is the 4-sphere S*(4), hereafter we assume that n > 1. The biharmonicity criterion is given as follows ([47, 15
Theorem],[48, Theorem 6]).

Theorem 10.1. Let M C HP"(4) be a real hypersurface of a quaternion projective space of maximal sectional curvature
4 (n > 2). Assume that M has non-zero constant mean curvature. Then M is biharmonic if and only if |A|? = 4(n + 2).
In such a case, M has scalar curvature

p=4(4n —3)(n+2) + (4n — 1)*H>.

10.2. Homogeneous real hypersurfaces

The homogeneous hypersurfaces in quaternion projective space were essentially classified by Iwata [53] and
D’Atri [27]. Any such hypersurface is either a tube around a totally geodesic subspace HP* ¢ HP"(4) for some
k=1,2,...,n— 1 or atube around a totally geodesic complex projective space CP" C HP"(4).

Berndt proved that a hypersurface in HP"(4) is curvature-adapted if and only if it is an open part of a
homogeneous hypersurface in HP"(4).

10.3. Geodesic spheres

Let M, be a geodesic sphere of radius r in HP"(4) (0 < r < 7/2). Then M, has principal curvatures A; = cotr
of multiplicity m; = 4(n — 1) and Ay = 2 cot(2r) of multiplicity ms = 3.

Theorem 10.2. A geodesic sphere M, C HP"(4), (n > 1) is minimal if and only if its radius r is

1 [4n—1
5

r =tan~
Proof. The mean curvature H of M, is

(4n—1)H:4(n—1)t+3(t—1).

Here we put ¢ := cotr. Hence M, is minimal if and only if

3
t=\/7— (10.1)

1 [4n—1
3

is minimal. O

Thus the geodesic sphere of radius

r = tan

Next we classify proper biharmonic geodesic spheres.

Theorem 10.3. Geodesic spheres of radii

-~ ot 2n+T7+£2vVn?+4n+13
N dn —1

are the only proper biharmonic geodesic spheres in HP"(4), n > 1.

327 dergipark.org.tr/en/pub/iejg


https://dergipark.org.tr/en/pub/iejg

Biharmonic Hypersurfaces in Projective Spaces Revisited

Proof. The square norm of the second fundamental form is given by
1\ 3
|A? =4(n— 1)t +3 <t - t) = (4n — 1)t* + 56 (10.2)

Thus M, is non-minimal and biharmonic if and only if
(4n — D)t* —22n + 2 +3 = 0.

Solving this equation, we get

o 2n+T7+2Vn?+4n+13
t° = > 0.
4n —1

Thus geodesic spheres of radii

(1 2n+T7+2vVn%2+4n+13
7 = CO
4dn —1

are proper biharmonic. O

Remark 10.1. Although CP™(4) has no Einstein real hypersurfaces, HHP"(4) has. In fact, the geodesic sphere M,
of radius r = cot~'(1/v/2n) is the only Einstein real hypersurface in HP"(4). The computation above shows
that the Einstein geodesic sphere is non-biharmonic.

10.4. Tubes of quaternionic subspaces

The tube My (r) of totally geodesic and quaternionic subspace HP* C HP"(4) of radius 7 € (0,7/2) has
principal curvatures
A=cotr, u=—tanr, ag =2cot(2r)

with multiplicities
myx=4n—-k—-1), my, =4k, m,, =3.

Theorem 10.4. The only minimal tubes around HP* C HP"™(4) are tubes of radius

— tan-! 4n — 4k — 1
- V 4k +3

Proof. The mean curvature H of Mj(r) is computed as

wnmtrs () 13(-)

4k + 3
— (4n — 4k — 1)t j

N LT TR
= tan _—.
" V™ 4k 13

Theorem 10.5. The only non-minimal biharmonic tubes M, around HP* are tubes of radii

Hence M is minimal if and only if

I 2n +742/(n —2k)2 +4(n+ k) + 13
e An — 4k —1 '

Proof. The square norm of the second fundamental form is given by

2
4 1 4
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Thus M;.(r) is proper biharmonic if and only if

(4n — 4k — 1)t* —2(2n + )2 + 4k +3 =0. (10.3)
Thus
o MmATH V(@2n+T7)2 — (4k + 3)(4n — 4k — 1)
* dn — 4k — 1
20+ 7+2/(n—2k)?+4(n+k)+13 =0
N dn — 4k —1 '
Thus there exist two proper biharmonic tubes. O

10.5. Tubes of complex projective space
Let M, be a tube of CP" of radius r € (0, 7/4). Then the principal curvatures of M, are
A=cotr, p=—tanr, a3 =2cot(2r), ay=—2tan(2r)

with multiplicities
mx=2n—-1), my=2n-1), ma =1, Ma, =2.

Theorem 10.6. The only biharmonic tubes around CP™ are minimal tubes of radius

- — cot-1 \/2n+3+2\/2(2n—|—1)

2n —1

Proof. First we look for minimal tubes. The mean curvature H of a tube M, around CP" is given by

s () ) ()

2n—1 8t
= (2n— 1)t — -
Gn =t === 5
C@n-1)tt—2(2n+3)2 +2n—1
B t(t2 —1) '
Thus M, is minimal if and only if
(2n — 1)t* —2(2n +3)t* +2n — 1 =0. (10.4)

Hence we get

o 2n+3+/(2n+3)2—(2n—1)2  2n+3+2,/2(2n+1) .

2n —1 2n—1
We notice that
+3+2/22n+1) | +3-2200+1)
2n —1 ’ 2n —1 ’

Thus the only minimal tube is the one with radius

R \/271—&—3—!—2\/2(271—1— 1)

2n—1

Next, we seek biharmonic tubes.

2(n—1) 1 32t2 on — 1 3212
AP =2n— 1)+ 2L 42— 24 — + ——— = (2n— 1)¢? -2
|A] (n—1)t° + o +t2+(t2_1)2 (2n — 1)t* + 2 +(t2_1)2
Hence |A|? = 4(n + 2) if and only if
(2n — )t® — (8n 4 8)t° 4 (50 + 12n)t* — (8n 4+ 8)t> +2n — 1 = 0. (10.5)
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From this we have
t8 + 8t —50t* + 82 + 1
n =

2012 — 1)

This shows that
3t8 — 24¢6 + 74t — 2442 + 3 -

2(£2 — 1)

Thus M, can not be proper biharmonic. O

2—n= 0.

Martinez [64] studied ruled real hypersurfaces in HP"(4) (see also [3]). Here we propose the following
problem:

Problem 3. Classify biharmonic ruled hypersurfaces in HP"™(4).

10.6. Some remarks

Remark 10.2. C. Brandao [16] studied biharmonic totally real submanifolds with parallel mean curvature vector
tield of HP"(4) as well as biharmonic anti quaternionic submanifolds with parallel mean curvature vector field
of HP™(4). On the other hand, Kacimi and Cherif [55] studied biharmonic totally real submanifolds of HP"(4)
with constant mean curvature.

The classification [51, Theorem 10] is now corrected as follows:

Theorem 10.7. The proper biharmonic homogeneous hypersurfaces in simply connected compact Riemannian symmetric
spaces of rank 1 are given as follows:

o Totally umbilical small hyperspheres of radius r = 1//2 in the unit sphere S™.
o The product immersion S"~P(1/+/2) x SP~1(1//2) C S* withn —p #p — 1.
e The tubes around CP™(4) (0 < m < n — 2) of radii

b eop! n+24/2m—-n+12+4(n+1)
B 2n —2m — 1

in CP"(4) of constant holomorphic sectional curvature 4.
e The geodesic spheres of radii

(1 2n+T7+2vn?2+4n+13
7 = Co
4dn — 1

in the quaternion projective space HLP™(4) of maximal sectional curvature 4.
* The tubes around HP* (1 <k <n — 1) of radii

I 2n +7+2y/(n—2k)2 +4(n + k) + 13
e An — 4k — 1

in the quaternion projective space HP™(4) of maximal sectional curvature 4.

e Geodesic spheres of radii r = tan™! /(25 + 2v/130)/7 in Cayley projective plane O P?(4) of maximal sectional
curvature 4.

Remark 10.3. The geodesic sphere M, of radius r € (0,7/2) in the Cayley projective plane OP?(4) of maximal
sectional curvature 4 is

* Einstein if and only if r = tan=%(2v/2/V/3).

* a l-type submanifold in the sense of Chen [20] via the first standard imbedding if and only if r =
tan=(v/17/V/7).

* minimal if and only if r = tan~!(v/15/V/7).

Remark 10.4 (Volume stability). As we mentioned in the Introduction, the harmonicity of an isometric
immersion is equivalent to the minimality of the immersion. Let us consider a compact oriented minimal
real hypersurface M of the simply connected compact Riemannian symmetric space G/K of rank 1 and set
d(F) = dimg FF for F = R, C, H and O. More explicitly we have d(R) = 1, d(C) = 2, d(H) = 4, and d(O) = 8.
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Denote by nullye (M) the nullity of M with respect to the volume functional. Simons [85] and Gotoh
[41, 42, 43] proved that the volume nullity of M C G/K satisfies the inequality nullyei () > d(F)n. Moreover, in
case G/K = S"(1), the equality holds if and only if M is congruent to the totally geodesic sphere. Next, in case
G/K = CP™(4), HP"(4) or OP?(4), the equality holds if and only if M is congruent to the minimal geodesic
sphere.

Remark 10.5. The Grassmannian manifold Grs(RR7) of oriented 3-planes in R” has the following totally geodesic
singular orbits under cohomogeneity one actions [10]:

o Gr2(RY) and Gr;(R°) (reflective)
e The space G2/SO(4) of all quaternionic subalgebras of the Cayley algebra O (reflective). Here R is
regarded as the imaginary part Im O of O.

For a tube of radius r around Gr,(R%) C Gr3(R7) is

3
r=+10tan"? \/;

r= %\/ 10.

The associative calibration ¥ : O x O x © — Risregarded as a smooth function on the Grassmannian manifold
Gr3(Im ©) and its range is the bounded closed interval [—1,1]. Let us denote by M (t) the level set of the
associative calibration (¢ € [—1, 1]). Then M (=£1) are totally geodesic singular orbits under the cohomogeneity
one action. Moreover M(=£1) is identified with the Grassmannian manifold Gr,s(Im ) of associative
subspaces. Moreover M (+1) is the quaternionic symmetric space G,/SO(4) which is the Grassmannian
manifold of quaternionic subalgebras of O. On the other hand, for any ¢ € (—1,1), the level set M (t) is a
principal orbit of the cohomogeneity one action of G,. The level set is identified with G,/SO(3) and it is a
reflective submanifold of @B(Im 9). Note that G2/SO(4) C CZ@,(Im 9) is non-reflective. Enoyoshi [36] studied
minimality and biharmonicity of A/ (t). She proved that

e minimal if and only if (see [51, 52]):

¢ proper biharmonic if and only if

* M(t) is minimal if and only if ¢t = 0. In such a case M (0) is austere.
e M(t) is proper biharmonic if and only if ¢ = 4-1//10.

Remark 10.6. Urakawa proposed the following CR version of the generalized Chen conjecture:

Let M be a complete strongly pseudoconvex CR manifold, and (N,h) is a Riemannian manifold of
non-positive curvature. Then, every subelliptic biharmonic isometric immersion f : M — N must be pseudo-
harmonic.

On the other hand, in [23], we studied harmonicity and biharmonicity for smooth maps f : (N,h) — M. It is
not known whether the following statement is true.

Let M be a Sasakian manifold of constant ¢-sectional curvature ¢ < —3. Then, every pseudo-Hermitian
biharmonic submanifolds in M is pseudo-Hermitian harmonic.
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