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ABSTRACT

We study biharmonic homogeneous real hypersurfaces in complex projective space and quaternion
projective space. We provide a classification of biharmonic homogeneous real hypersurfaces in
quaternion projective space. We also classify pseudo-harmonic, subelliptic biharmonic, and Levi-
harmonic homogeneous Hopf hypersurfaces in complex space forms.
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1. Introduction

Let (M, g) and (M̃, g̃) be Riemannian manifolds. For a smooth map f : M → M̃ , its Dirichlet energy E(f ; Ω)
over a relatively compact domain Ω ⊂M is defined by

E(f ; Ω) =

∫
Ω

1

2
|df |2 dvg.

Then f is said to be harmonic if it is a critical point of the Dirichlet energy with respect to compactly supported
variations [32]. The Euler-Lagrange equation of this variational problem is

τ(f) = trg(∇df) = 0.

Here τ(f) is the tension field of f (see Section 2.2).
The theory of harmonic maps is a central topic in geometric analysis with numerous applications in

differential geometry. Examples include Siu’s strong rigidity theorem on Kähler structures with strongly
negative curvature [86], Corlette’s superrigidity over archimedean fields [26], Mok-Siu-Yeung’s geometric
superrigidity [65].

If a smooth map f : M → M̃ is an isometric immersion, i.e., f∗g̃ = g, then f is harmonic if and only if f is a
minimal immersion. Thus, minimal submanifolds are specific example of harmonic maps.

However, some mapping spaces do not contain harmonic maps. For example, Eells and Wood [34] proved
that the space Map1(T2,S2) of all smooth maps of mapping degree 1 from a 2-torus T2 into a unit 2-sphere
S2 does not contain harmonic maps. To find alternative representatives in each homotopy class, another
variational problem was proposed by Eells and Sampson [32]. They suggested to the following functional
(bienergy):

E2(f ; Ω) =

∫
Ω

1

2
|τ(f)|2 dvg.
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Jiang [54] deduced the Euler-Lagrange equation

τ2(f) = 0

for the bienergy (see (2.4)). A smooth map f is said to be biharmonic if it satisfies τ2(f) = 0. Over the last two
decades, there has been growing interest in the theory of biharmonic maps and biharmonic submanifolds. For
a general theory and fundamental results on biharmonic maps, see the monograph [75] by Chen and Ou. In
particular, we refer to [100] for a recent study on biharmonic maps from 2-tori into the unit 2-sphere.

In this article, we revisit the biharmonic hypersurface geometry of complex as well as quaternion projective
spaces. Additionally, we study other types of harmonicity and biharmonicity of real hypersurfaces in complex
projective space. Specificaly, we study pseudo-harmonicity (Section 8), subelliptic biharmonicity (Section 8)
and Levi-harmonicity (Section 9) of homogeneous (Hopf) hypersurfaces of CPn.

This article is organized as follows: In Section 2, we recall fundamental facts on vector bundle calculus,
harmonic maps and biharmonic maps as well as hypersurface geometry. Section 3 is devoted to CR-
manifolds (Cauchy-Riemann manifolds) and contact metric manifolds. We recall fundamental theory of real
hypersurfaces in complex space forms in Sections 4–6.

We study biharmonic real hypersurfaces of complex projective space CPn in Section 7. We give a (correct)
classification of biharmonic homogeneous hypersurfaces in CPn (Theorem 7.9).

Section 8 turns our attention to harmonic maps and biharmonic map in CR-geometry. The notion of
harmonicity for smooth maps between Riemannian manifolds was adapted to smooth maps from strongly
pseudo-convex CR-manifolds into Riemannian manifolds as the “pseudo-harmonicity" in [4]. Next, the
biharmonicity is adapted for those maps as “subelliptic biharmonicity" in [30]. In Section 8, we study pseudo-
harmonicity and subelliptic biharmonicity of homogeneous real hypersurfaces in CPn.

The notion of Levi-harmonicity for smooth maps from almost contact metric manifolds into Riemannian
manifolds was introduced by Dragomir and Perrone [31]. In Section 9, we study Levi-harmonicity of
homogeneous Hopf hypersurfaces in the complex projective space CPn and the complex hyperbolic space
CHn.

In the final section, we return to the original (Riemannian geometric) harmonicity and biharmonicity of
isometric immersions. We provide the (correct) classification of biharmonic homogeneous real hypersurfaces
in the quaternion projective space HPn.

Throughout this article, we denote by Γ (E) the space of all smooth sections of a vector bundle E.

2. Preliminaries

2.1. Vector bundles

Let E be a vector bundle over a manifold M . Take a pair (hE ,∇E) consisting of a fiber metric hE and a
connection ∇E of E satisfying the condition ∇EhE = 0, i.e.,

(∇E
XhE)(V,W ) = X · hE(V,W )− hE(∇E

XV,W )− hE(V,∇E
XW ) = 0

for all X ∈ Γ (TM) and V,W ∈ Γ (E). Such a pair is called a Riemannian structure on E and (E, hE ,∇E) is called
a Riemannian vector bundle. The curvature form R∇E

of E is defined by

R∇E

(X,Y )V = ∇E
X∇E

Y V −∇E
Y∇E

X −∇E
[X,Y ]V, X, Y ∈ Γ (TM), V ∈ Γ (E).

Let us denote by Ar(E) = Γ (∧rT ∗M ⊗ E), the space of all E-valued smooth r-forms. The exterior-covariant
differential d∇

E

: Ar(E)→ Ar+1(E) is defined by

(d∇
E

ω)(X1, X2, . . . , Xr+1) =

r+1∑
i=1

(−1)i+1∇E
Xi

ω(X1, X2, . . . , X̂i, . . . , Xr+1)

+
∑
i<j

(−1)i+jω([Xi, Xj ], X1, X2, . . . , X̂i, . . . , X̂j , . . . , Xr+1).

Let us assume that M is an oriented Riemannian m-manifold with Riemannian metric g. Then the codifferential
δ∇

E

: Ar(E)→ Ar−1(E) is defined by

(δ∇
E

ω)(X1, X2, . . . , Xr−1) = −
m∑
i=1

(∇E
eiω)(ei, X1, X2, . . . , Xr−1),
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where {e1, e2, . . . , em} is a local orthonormal frame field of (M, g). The rough Laplacian ∆ = ∆
E

and Hodge-de
Rham Laplacian ∆E are defined by

∆ = (∇E)∗∇E = −
m∑
i=1

(
∇E

ei∇
E
ei −∇

E
∇ei

ei

)
, ∆∇E

= d∇
E

δ∇
E

+ δ∇
E

d∇
E

, (2.1)

respectively. These two operators are related by Weitzenböck formula:

∆∇E

= ∆+ S∇E

, (2.2)

where
(S∇E

ω)(X1, X2, . . . , Xr) =
∑
j,k

(−1)k+1(R∇E

(ej , Xk)ω)(ej , X1, X2, . . . , X̂k, . . . , Xr).

In particular, for an E-valued 1-form ω, we have

(∆∇E

ω)(X) = (∆ω)(X) + (S∇E

ω)(X), (S∇E

ω)(X) =

m∑
i=1

(R∇E

(ei, X)ω)(ei). (2.3)

2.2. Harmonic maps

Let (M, g) and (M̃, g̃) be Riemannian manifolds. We denote by∇ and ∇̃ the Levi-Civita connections of M and
N , respectively. The Riemannian curvatures of M and N are denoted by R and R̃, respectively. For a smooth
map f : M → M̃ , the Levi-Civita connection ∇̃ induces a connection ∇f on the pull-back bundle f∗TM̃ over
M described explicitly by

∇f
X(V ◦ f) =

(
∇̃df(X)V

)
◦ f

for all X ∈ Γ (TM) and V ∈ Γ (f∗TM̃). For any sections X and Y ∈ Γ (TM),

∇f
Xdf(Y ) = ∇g̃

df(X)df(Y )

holds (see [33, p. 4]). The second fundamental form ∇df is defined by

(∇df)(X,Y ) = ∇f
Xdf(Y )− df(∇XY ).

The tension field τ(f) is a section of f∗TM̃ defined by

τ(f) = trg(∇df) =
m∑
i=1

(∇df)(ei, ei),

where {e1, e2, . . . , em} is a local orthonormal frame field of M (m = dimM ). Then f is said to be harmonic if its
tension field vanishes. The harmonicity has a variational characterization. Indeed, f is harmonic if and only if
it is a critical point of the Dirichlet energy:

E(f ; Ω) =

∫
Ω

1

2
|df |2 dvg =

∫
Ω

1

2

m∑
i=1

g̃(df(ei),df(ei)) dvg

over any relatively compact domain Ω ⊂M with respect to compactly supported variations. The first
variational formula for E is given by

d

dt

∣∣∣∣
t=0

E(ft; Ω) = −
∫
Ω

g̃(τ(f), V ) dvg.

Here {ft} is a variation through f = f0 and V is the variational vector field of {ft}, i.e.,

V =
∂

∂t

∣∣∣∣
t=0

ft.
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Example 2.1. Let (M, g, J) and (M̃, g̃, J̃) be Kähler manifolds. Then a smooth map f : M → M̃ is said to be
holomorphic if it satisfies df ◦ J = J̃ ◦ df . Lichnerowicz [61] proved that any holomorphic map is a Dirichlet
energy minimizing harmonic map in its homotopy class.

The differential df is regarded as an f∗TM̃ -valued 1-form. The symmetry of ∇df is expressed as d∇
f

(df) =

0 ∈ A2(f∗TM̃). On the other hand, the tension field τ(f) is expressed as τ(f) = −δ∇f

(df) ∈ A0(f∗TM̃). Hence
if f is a harmonic map, then its differential df is a f∗TM̃ -valued harmonic 1-form. By Weitzenböck formula
(2.3), we get

(∆∇f

(df))(X) = (∆fdf)(X)− trgR
∇f

(·, X)df,

where the curvature term

trgR
∇f

(·, X)df =

m∑
i=1

(R∇f

(ei, X)df)(ei).

is computed as

m∑
i=1

(R∇f

(ei, X)df)(ei) =

m∑
i=1

R̃(df(ei),df(X))df(ei)− df

(
m∑
i=1

R(X, ei)ei

)
.

Note that we denote the rough Laplacian

∆
f∗TN

= −
m∑
i=1

(
∇f

ei∇
f
ei −∇

f
∇ei

ei

)
of f∗TM̃ by ∆f .

The second variational formula for a harmonic map f is given by

d2

dt2

∣∣∣∣
t=0

E(ft; Ω) =

∫
Ω

g̃(Jf (V ), V ) dvg.

Here the operator Jf acting on Γ (f∗TM̃) is defined by

Jf (V ) = ∆̄fV − trgR̃(V,df)df,

and called the Jacobi operator of a harmonic map f .

2.3. Biharmonic maps

As we mentioned in the Introduction, some mapping spaces do not contain any harmonic maps. To look
for alternative representatives in each homotopy class, the notion of bienergy as well as biharmonicity were
proposed [32, 33]. The bienergy of a smooth map f : (M, g)→ (M̃, g̃) over a relatively compact domain Ω is
defined by

E2(f ; Ω) =

∫
Ω

1

2

m∑
i=1

g̃(τ(f), τ(f)) dvg.

The Euler-Lagrange equation of the bienergy is

τ2(f) = −Jf (τ(f)) = 0. (2.4)

The section τ2(f) ∈ Γ (f∗TM̃) is called the bitension field of f . A smooth map f is said to be biharmonic if its
bitension field vanishes. Clearly, harmonic maps are biharmonic.

2.4. Hypersurfaces

When a map f : (M, g)→ (M̃, g̃) is an isometric immersion, then ∇df coincides with the (vector valued)
second fundamental form of f in the sense of submanifold geometry. The tension field τ(f) is expressed as
τ(f) = mH, where H is the mean curvature vector field. Thus, an isometric immersion f is a harmonic map if
and only if it is a minimal immersion.
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This article focuses on hypersurfaces. Let f : (Mm, g)→ (M̃m+1, g̃) be an orientable hypersurface immersion
with unit normal vector field ν. Then the Levi-Civita connections ∇ and ∇̃ are related by the Gauss formula:

∇f
Xdf(Y ) = df(∇XY ) + g(AX,Y )ν, X, Y ∈ Γ (TM).

The endomorphism field A is called the shape operator derived from ν and defined by the Weingarten formula:

∇Xν = −df(AX), X ∈ Γ (TM).

The second fundamental form of the immersion f is represented as (∇df)(X,Y ) = g(AX,Y )ν. An eigenvector
X of the shape operator A is called a principal curvature vector. The corresponding eigenvalue λ of A is called a
principal curvature. The function H = trgA/m is called the mean curvature of M . The mean curvature vector field
H is expressed as H = Hν. For any section W of the normal bundle T⊥M , we have the splitting

∇f
XW = −df(AWX) +∇⊥

XW

of ∇f
XW into its tangential part −df(AWX) and normal part ∇⊥

XW . This formula defines an endomorphism
field AW on M (called the Weingarten map) and the connection ∇⊥ on T⊥M (called the normal connection). A
section W ∈ Γ (T⊥M) is said to be parallel if it satisfies ∇⊥

XW = 0 for any X ∈ Γ (TM).

2.5. Ou’s formula

Ou derived the following criterion for biharmonicity of hypersurfaces in Einstein manifolds.

Theorem 2.1 ([74]). Let f : (Mm, g)→ (M̃m+1, g̃) be an orientable hypersurface with shape operator A. Assume that
the ambient space N is an Einstein manifold with Ricci tensor field R̃ic = λg̃ and f has constant mean curvature H . Then
the isometric immersion f is biharmonic if and only if either f is minimal or non-minimal with

|A|2 = λ.

Furthermore, in the latter case, both the hypersurface and the ambient space must have positive scalar curvatures:

ρ = (m− 2)λ+m2H2 > 0, ρ̃ = (m+ 1)λ > 0.

Ou’s formula implies that the only biharmonic hypersurfaces of constant mean curvature in an Einstein
manifold of non-positive scalar curvature are minimal ones.

For more information on biharmonic maps, we refer to the book by Ou and Chen [75].

3. CR-manifolds and contact metric manifolds

3.1. Contact structures

Let M be a manifold of odd dimension m = 2n− 1 > 1. A 1-form η is said to be a contact form if η ∧ (dη)n−1 ̸= 0
on whole M . A (2n− 1)-manifold M together with a contact form η is called a contact manifold.

On a contact manifold (M,η), there exists a unique vector field ξ such that

η(ξ) = 1, dη(ξ, ·) = 0.

The vector field ξ is called the Reeb vector field of a contact manifold (M,η). A diffeomorphism f of M is said to
be a contactmorphism if there exists a non-vanishing smooth function λ on M such that f∗η = λη. In particular,
a strict contactmorphism is a contactmorphism satisfying f∗η = η.

3.2. CR-manifolds

Let M be an m-manifold. An almost CR-structure (also called a partial complex structure) is a real vector
subbundle D ⊂ TM of the tangent bundle of M together with a bundle morphism J satisfying J2 = −I . For an
almost CR-structure (D,J), we obtain a complex vector subbundle

S = {X −
√
−1JX |X ∈ D} (3.1)
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of the complexified tangent bundle TCM . Conversely, let S be a complex vector subbundle of TCM satisfying
S ∩ S = {0}, then we obtain an almost CR-structure (D,J) satisfying (3.1). Thus S is also called an almost
CR-structure. The pair (D,J) is called the real expression of S.

A manifold M equipped with an almost CR-structure is called an almost CR-manifold. An almost CR-structure
is said to be integrable if S satisfies the integrability condition [Γ (S), Γ (S)] ⊂ Γ (S). An almost CR-manifold
M = (M,S) is said to be a CR-manifold (Cauchy-Riemann manifold) if its almost CR-structure is integrable. A
diffeomorphism f : M →M of a CR-manifold M is said to be a CR-diffeomorphism if its differential df preserves
(D,J), that is,

dfp(Dp) = Df(p), dfp|D ◦ Jp = Jf(p) ◦ dfp|D
at any point p ∈M . The group Aut(M) of all CR-diffeomorphisms is called the CR-automorphism group of M .

Example 3.1 (Complex manifolds). Let (M,J) be an almost complex manifold. Then (TM, J) is an almost CR-
structure. Obviously (TM, J) is integrable if and only if (M,J) is a complex manifold. On a complex manifold
(M,J), the complex vector subbundle

T ′M = {X −
√
−1JX |X ∈ TM}

of TCM is called the holomorphic tangent bundle of (M,J).

Example 3.2 (Real hypersurfaces). Let M be a real hypersurface of a complex n-manifold (M̃, J) with
holomorphic tangent bundle T ′M̃ . Define a subbundle S of TCM by

Sp = T ′
p M̃ ∩ TC

p M, p ∈M.

Then (M,S) is a CR-manifold.

Example 3.3 (CR-submanifolds). Let M be a submanifold of an almost Hermitian manifold (M̃, g̃, J). Then M
is said to be a CR-submanifold (complex-real submanifold) in the sense of Bejancu [5] if there exists a non-trivial
distribution D on M satisfying:

• Jp(Dp) ⊂ Dp for any p ∈M .
• Jp(D

⊥
p ) ⊂ T⊥

p M for any p ∈M .

On a CR-submanifold M , (D,J |D) is an almost CR-structure, in general. Blair and Chen [12] proved that any
CR-submanifold of a Kähler manifold is a CR-manifold.

Assume that a CR-manifold M is orientable, dimM = 2n− 1, rankD = 2n− 2 and there exists a 1-form ϑ
annihilating D, that is, D = Ker ϑ. Then, the Levi-form Lϑ (with respect to ϑ) is defined by

Lϑ(X,Y ) := −1

2
dϑ(X, JY ), X, Y ∈ Γ (D).

An almost CR-manifold (M,D) is said to be non-degenerate if Lϑ is non-degenerate for some ϑ (and in turn all).
In case (M,D) is non-degenerate, ϑ is a contact form on M , i.e., ϑ ∧ (dϑ)n−1 ̸= 0. In particular, if L is positive
definite, then (M,D, η) is said to be a strongly pseudo-convex CR-manifold [93]. On a strongly pseudo-convex
CR-manifold M , L is extended to a Riemannian metric gϑ on M by gϑ = Lϑ + ϑ⊗ ϑ. The metric gϑ is called the
Webster metric.

3.3. Contact metric manifolds

Let M be a manifold of odd dimension m = 2n− 1. Then M is said to be an almost contact manifold if its
structure group GL(m,R) of the linear frame bundle is reducible to U(n− 1)× {1}. This is equivalent to the
existence of an endomorphism field ϕ, a vector field ξ and a 1-form η satisfying

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1. (3.2)

From these conditions, one can deduce that ϕξ = 0 and η ◦ ϕ = 0.
Moreover, since U(n− 1)× {1} ⊂ SO(2n− 1), M admits a Riemannian metric g satisfying

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y )
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for all X , Y ∈ Γ (TM). Such a metric is called an associated metric of the almost contact manifold M = (M ;ϕ, ξ, η).
With respect to the associated metric g, η is metrically dual to ξ, that is g(X, ξ) = η(X) for all X ∈ Γ (TM). A
structure (ϕ, ξ, η, g) on M is called an almost contact metric structure, and a manifold M equipped with an almost
contact metric structure is said to be an almost contact metric manifold.

A plane section Π at a point p of (M ;ϕ, ξ, η, g) is said to be a ϕ-section if it is invariant under ϕp. The sectional
curvature function of ϕ-sections are called the ϕ-sectional curvature.

On an almost contact metric manifold M , we define an endomorphism field h by h = (£ξϕ)/2. Here £ξ

denotes the Lie differentiation by ξ.
The fundamental 2-form Φ of (M ;ϕ, ξ, η, g) is defined by

Φ(X,Y ) = g(X,ϕY ), X, Y ∈ Γ (TM).

An almost contact metric manifold M is said to be a contact metric manifold if Φ = dη/2. On a contact metric
manifold, η is a contact form, i.e., (dη)n−1 ∧ η ̸= 0. Thus every contact metric manifold is orientable. More
precisely, the volume element dvg induced from the associated metric g coincides with the following volume
element ([96, p. 200]):

dvη =
(−1)n−1

2n−1(n− 1)!
η ∧ (dη)n−1 (3.3)

determined only by η. Even if M is not contact metric, we may orient M by the volume element

dvg =
(−1)n−1

(n− 1)!
η ∧ Φn−1. (3.4)

On an almost contact metric manifold (M ;ϕ, ξ, η, g),

D = {X ∈ TM | η(X) = 0}, J = ϕ|D

defines an almost CR-structure on M . This almost CR-structure is referred to as the standard almost CR-structure
of (M ;ϕ, ξ, η, g). One can see that the standard almost CR-structure is integrable if and only if

[ϕX, ϕY ] + ϕ2[X,Y ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ] + 2dη(X,Y )ξ = 0

for any X,Y ∈ Γ (D). More strongly, an almost contact metric manifold M is said to be normal if

[ϕX, ϕY ] + ϕ2[X,Y ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ] + 2dη(X,Y )ξ = 0

for any X,Y ∈ Γ (TM).

Definition 3.1. An almost contact metric manifold is said to be a quasi-Sasakian manifold if it is normal and
dΦ = 0.

Definition 3.2. A contact metric manifold is said to be a Sasakian manifold if it is normal. In particular, Sasakian
manifolds of constant ϕ-sectional curvature are called Sasakian space forms.

Sasakian manifolds are quasi-Sasakian, since Φ = dη/2. With respect to the Levi-Civita connection ∇ of g,
Sasakian property is characterized as follows:

Proposition 3.1. An almost contact metric manifold M is Sasakian if it satisfies

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X

for all X,Y ∈ X(M).

For more information on contact metric geometry, we refer to Blair’s monograph [11].

3.4. Tanno tensor fields

Let (M ;ϕ, ξ, η, g) be a contact metric manifold. Then the standard almost CR-structure of M is integrable if
and only if the Tanno tensor field

Q(X,Y ) = (∇Y ϕ)X + {(∇Y η)(ϕX)} ξ + η(X)ϕ(∇Y ξ), X, Y ∈ Γ (TM)
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vanishes [95].
Assume that the standard almost CR-structure on a contact metric manifold M is integrable, then we can

choose ϑ = η and hence the Levi-form Lη with respect to η is

Lη(X,Y ) = g(X,Y ), X, Y ∈ Γ (D).

Thus the standard CR-structure is strongly pseudo-convex. In particular, the Webster metric gη coincides with
g.

Conversely, let M = (M,D, J) be a strongly pseudo-convex CR-manifold with contact form ϑ. Then by
choosing η = ϑ, we get a contact structure on M . Denote by g = gη the Webster metric. Let ξ be the Reeb vector
field of η. Then we can extend J to a bundle morphism ϕ of TM by ϕξ = 0 and ϕX = JX for X ∈ Γ (D). Then
(ϕ, ξ, η, g) is a contact metric structure compatible to η. The integrability of the CR-structure yields the vanishing
of the Tanno tensor field.

From these observations, we can regard strongly pseudo-convex CR-manifolds as contact metric manifolds
with a vanishing Tanno tensor field.
Remark 3.1. On a strongly pseudo-convex CR-manifold M = (M,S), the contact form ϑ has the opposite sign
to the one used in [13]. Under the formulation of [13], η and ϑ is related by η = −ϑ. Note that the Levi-form of
[13] and ours are identical.

If the standard almost CR-structure of a contact metric manifold (M ;ϕ, ξ, η, g) is integrable, then

∇Xξ = −ϕ(I + h)X, X ∈ Γ (TM) (3.5)

holds.

Proposition 3.2. The standard almost CR-structure of a contact metric manifold (M ;ϕ, ξ, η, g) is integrable if and only
if

(∇Xϕ)Y = g((I + h)X,Y )ξ − η(Y )(I + h)X

holds for all X , Y ∈ Γ (TM).

Since the normality of (ϕ, ξ, η) is stronger than the integrability of the standard almost CR-structure, we
obtain the following well-known fact.

Proposition 3.3. The standard almost CR-structure of a Sasakian manifold is integrable and strongly pseudo-convex. In
particular, a strongly pseudo-convex CR-manifold is Sasakian if and only if h = 0.

On the other hand, in [93], the notion of normality for strongly pseudo-convex CR-manifolds is introduced
as the condition:

[ξ, Γ (S)] ⊂ Γ (S) and [ξ, JZ] = J [ξ, Z]

for all Z ∈ Γ (S). One can confirm the following fundamental fact (cf. [93]).

Proposition 3.4. A strongly pseudo-convex CR-manifold is normal if and only if it is a Sasakian manifold.

Theorem 3.1 ([94]). Let M = (M ;ϕ, ξ, η, g) be a contact metric manifold. If a diffeomorphism f of M is ϕ-holomorphic,
i.e., df ◦ ϕ = ϕ ◦ df , then there exists a positive constant a such that

f∗g = ag + a(a− 1)η ⊗ η, df(ξ) = aξ, f∗η = aη.

On a strongly pseudo-convex CR-manifold M , a CR-diffeomorphism f is said to be a CR-isometry if it is an
isometry with respect to the Webster metric. A local CR-isometry σp defined around a point p ∈M is called a
local CR-symmetry at p if p is a fixed point of σp and satisfies (dσ)p|Dp

= −IDp
.

A strongly pseudo-convex CR-manifold M is said to be locally CR-symmetric if there exists a local CR-
symmetry σp at any point p ∈M .

More strongly, M is said to be CR-symmetric if there exists a globally defined CR-symmetry σp at any point
p ∈M [56]. Dileo and Lotta obtained the following two fundamental results.

Theorem 3.2 ([28]). Let M be a non-normal strongly pseudo-convex CR-manifold of dimension 2n− 1 > 3. Then M is
locally CR-symmetric if and only if the underlying contact metric structure satisfies the (κ, µ)-condition:

R(X,Y )ξ = (κI + µh)(η(Y )X − η(X)Y ), X, Y ∈ Γ (TM). (3.6)

Here κ < 1 and µ are constants.
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Remark 3.2. A contact metric manifold M is said to be a contact (κ, µ)-space if it satisfies (3.6). The Boeckx invariant
I of a contact (κ, µ)-space M is I = (1− µ

2 )/
√
1− κ.

The local CR-symmetry of Sasakian manifolds is characterized by the local ϕ-symmetry in the sense of
Takahashi [91].

Theorem 3.3 ([28]). Let M be a normal strongly pseudo-convex CR-manifold of dimension 2n− 1 > 3. Then M is
locally CR-symmetric if and only if the underlying Sasakian structure is locally ϕ-symmetric:

ϕ2{(∇V R)(X,Y )Z} = 0, X, Y, Z, V ∈ Γ (D).

3.5. Tanaka-Webster connection

The Tanaka-Webster connection ∇̂ of a strongly pseudo-convex CR-manifold M together with associated
contact metric structure (ϕ, ξ, η, g) is a linear connection defined by [92, 101]:

∇̂XY = ∇XY + η(X)ϕY − η(Y )∇Xξ + {(∇Xη)Y }ξ, X, Y ∈ Γ (TM).

The Tanaka-Webster connection satisfies

∇̂ϕ = 0, ∇̂ξ = 0, ∇̂η = 0, ∇̂g = 0.

Take a section X ∈ Γ (D), then by using the formula ∇ξ = −ϕ(I + h), we obtain

(∇Xη)X =g(∇Xξ,X) = g(hϕX,X),

(∇ϕXη)ϕX =g(∇ϕXξ, ϕX) = −g(ϕ(I + h)ϕX, ϕX) = −g((I + h)ϕX,X) = −g(hϕX,X).

Hence we deduce that
(∇Xη)X + (∇ϕXη)ϕX = 0 (3.7)

holds for all X ∈ Γ (D). The formula (3.7) implies that

∇̂XX + ∇̂ϕX(ϕX) = ∇XX +∇ϕX(ϕX). (3.8)

Let M be a strongly pseudo-convex CR-manifold. We denote by R̂ the curvature tensor field of Tanaka-Webster
connection. For a ϕ-section Π, the sectional curvature of Π with respect to R̂ is well-defined. More precisely,
take an orthonormal basis {X,ϕX} of Π, then

K̂ϕ(Π) = Lη(R̂(X,ϕX)ϕX,X)

is independent of the choice of {X,ϕX}. The sectional curvature of a ϕ-section with respect to R̂ is called the
pseudohermitian curvature. A strongly pseudo-convex CR-manifold M is called a contact CR-space form in the
sense of [24] if the pseudohermitian curvature is a constant.

3.6. Three dimensional contact (κ, µ)-spaces

Blair, Koufogiorgos, and Papantoniou [14] classified 3-dimensional contact (κ, µ)-spaces. They proved that
3-dimensional contact (κ, µ)-spaces are either Sasakian or locally isomorphic to a 3-dimensional unimodular
Lie group equipped with left invariant contact (κ, µ)-structure.

Let G be a 3-dimensional unimodular Lie group with a left invariant metric ⟨·, ·⟩. Then there exists an
orthonormal basis {e1, e2, e3} of the Lie algebra g of G such that

[e1, e2] = c3e3, [e2, e3] = c1e1, [e3, e1] = c2e2, c1, c2, c3 ∈ R. (3.9)

Three-dimensional unimodular Lie groups are classified by Milnor as follows:

Signature of (c1, c2, c3) Simply connected Lie group Property
(+,+,+) SU(2) compact and simple
(−,−,+) S̃L2R non-compact and simple
(0,+,+) Ẽ(2) solvable
(0,−,+) E(1, 1) solvable
(0, 0,+) Heisenberg group Nil3 nilpotent
(0, 0, 0) (R3,+) Abelian
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To describe the Levi-Civita connection ∇ of G, we introduce the following constants:

µi =
1

2
(c1 + c2 + c3)− ci, i = 1, 2, 3.

Proposition 3.5. The Levi-Civita connection is given by

∇e1e1 = 0, ∇e1e2 = µ1e3, ∇e1e3 = −µ1e2
∇e2e1 = −µ2e3, ∇e2e2 = 0, ∇e2e3 = µ2e1
∇e3e1 = µ3e2, ∇e3e2 = −µ3e1 ∇e3e3 = 0.

The Riemannian curvature R is given by

R(e1, e2)e1 = (µ1µ2 − c3µ3)e2, R(e1, e2)e2 = −(µ1µ2 − c3µ3)e1,

R(e2, e3)e2 = (µ2µ3 − c1µ1)e3, R(e2, e3)e3 = −(µ2µ3 − c1µ1)e2,

R(e1, e3)e1 = (µ3µ1 − c2µ2)e3, R(e1, e3)e3 = −(µ3µ1 − c2µ2)e1.

The basis {e1, e2, e3} diagonalizes the Ricci tensor field Ric. The principal Ricci curvatures are given by

ρ1 = 2µ2µ3, ρ2 = 2µ1µ3, ρ3 = 2µ1µ2.

According to a result due to Perrone [77], simply connected homogeneous contact metric 3-manifolds
are classified by the Webster scalar curvature W = (ρ− Ric(ξ, ξ) + 4)/8 and the torsion invariant |τ |2 =
−2Ric(ξ, ξ) + 4 as follows:

Theorem 3.4. Let (M3, φ, ξ, η, g) be a simply connected homogeneous contact metric 3-manifold. Then M is a Lie group
G together with a left invariant contact metric structure (ϕ, ξ, η, g). If G is unimodular, then G is one of the following;

1. the Heisenberg group Nil3 if W = |τ | = 0.

2. SU(2) if 4
√
2W > |τ |.

3. Ẽ(2) if 4
√
2W = |τ | > 0.

4. S̃L2R if −|τ | ≠ 4
√
2W < |τ |.

5. E(1, 1) if 4
√
2W = −|τ | < 0.

The Lie algebra g of G is generated by an orthonormal basis {e1, e2, e3} as in (3.9) with c3 = 2. The left invariant contact
metric structure is determined by

ξ = e3, ϕe1 = e2, ϕe2 = −e1, φξ = 0.

Proposition 3.6 ([49]). The endomorphism field h, the Webster scalar curvature and the torsion invariant of a
unimodular Lie group G = G(c1, c2) equipped with a left invariant homogeneous contact metric structure are given
by

he1 = −1

2
(c1 − c2)e1, he2 =

1

2
(c1 − c2)e2, W =

1

4
(c1 + c2), |τ |2 = (c1 − c2)

2.

The ϕ-sectional curvature Kϕ of G is

Kϕ = −3 + 1

4
(c1 − c2)

2 + c1 + c2.

Corollary 3.1 ([49]). If a unimodular Lie group G is non-Sasakian, i.e., c1 ̸= c2, then G is a contact (κ, µ)-space with

κ = 1− 1

4
(c1 − c2)

2, µ = 2− (c1 + c2).

Proposition 3.7 ([49]). Let G(c1, c2) be a 3-dimensional unimodular Lie group equipped with a left invariant contact
metric structure. Then the Tanaka-Webster connection ∇̂ of G(c1, c2) is described as

∇̂e3e1 =
1

2
(c1 + c2)e2, ∇̂e3e2 = −1

2
(c1 + c2)e1, all other ∇̂eiej = 0.
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From this table, the torsion T̂ of the Tanaka-Webster connection ∇̂ is computed as

T̂ (e1, e2) = −2ξ, T̂ (e1, e3) = −
1

2
(c1 − c2)e2, T̂ (e2, e3) = −

1

2
(c1 − c2)e1.

The curvature tensor field R̂ of ∇̂ is given by

R̂(e1, e2)e1 = −(c1 + c2)e2, R̂(e1, e2)e2 = (c1 + c2)e1, all other R̂(ei, ej)ek = 0.

The pseudohermitian curvature of G is K̂ϕ = c1 + c2. Thus we get µ = 2− K̂ϕ.

Kϕ = K̂ϕ − 3 +
1

4
(c1 − c2)

2.

In particular, when G(c1, c2) is Sasakian, then
Kϕ = −3 + K̂ϕ.

When µ = 2, we have K̂ϕ = 0 (Compare with [24, Theorem 11]).

4. Real hypersurfaces

4.1. Hopf hypersurfaces

Let M be a real hypersurface of a Kähler manifold M̃n = (M̃n, g̃, J) of complex dimension n. We can assume
that M is orientable, as we are working in local theory. Take a unit normal vector field ν of M in M̃n. We denote
by g the Riemannian metric (the first fundamental form) on M induced from Kähler metric g̃ of the ambient space
M̃n. The second fundamental form ∇dι of the inclusion map ι : M ⊂ M̃n is given by

(∇dι)(X,Y ) = g(AX,Y )ν.

Define a vector field ξ on M by ξ = −ϵJν with ϵ = ±1. We call ϵ the sign of M relative to ν. The sign ϵ is chosen
to align the orientation determined by ν and that from (3.4).

The vector field ξ is called the structure vector field. Next, define the 1-form η and the endomorphism field ϕ
on M by

η(X) = g(ξ,X) = ϵg̃(JX, ν), g(ϕX, Y ) = g̃(JX, Y ), X, Y ∈ Γ (TM),

respectively. Then one can see that (ϕ, ξ, η, g) is an almost contact metric structure on M , that is, it satisfies (3.2).
The structure (ϕ, ξ, η, g) will be called the induced almost contact metric structure. Note that

Jdι(X) = dι(ϕX) + ϵη(X)ν, X ∈ Γ (TM) (4.1)

holds. It follows that
(∇Xϕ)Y = ϵ(η(Y )AX − g(AX,Y )ξ), ∇Xξ = ϵϕAX. (4.2)

Proposition 4.1 ([9]). Let M be an orientable real hypersurface of a Kähler manifold M̃n. Then the fundamental 2-form
of M with respect to the almost contact metric structure induced from M̃n is closed.

A real hypersurface is said to be Hopf if its structure vector field ξ is a principal curvature vector field.
Throughout this article, the principal curvature corresponding to ξ of a Hopf hypersurface is denoted by α.

4.2. Contact hypersurfaces

Let M be an orientable real hypersurface M of a Kähler manifold M̃n. Denote by (ϕ, ξ, η, g) the induced almost
contact metric structure. Then the standard almost CR-structure (D,J = ϕ|D) of (M ;ϕ, ξ, η, g) is automatically
integrable. Thus, we can consider M to be a CR-manifold in this manner. It should be noted that (M ;ϕ, ξ, η, g)
is not necessarily strongly pseudo-convex.

Definition 4.1 ([9, 70]). An orientable real hypersurface of a Kähler manifold is said to be a contact hypersurface
if its induced almost contact metric structure (ϕ, ξ, η, g) satisfies dη = 2γΦ for some everywhere nonzero smooth
function γ.

303 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


Biharmonic Hypersurfaces in Projective Spaces Revisited

One can see that η is actually a contact form on a contact hypersurface. In particular, a contact hypersurface
M is called a contact metric hypersurface if dη = 2Φ.

Example 4.1. Let S2n−1(c) ⊂ Cn be the sphere of radius 1/
√
c. Then we can take a unit normal vector field

ν =
√
cx, where x is the position vector field of Cn. Then the shape operator is given by AX = −

√
cX for any

X ∈ Γ (TS2n−1(c)). Thus the second fundamental form is given by

(dι)(X,Y ) = −
√
cg(X,Y )ν.

Let us introduce a vector field ξ by ξ = −Jν. Then the induced almost contact metric structure (ϕ, ξ, η, g)
satisfies

dη = 2
√
cΦ.

Thus (S2n−1(c);ϕ, ξ, η, g) is a contact hypersurface. In particular, the unit sphere S2n−1 is a contact metric
hypersurface. Moreover (S2n−1;ϕ, ξ, η, g) is Sasakian. The CR-structure on S2n−1 introduced in this manner
is called its standard CR structure of S2n−1.

According to Burns and Schneider [15], a strongly pseudo-convex CR-manifold M is said to be spherical
if it is locally CR-equivalent to S2n+1 equipped with the standard CR-structure. A strongly pseudo-convex
CR-manifold M is spherical if its Chern-Moser-Tanaka invariant vanishes [21, 92, 96]. Dileo and Lotta [28]
classified complete, simply connected spherical CR-symmetric spaces of dimension greater than 3. Note that
every 3-dimensional strongly pseudo-convex CR-manifold is spherical.

The following criterion is obtained independently by Berndt and Suh [9], Okumura [70, Lemma 2.1] and,
Nagai and Kôjyô, [67, Theorem 2.1].

Proposition 4.2 ([9, 67, 70]). Let M be an orientable real hypersurface in a Kähler manifold M̃n. Then M satisfies
dη = 2γΦ for some everywhere nonzero smooth function γ if and only if Aϕ+ ϕA = −2ϵγϕ. In this case M is Hopf.

Significant differences exist between the cases where n = 2 and n > 2.

Proposition 4.3 ([9, 70]). Let M be an orientable real hypersurface in a Kähler manifold M̃n of complex dimension
n > 2. If M satisfies dη = 2γΦ for some everywhere nonzero smooth function γ, then γ is a non-zero constant.

Remark 4.1 ([9]). Let M be an orientable real hypersurface of a Kähler surface M̃2. Then M is a contact
hypersurface if and only if M is a Hopf hypersurface and trgA ̸= α everywhere.

Proposition 4.4 ([9]). Let M be an orientable real hypersurface in a Kähler manifold M̃n of complex dimension n > 2.
Then the principal curvature α corresponding to ξ is constant if and only if M is of constant mean curvature.

Assume that dη = 2γΦ for some nonzero constant γ. Then η is a contact form on M . Put ϑ = sgn(γ) η. Then the
Levi-form L = Lϑ with respect to ϑ is

L(X,Y ) = |γ| g(X,Y ), X, Y ∈ Γ (D).

Thus the CR-structure S is strongly pseudo-convex. The resulting Webster metric is |γ|g.

5. Real hypersurfaces in complex space forms

Now let us assume that the ambient space M̃n is a complex space form of constant holomorphic sectional
curvature c and complex dimension n. As is well known, a complete and simply connected complex space
form M̃n(c) is a complex projective space CPn(c), a complex Euclidean space Cn or a complex hyperbolic space CHn(c),
according as c > 0, c = 0 or c < 0. Our general references for real hypersurfaces in complex space forms are [19]
and [68]. The Gauss equation which describes the Riemannian curvature R of the real hypersurface M ⊂ M̃n(c)
is given by

R(X,Y )Z =
c

4
{g(Y, Z)X − g(Z,X)Y + g(ϕY,Z)ϕX − g(ϕX,Z)ϕY − 2g(ϕX, Y )ϕZ} (5.1)

+ g(AY,Z)AX − g(AX,Z)AY.
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The Ricci operator is expressed as

SX =
c

4
{(2n+ 1)X − 3η ⊗ ξ}+ (2n− 1)H A−A2. (5.2)

The next lemma is well known.

Lemma 5.1. If M is a Hopf hypersurface in a non-flat complex space form. Then the principal curvature α corresponding
to ξ is a constant.

Okumura and Vernon proved the following result (see also [9]).

Proposition 5.1 ([70, 98]). If M is a complete Hopf hypersurface in a complex space form M̃n(c) with n > 2. Then M is
homogeneous.

In case n = 2, non-homogeneous contact hypersurfaces exist (see [9] for C2 case).
Sharma showed the following fundamental fact.

Theorem 5.1 ([84]). Let M be the contact metric hypersurface of a complex space form M̃n(c). Then either

1. M is a Sasakian manifold of constant ϕ-sectional curvature and is η-umbilical, or

2. M is locally isometric, up to a pseudo-homothetic deformation, to the unit tangent sphere bundle of some space of
constant curvature different from 1.

Remark 5.1. A real hypersurface M is said to be η-umbilical if its shape operator A has the form A = λI + µη ⊗ ξ
for some functions λ and µ [59] (cf. [66]).

Okumura proved the following fact (compare with Proposition 6.3).

Proposition 5.2 ([69]). Let M be a contact hypersurface of a complex space form M̃n(c) with n > 2. Then M has at most
three distinct principal curvatures and all of those are constant.

In the next section, we give more detailed description of these real hypersurfaces.

6. Homogeneous real hypersurfaces in complex projective space

6.1. Homogeneous orbits

Homogeneous real hypersurfaces in complex projective space are classified by Takagi.

Theorem 6.1. ([88]) Let U/K be a compact Hermitian symmetric space of rank 2 and complex dimension (n+ 1) with
associated Cartan decomposition u = k⊕ p. We identify p with complex Euclidean (n+ 1)-space Cn+1 via the Killing
metric. Denote by Π : S2n+1 ⊂ p→ CPn(4) the Hopf fibering. Take a unit regular element A ∈ p and consider its Ad(K)-
orbit M̂ = Ad(K)A. The orbit M̂ is a homogeneous hypersurface of S2n+1 ⊂ p. Then the Hopf image

M = Π( M̂ ) ⊂ CPn(4) = S2n+1/U(1)

is a homogeneous real hypersurface of CPn(4).

u k dimM
A su(p+ 1) + su(q + 1), s(u(p)⊕ u(1)) + s(u(q)⊕ u(1)) 2n− 1

p+ q = n− 1
B o(p+ 2), p ≥ 3, n = p− 1, o(p) +R 2p− 3
C su(p+ 2), p ≥ 3, n = 2p− 1, s(u(p) + u(2)) 4p− 3
D o(10) u(5) 17
E e6 o(10) +R 29

Table 1. Homogeneous real hypersurfaces in CPn(4), n ≥ 2

Conversely, every homogeneous real hypersurface in CPn(4) is congruent to these orbits.
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Remark 6.1. The orbits M̂ ⊂ S2n+1 are appeared in [44, Theorem 5, Table II].
Takagi [89, 90] gave the list of principal curvatures and their multiplicities of homogeneous real

hypersurfaces.
By performing homothetic change of the Fubini-Study metric of CPn(4), we obtain the following table:

α λ1 λ2 λ3 λ4

A1
√
c cot(

√
c r)

√
c

2
cot

√
c r
2

− − −
A2

√
c cot(

√
c r)

√
c

2
cot

√
c r
2

−
√
c

2
tan

√
c r
2

− −
B

√
c cot(

√
c r)

√
c

2
cot(

√
c r
2

− π
4
)

√
c

2
cot(

√
c r
2

+ π
4
) − −

C,D,E √
c cot(

√
c r)

√
c

2
cot(

√
c r
2

− π
4
)

√
c

2
cot(

√
c r
2

+ π
4
)

√
c

2
cot

√
c r
2

−
√
c

2
tan

√
c r
2

Table 2. The principal curvatures of homogeneous real hypersurfaces in CPn(c), n ≥ 2

6.2. Takagi’s list

Cecil and Ryan extensively studied Hopf hypersurfaces, which are realized as tubes over certain Kähler
submanifolds in CPn(c) [18]. Kimura proved the equivalence of the extrinsic homogeneity and the constancy
of principal curvatures in the class of all Hopf hypersurfaces in CPn(c) [57]. As a result, we know the following
classification table.

Theorem 6.2 ([89, 57]). Let M be a Hopf hypersurface of CPn(c). Then M has constant principal curvatures if and only
if M is locally holomorphically congruent to one of the following real hypersurfaces:

(A1) a geodesic sphere of radius r, where 0 < r < π/
√
c,

(A2) a tube of radius r over a totally geodesic CP ℓ(c) (1 ≤ ℓ ≤ n− 2) via Segre imbedding, where 0 < r < π/(
√
c),

(B) a tube of radius r over a complex quadric Qn−1, where 0 < r < π/(2
√
c),

(C) a tube of radius r over a CP 1(c)×CP (n−1)/2(c), where 0 < r < π/(2
√
c) and n ≥ 5 is odd,

(D) a tube of radius r over the Plücker imbedding of complex Grassmannian Gr2(C5) ⊂ CP 9(c), where 0 < r <
π/(2
√
c),

(E) a tube of radius r over a Hermitian symmetric space SO(10)/U(5) ⊂ CP 15(c), where 0 < r < π/(2
√
c).

It should be remarked that a tube of radius r over a complex quadric Qn−1 is realized also as a tube of
radius π/(2

√
c)− r over a totally geodesic Lagrangian real projective space RPn(c/4) [18]. This classification is

referred to as Takagi’s list. Note that the tube around CP ℓ(c) (1 ≤ ℓ < n− 2) of radius r = π/(2
√
c) are quadric in

the sense of Tanaka [92] and Yamaguchi [102, 103].

6.3. Montiel’s list

Corresponding table for CHn(c) was obtained by Berndt.

Theorem 6.3 ([7]). Let M be a Hopf hypersurface of CHn(c). Then M has constant principal curvatures if and only if
M is locally holomorphically congruent to one of the following real hypersurfaces:

(A0) a horosphere,
(A1) a geodesic sphere (A1,0) or a tube over a complex hyperbolic hyperplane CHn−1(c) (A1,1),
(A2) a tube over a totally geodesic CHℓ(c) (1 ≤ ℓ ≤ n− 2),
(B) a tube over a totally geodesic Lagrangian real hyperbolic space RHn(c/4).

We call simply type (A) for real hypersurfaces of type (A1), (A2) in CPn(c) and ones of type (A0), (A1) or
(A2) in CHn(c). In some literature, the above list is referred to as Montiel’s list (e.g., [19]).

It should be emphasized that homogeneous real hypersurfaces are not exhausted by Montiel’s list. Indeed,
there exist homogeneous ruled hypersurfaces, see [13, 10].

6.4. Contact (κ, µ)-condition

From the Gauss equation (5.1) for a real hypersurface M ⊂ M̃n(c), we have

R(X,Y )ξ =
c

4
(η(Y )X − η(X)Y ) + g(AY, ξ)AX − g(AX, ξ)AY. (6.1)
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α λ1 λ2

A0
√

|c|
√

|c|
2

−
A1,0

√
|c| coth(

√
|c| r)

√
|c|
2

coth

√
|c| r
2

−
A1,1

√
|c| coth(

√
|c| r)

√
|c|
2

tanh

√
|c| r
2

−
A2

√
|c| coth(

√
|c| r)

√
|c|
2

coth

√
|c| r
2

√
|c|
2

tanh

√
|c| r
2

B
√

|c| tanh(
√

|c| r)
√

|c|
2

coth

√
|c| r
2

√
|c|
2

tanh

√
|c| r
2

Table 3. The principal curvatures of homogeneous real hypersurfaces in CHn(c), n ≥ 2

The operator h is computed as
hX =

ϵ

2
(η(X)Aξ − (ϕAϕ)X −AX).

When M is a Hopf hypersurface satisfying Aξ = αξ, we have

R(X,Y )ξ =
{( c

4
+

γ

2
α
)
I − ϵαh

}
(η(Y )X − η(X)Y ). (6.2)

From this formula, we obtain:

Theorem 6.4 ([22]). Let M ⊂ M̃n(c) be an orientable real hypersurface in a non-flat complex space form with sign ϵ. If
M is a contact hypersurface satisfying the condition Aϕ+ ϕA = γϕ for some nonzero constant γ. Then M satisfies

R(X,Y )ξ = (κI + µh)(η(Y )X − η(X)Y )

with κ = c/4 + γα/2 and µ = −ϵα.

In particular, contact metric hypersurfaces are (κ, µ)-spaces. More precisely, we obtain the following result.

Corollary 6.1. Let M ⊂ M̃n(c) be an orientable real hypersurface in a non-flat complex space form with sign ϵ. If M is
contact metric, that is dη = 2Φ, then M is a contact (κ, µ)-space with κ = c/4− ϵα and µ = −ϵα.

Real hypersurfaces with Aϕ+ ϕA = γϕ (γ ∈ R×) are classified by Adachi, Kameda and Maeda (see also Suh
[87, Lemma 3.1] for the case c < 0 and n > 2):

Lemma 6.1 ([2]). Let M ⊂ M̃n(c) be an orientable real hypersurface with n ≥ 2 and c ̸= 0. Then M satisfies ϕA+Aϕ =
γϕ for some nonzero constant γ if and only if M is of type (A0), (A1) or (B).

Remark 6.2. In [87], Hopf hypersurfaces in non-flat complex space form M̃n(c) with η-parallel Ricci operator
are investigated. However, as Maeda [62] pointed out, Suh’s classification is true under the condition n > 2.
Maeda obtained classification of Hopf hypersurfaces with η-parallel Ricci operator in CP 2(4) and CH2(−4).

Let M be a real hypersurface of type A1 in CPn(c), type A0 in CHn(c) or type A1 in CHn(c). Then M is Hopf
and has two distinct principal curvatures α and λ := λ1. It is easy to see that M satisfies Aϕ+ ϕA = 2λϕ. Berndt
showed that these real hypersurfaces are Sasakian space forms up to homothety [6] (see also Ejiri [35] for A1

case). Adachi, Kameda and Maeda classified all Sasakian hypersurfaces in CPn(c) and CHn(c).

Theorem 6.5 ([2]). Let M ⊂ M̃n(c) be an oriented real hypersurface with n ≥ 2 and c ̸= 0. Then with respect to the
induced almost contact metric structure, the following conditions are mutually equivalent:

1. M is a Sasakian manifold;

2. M is a Sasakian space form of ϕ-sectional curvature Kϕ = c+ 1;

3. M is locally holomorphically congruent to one of the following homogeneous real hypersurfaces;

(A1) a geodesic sphere of radius r = (2/
√
c) tan−1(

√
c/2) in CPn(c) with sign ϵ = −1 (Kϕ > 1),

(A1,0) a geodesic sphere of radius r = (2/
√
−c) tanh−1(

√
−c/2) in CHn(c) with sign ϵ = −1, where −4 < c < 0

and −3 < Kϕ < 1,
(A0) a horosphere in CHn(−4) with sign ϵ = −1 (Kϕ = −3),
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(A1,1) a tube around totally geodesic CHn−1(c) of radius r = (2/
√
−c) coth−1(

√
−c/2) in CHn(c) with sign

ϵ = −1, where c < −4, (Kϕ < −3).

Let us pick up Sasakian geodesic sphere M = Mr of radius r = (2/
√
c) tan−1(

√
c/2) in CPn(c). Then M has

principal curvatures

α =
√
c cot(

√
cr), λ =

√
c

2
cot

(√
c

2
r

)
with multiplicities mα = 1, mλ = 2(n− 1). One can confirm that M satisfies Aϕ+ ϕA = 2λϕ.

Non-Sasakian contact metric hypersurfaces are classified as follows:

Theorem 6.6 ([2]). Let M ⊂ M̃n(c) with n ≥ 2 and c ̸= 0 be a real hypersurface. If M is contact metric but not Sasakian,
then M is locally holomorphically congruent to one of the following homogeneous real hypersurfaces of type B :

• a tube of r = (2/
√
c) tan−1{(

√
c+ 4−

√
c)/2} < π/(2

√
c) around the complex quadric Qn−1 ⊂ CPn(c) with sign

ϵ = 1;
• a tube of radius r = (1/

√
−c) tanh−1(

√
−c/2) around the totally geodesic Lagrangian real hyperbolic space

RHn(c/4) ⊂ CHn(c) with sign ϵ = −1 and −4 < c < 0.

These tubes have three distinct principal curvatures unless c = −3. In case c = −3, the tubes have two distinct principal
curvatures 3/2 and 2.

Corollary 6.1 implies that these hypersurfaces of type B are contact (κ, µ)-spaces, especially CR-symmetric
spaces. We compute the values of κ and µ of these hypersurfaces [22].

Let M be a tube of radius r around RPn(c/4). Then M has principal curvatures

λ1 = −
√
c

2
cot

(√
c

2
r

)
, λ2 =

√
c

2
tan

(√
c

2
r

)
, α =

√
c tan(

√
c r)

with multiplicities
m1 = m2 = n− 1, mα = 1.

Note that if we regard M as a tube around Qn−1, then (see Table 2):

λ1 =

√
c

2
cot

(√
c

2
r − π

4

)
, λ2 =

√
c

2
tan

(√
c

2
r +

π

4

)
, α =

√
c cot(

√
c r)

with multiplicities
m1 = m2 = n− 1, mα = 1.

Thus the tube M around Qn−1 satisfies Aϕ+ ϕA = γϕ if and only if γ = λ1 + λ2. If we put t = tan(
√
cr/2), then

t2 − 1 =
2γ√
c
t.

Hence Aϕ+ ϕA = 2ϵkϕ if and only if

r =
2√
c
tan−1

(√
c+ 4k2 − 2ϵk√

c

)
.

Proposition 6.1. Let M be a tube of radius r = (2/
√
c) tan−1{(

√
c+ 4−

√
c)/2} < π/(2

√
c) around the complex

quadric Qn−1 ⊂ CPn(c) with sign ϵ = 1. Then M is a contact metric Hopf hypersurface. The principal curvature α
corresponding to ξ is α = c/2. M is a non-Sasakian (κ, µ)-space with κ = −c/4, µ = −

√
c/2. The Boeckx invariant is

I =
√

1 + c/4 > 1.

On the other hand we know the following fact for CHn(c).

Proposition 6.2 ([22]). Let M be a tube of radius r = (1/
√
−c) tanh−1(

√
−c/2) around the totally geodesic Lagrangian

real hyperbolic space RHn(c/4) ⊂ CHn(c) with sign ϵ = −1 and −4 < c < 0. Then M is a contact metric Hopf
hypersurface. The principal curvature corresponding to ξ is α = −c/2. Hence M is a contact (κ, µ)-space with κ =
3c/4 < 0, µ = −c/2 > 0. The Boeckx invariant is 0 < I = (c+ 4)/(2

√
4− 3c) < 1.

Cho and Kimura [24, Theorem 3] characterized the contact (κ, µ)-space of Boeckx invariant I > 1 as a
tube of radius

√
2/c tan−1(2

√
2/c) ∈ (0, π/

√
2c) around Sn+1 in the complex quadric Qn+1(c) of maximal

sectional curvature c > 0. On the other hand, the contact (κ, µ)-space of Boeckx invariant I ∈ (0, 1) as a tube of
radius

√
2/|c| coth−1(2

√
2/|c|) around RHn+1 in the complex quadric Q∗

n+1(c) of maximal sectional curvature
c ∈ (−8, 0). Here Q∗

n+1(c) is the dual Riemannian symmetric space of Qn+1(c).
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6.5. Normal real hypersurfaces

Okumura classified real hypersurfaces in CPn(4) whose induced almost contact metric structures are normal.
Together with a characterization theorem due to Maeda and Udagawa, we get the following result (see also
Olszak [73]).

Theorem 6.7 ([63, 69, 71, 72, 73]). Let M be a real hypersurface of CPn(c) (n ≥ 2). Then the following properties are
mutually equivalent:

1. M is locally holomorphically congruent to type A real hypersurface.

2. ξ is a Killing vector field.

3. £ξϕ = 0 holds.

4. Aϕ = ϕA holds.

5. The induced almost contact metric structure is quasi-Sasakian.

6. The induced almost contact metric structure is normal.

Okumura proved the following fact (compare with Proposition 5.2).

Proposition 6.3 ([69]). Let M be a real hypersurface of a complex space form M̃n(c) with n > 2. If the induced almost
contact metric structure is normal, then M has at most three distinct principal curvatures and all of those are constant.

7. Biharmonic homogeneous real hypersurfaces in complex projective space

Biharmonic homogeneous real hypersurfaces were investigated in [47, 48]. The second named author
obtained the correct classification of those hypersurfaces [82]. In this section, we recall the classification of
biharmonic homogeneous real hypersurfaces in CPn(4). This procedure will be useful in later sections.

7.1. The biharmonic equation

Let us consider biharmonic real hypersurfaces with constant mean curvature in the complex projective n-
space CPn(4). Then by using Ou’s formula, the following criterion is obtained (see also [47, 13 Theorem], [48,
Theorem 4]).

Theorem 7.1. A real hypersurface M ⊂ CPn(4) with non-zero constant mean curvature is biharmonic if and only if
|A|2 = 2(n+ 1).

Corollary 7.1. Let M ⊂ CPn(4) be a real hypersurface with non-zero constant mean curvature. Then M is biharmonic
if and only if M has constant positive scalar curvature

ρ = 4(n2 − 1) + (2n− 1)2H2 − 2(n+ 1).

Proof. From the Gauss equation, the scalar curvature ρ of a real hypersurface M ⊂ CPn(4) is given by

ρ = 4(n2 − 1) + (2n− 1)2H2 − |A|2.

Thus the result follows.

Jiang obtained the following result.

Theorem 7.2 ([54]). Let f : Mm → CPn(4) be a weakly stable biharmonic isometric immersion of a compact
Riemannian m-manifold. If f satisfies |H| > 6m, then f is harmonic.
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7.2. Type A real hypersurfaces

Let us consider the Hermitian symmetric space U/K = {SU(p+ 1)× SU(q + 1)}/{S(U(p)×U(1))× S(U(q)×
U(1))}. Then Ad(K)A is the Riemannian product of odd-dimensional spheres:

M̂p,q(r) := S2p+1(cos r)× S2q+1(sin r) ⊂ S2n+1 ⊂ Cn+1,

where 0 < r < π/2, p,q ≥ 0 and p+ q = n− 1. Then Mp,q(r) = Π(M̂p,q(r)) is a homogeneous real hypersurface
in CPn(4). The real hypersurface Mp,q(r) is a tube of linear subspace CP p with radius r ∈ (0, π/2). In particular,
Mr := M0,n−1(r) is a geodesic sphere of radius r ∈ (0, π/2). Note that Mn−1,0 is also a geodesic sphere. A real
hypersurface Mp,q(r) is said to be of type A1 if it is a geodesic sphere and of type A2 otherwise.
Remark 7.1. The geodesic sphere Mr ⊂ CPn(4) of radius r = π/4 is a Sasakian space form of constant ϕ-sectional
curvature 5. Type A2 real hypersurfaces are non-Sasakian quasi-Sasakian manifolds. See §6.4 or [2, 6, 22].

The real hypersurface Mp,q(r) has constant principal curvatures λ1 = cot r with multiplicity m1 = 2q, λ2 =
− tan r with multiplicity m2 = 2p and α = 2 cot(2r) with multiplicity 1.
Remark 7.2. If a real hypersurface M ⊂ CPn(4) (n ≥ 2) has two distinct constant principal curvatures, then M
is holomorphically congruent to an open part of a geodesic sphere Mr [89]. Note that under the limit r → 0,
Mr collapses to a point. On the other hand, under the limit t→ π/2, Mr collapses to the projective line CP 1.
For n > 2, Cecil and Ryan generalized the above result for n > 2 by requiring that M has at most two distinct
principal curvatures at each point [18].

Theorem 7.3. The only minimal tube Mp,q(r) is the tube of radius

r = tan−1
√

(2q + 1)/(2p+ 1).

In particular the tube Mp,q(π/4) is minimal if and only if p = q.

Proof. The mean curvature of Mp,q(r) is

H =
1

2n− 1
{(2q + 1) cot r − (2p+ 1) tan r} .

Thus the tube Mp,q(r) is minimal if and only if its radius is r = tan−1
√

(2q + 1)/(2p+ 1).
In other words, the minimal tube Mp,q(r) is the Hopf projection of

S2p+1(
√

(2p+ 1)/(2n))× S2q+1(
√

(2q + 1)/(2n)).

Corollary 7.2. The only minimal geodesic sphere is a geodesic sphere of radius

r = tan−1
√
2n− 1.

Non-minimal biharmonic tubes Mp,q(r) are classified as follows.

Theorem 7.4. A tube Mp,q(r) is non-minimal biharmonic if and only if its radius is

r = cot−1

√
(n+ 2)±

√
(p− q)2 + 4(n+ 1)

1 + 2q
.

Proof. The square norm of the second fundamental form of Mp,q(r) is

|A|2 := (2q + 1) cot2 r + (2p+ 1) tan2 r − 2.

Assume that |A|2 = 2(n+ 1) = 2(p+ q + 2). Then t = cot r is a solution to:

(2q + 1)t4 − 2(p+ q + 3)t2 + (2p+ 1) = 0.

Solving this algebraic equation, we get

cot r =

√
(n+ 2)±

√
(p− q)2 + 4(n+ 1)

1 + 2q
> 0. (7.1)
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Corollary 7.3. A geodesic sphere Mr in CPn(4), (n ≥ 2) is non-minimal biharmonic if and only if

r = cot−1

√
n+ 2±

√
n2 + 2n+ 5

2n− 1
.

Remark 7.3. Type A2 real hypersurfaces Mp,q(π/4) satisfy |A|2 = 2(p+ q) = 2(n− 1). Thus the only biharmonic
tube Mp,q(π/4) is the minimal one Mp,p(π/4).

7.3. Type B real hypersurfaces

Let us consider the Hermitian symmetric space U/K = G̃rn+1(Rn+3) = SO(n+ 3)/SO(n+ 1)× SO(2). The
Hermitian symmetric space is identified with the complex quadric Qn+1 ⊂ CPn+2. Homogeneous real
hypersurfaces of type B are obtained by the Hopf projection of

{SO(n+ 1)× SO(2)}/{SO(n− 1)× Z2} ⊂ S2n+1.

The type B real hypersurface Mr is realized as a tube around a totally geodesic and Lagrangian embedded real
projective space RPn with radius r ∈ (0, π/4) or a tube around a complex quadric Qn−1 with radius π/4− r.
Remark 7.4. The tube Mr around the complex quadric with radius r = tan−1(

√
2− 1) is a contact (κ, µ)-space

with κ = µ = −1 (see §6.4 or [22]).
The principal curvatures of Mr are λ1 = − cot r with multiplicity m1 = n− 1, λ2 = tan r with m2 = n− 1 and

α = 2 tan(2r) with multiplicity 1.

Theorem 7.5 ([47, 48]). A tube Mr of radius r around RPn ⊂ CPn(4) is biharmonic if and only if it is minimal and of
radius

r = cot−1

√
n+ 1√
n− 1

= tan−1

√
n− 1√
n− 1

<
π

4
.

In particular, a tube Mr of radius r around RPn ⊂ CP 2(4) is biharmonic if and only if it is minimal and of radius π/8.

Proof. Let us compute the mean curvature H of a tube Mr. Since the principal curvatures of Mr are rewritten
as

λ1 = − cot r = −t, λ2 = tan r =
1

t
, α = 2 tan(2r) =

4t

t2 − 1
,

we have

(2n− 1)H = −(n− 1)t+
n− 1

t
+

4t

t2 − 1
= − (n− 1)t4 − 2(n+ 1)t2 + n− 1

t(t2 − 1)
.

Hence M is minimal if and only if (n− 1)t4 − 2(n+ 1)t2 + n− 1 = 0. Thus

t2 =
n+ 1± 2

√
n

n− 1
=

(√
n± 1√
n− 1

)2

.

Here we notice that √
n+ 1√
n− 1

> 1,

√
n− 1√
n− 1

< 1.

Now, we look for biharmonic real hypersurfaces. The square norm of the second fundamental form is

|A|2 = (n− 1)t2 +
n− 1

t2
+

16t2

(t2 − 1)2
=

(n− 1)(t2 − 1)2(t4 + 1) + 16t4

t2(t2 − 1)2
.

Hence, M is biharmonic if and only if t = cot r > 1 is a solution to

(n− 1)(t2 − 1)2(t4 + 1) + 16t4 = 2(n+ 1)t2(t2 − 1)2.

Equivalently
(n− 1)t8 − 4nt6 + 6(n+ 3)t4 − 4nt2 + (n− 1) = 0.

From this we get

2− n =
t8 − 8t6 + 30t4 − 8t2 + 1

(t2 − 1)4
.

Since the right hand side of this formula is positive for any t > 1. Hence there are no non-minimal biharmonic
tubes.
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7.4. Type C real hypersurfaces

Type C real hypersurfaces are derived from the complex Grassmannian manifold

U/K = Gr2(Cp+2) = SU(p+ 2)/S(U(2)×U(p)), p =
n+ 1

2
≥ 3.

The type C hypersurface M is the Hopf projection of

S (U(2)×U( (n+ 1)/2 )) /(T2 × SU( (n− 3)/2 )) ⊂ S2n+1, n ≥ 5.

These hypersurfaces are tubes over the Segre imbedding of CP 1 ×CP k−1 with radius r ∈ (0, π/4). The principal
curvatures and their multiplicities are

λ1 =− cot r, m1 = n− 3,

λ2 =cot
(π
4
− r
)
, m2 = 2,

λ3 =cot
(π
2
− r
)
, m3 = n− 3,

λ4 =cot

(
3π

4
− r

)
, m4 = 2,

α =− 2 cot(2r), mα = 1.

Put t = cot r. Then the principal curvatures are rewritten as

λ1 = −t, λ2 =
t+ 1

t− 1
, λ3 =

1

t
, λ4 =

1− t

t+ 1
, α = −t+ 1

t
.

Theorem 7.6. The only biharmonic tube around CP 1 ×CP (n−1)/2 is the minimal tube of radius

r = cot−1

√
n+
√
2√

n− 2
, n = 5, 7, 9, . . . .

Proof. The mean curvature H is computed as

(2n− 1)H =− (n− 3)t+
2(t+ 1)

t− 1
+

n− 3

t
+

2(1− t)

t+ 1
− t+

1

t

=− (n− 2)t+
n− 2

t
+ 2

{
(t+ 1)2 − (t− 1)2

(t+ 1)(t− 1)

}
=− (n− 2)t+

n− 2

t
+

8t

(t+ 1)(t− 1)

=− (n− 2)t4 − 2(n+ 2)t2 + n− 2

t(t+ 1)(t− 1)
.

Hence Mr is minimal if and only if

cot r =

√
n+ 2± 2

√
2n

n− 2
=

√
n±
√
2√

n− 2
.

Here we notice that √
n−
√
2√

n− 2
< 1,

√
n+
√
2√

n− 2
> 1

for all n ≥ 3. Thus the tube of radius

r = cot−1

√
n+
√
2√

n− 2

is the only minimal tube.
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The square norm |A|2 is computed as

|A|2 =(n− 3)t2 + 2

(
t+ 1

t− 1

)2

+
n− 3

t2
+ 2

(
1− t

t+ 1

)2

+

(
−t+ 1

t

)2

=(n− 2)t2 +
n− 2

t2
+ 2

{(
t+ 1

t− 1

)2

+

(
1− t

t+ 1

)2
}
− 2

=(n− 2)t2 +
n− 2

t2
+

4(t4 + 6t2 + 1)

(t2 − 1)2(t2 + 1)2
− 2

=
(n− 2)t4(t2 − 1)2 + (n− 2)(t2 − 1)2 + 4t2(t4 + 6t2 + 1)− 2t2(t2 − 1)2

t2(t2 − 1)2
.

Hence M is biharmonic if and only if

(n− 2)t4(t2 − 1)2 + (n− 2)(t2 − 1)2 + 4t2(t4 + 6t2 + 1)− 2t2(t2 − 1)2 = 2(n+ 1)t2(t2 − 1)2.

Namely
(n− 2)t4(t2 − 1)2 + (n− 2)(t2 − 1)2 + 4t2(t4 + 6t2 + 1)− 2(n+ 2)t2(t2 − 1)2 = 0.

The left hand side of this equation is rewritten as

(n− 2)(t2 − 1)4 − 4t2(t4 − 10t2 + 1) = (t2 − 1)4n− 2t8 + 4t6 + 28t4 + 4t2 − 2.

Thus we get

n =
2t8 − 4t6 − 28t4 − 4t2 + 2

(t2 − 1)4

Hence we have

5− n =
3t8 − 16t6 + 58t4 − 16t2 + 3

(t2 − 1)4
> 0

for any n ≥ 5 and t2 > 1. Thus this equation has no solutions for t2 > 1. Thus the result follows.

7.5. Type D real hypersurfaces

The type D real hypersurfaces are associated to U/K = SO(10)/U(5). The resulting real hypersurfaces are the
Hopf image of

U(5)/(SU(2)× SU(2)×U(1)) ⊂ S19.

One can see that the type D real hypersurfaces are tubes over the Plücker imbedding of the Grassmannian
manifold Gr2(C5) into CP 9(4) with radius r ∈ (0, π/4).

The principal curvatures and their multiplicities are

λ1 =− cot r, m1 = 4,

λ2 =cot
(π
4
− r
)
, m2 = 4,

λ3 =cot
(π
2
− r
)
, m3 = 4,

λ4 =cot

(
3π

4
− r

)
, m4 = 4,

α =− 2 cot(2r), mα = 1.

Theorem 7.7 ([82]). A type D real hypersurface is biharmonic if and only if it is minimal and a tube around Gr2(C5) of
radius r = tan−1(1/

√
5).

Proof. The type D real hypersurface has constant mean curvature

H =
1

17

[
4

{
(−t) + t+ 1

t− 1
+

1

t
+

1− t

1 + t

}
− t+

1

t

]
= −5t4 − 26t2 + 5

17t(t2 − 1)
= − (5t2 − 1)(t2 − 5)

17t(t2 − 1)
, t = cot r.

Hence, a type D real hypersurface M is minimal if and only if cot r =
√
5 > 1, since 0 < r < π/4.
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Next, the square norm |A|2 is

|A|2 =4

{
t2 +

(
t+ 1

t− 1

)2

+
1

t2
+

(
1− t

1 + t

)2
}

+

(
1

t
− t

)2

=5t2 +
5

t2
+

8(t4 + 6t2 + 1)

(t2 − 1)2
− 2 =

5t8 − 4t6 + 62t4 − 4t2 + 5

t2(t2 − 1)2
.

Thus M is biharmonic if and only if

5t8 − 4t6 + 62t4 − 4t2 + 5

t2(t2 − 1)2
= 20.

This is equivalent to
5t8 − 24t6 + 102t4 − 24t2 + 5 = 0.

The left hand side of this equation is rewritten as

t4(5t4 − 24t2 + 51) + 51t4 − 24t2 + 5 > 0.

Thus there are no non-minimal biharmonic real hypersurfaces of type D.

7.6. Type E real hypersurfaces

Type E real hypersurfaces are associated to U/K = E6/SO(10) · SO(2). These hypersurfaces are tubes over
the canonical imbedding of the Hermitian symmetric space SO(10)/U(5) ⊂ CP 15(4) with radius r ∈ (0, π/4).

The type E real hypersurfaces are Hopf image of

U(1)× Spin(10)/U(1)× SU(4) ⊂ S31.

The principal curvatures of a type E real hypersurface are

λ1 =− cot r, m1 = 8,

λ2 =cot
(π
4
− r
)
, m2 = 6,

λ3 =cot
(π
2
− r
)
, m3 = 8,

λ4 =cot

(
3π

4
− r

)
, m4 = 6,

α =− 2 cot(2r), mα = 1.

The mean curvature is given by

H =
1

29

[{
8(−t) + 6

(
t+ 1

t− 1

)
+ 8

(
1

t

)
+ 6

(
1− t

1 + t

)}
− t+

1

t

]
= −3(3t4 − 14t2 + 3)

29t(t2 − 1)
, t = cot r.

Hence M is minimal if and only if

t2 =
7 + 2

√
10

3
> 1.

Thus, the radius is determined as

r = tan−1

√
3√

2 +
√
5
.

We look for biharmonic ones.

|A|2 =8t2 + 6

(
t+ 1

t− 1

)2

+
8

t2
+ 6

(
1− t

1 + t

)2

+

(
−t+ 1

t

)2

=9t2 +
9

t2
+

12(t4 + 6t2 + 1)

(t2 − 1)2
− 2 =

9t8 − 8t6 + 94t4 − 8t2 + 9

t2(t2 − 1)2
.
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Thus the biharmonicity condition |A|2 = 2(n+ 1) = 2(15 + 1) = 32 is

9t8 − 8t6 + 94t4 − 8t2 + 9

t2(t2 − 1)2
= 32.

Hence t = cot r is a solution to

9t8 − 40t6 + 158t4 − 40t2 + 9 = 0.

The left hand side of this equation is rewritten as

t4(9t2 − 40t2 + 79) + 79t4 − 40t2 + 9 > 0.

Thus there are no non-minimal biharmonic real hypersurfaces of type E.

Theorem 7.8 ([82]). A type E real hypersurface is biharmonic if and only if it is minimal and a tube around
SO(10)/U(5) ⊂ CP 15(4) of radius r = tan−1{

√
3/(
√
2 +
√
5)}.

Hence the correct classification of proper biharmonic homogeneous real hypersurfaces in CPn(4) is
described as follows:

Theorem 7.9 ([47, 48, 82]). Let M be a homogeneous real hypersurface of CPn(4) with n ≥ 2. Then M is proper
biharmonic if and only if it is holomorphically congruent to an open part of a tube around CPm(4) (0 ≤ m ≤ n− 2) of
radius

r = cot−1

√
n+ 2±

√
(2m− n+ 1)2 + 4(n+ 1)

2n− 2m− 1
.

7.7. Ruled real hypersurfaces

According to [58], a real hypersurface M ⊂ CPn(4) is said to be ruled if its holomorphic distribution

D = {X ∈ TM |η(X) = 0}

is integrable and each leaf of its maximal integral manifolds is locally congruent to the hyperplane CPn−1(4).
The second named author proved the following theorem.

Theorem 7.10 ([82]). Let M be a ruled real hypersurface in CPn(4), where n ≥ 2. If M is biharmonic, then it is minimal.

Ruled hypersurfaces in CPn(4) are incomplete. Minimal ruled hypersurfaces of CPn(4) are investigated in
[1]. Pérez-Barral [76] proved that biharmonic ruled hypersurfaces of CHn(−4) are minimal.

7.8. Three dimensional Hopf hypersurfaces

Here we restrict our attention to real hypersurfaces in CP 2(4). Wang proved the following fundamental fact.

Theorem 7.11 ([99]). Let M be a real hypersurface of CP 2(4) with three distinct constant principal curvatures. Then M
is holomorphically congruent to an open part of a tube of radius r ∈ (0, π/4) around the complex quadric Q1 ⊂ CP 2(4).

The tube Mr is diffeomorphic to the lens space L(4, 1) = S3/Z4. Under the limit r → π/4, the tube Mr around
Q1 collapses to RP 2 (see [17]). In particular, we notice the following fact.

Proposition 7.1. Let M be a real hypersurface of CP 2(4) with three distinct constant principal curvatures. Then the
following properties are mutually equivalent:

• M is contact metric.
• M is minimal.
• M is biharmonic.
• M is holomorphically congruent to an open part of a tube of radius π/8 around the complex quadric Q1 ⊂ CP 2(4).
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7.8.1. Sasakian 3-sphere As is well known, the unit 3-sphere S3 is identified with the special unitary group

SU(2) = {P ∈ SL2C | tPP = 1}

with bi-invariant Riemannian metric of constant curvature 1. Here 1 denotes the identity matrix. The bi-
invariant metric g(1) of constant curvature 1 on SU(2) is induced by the following inner product ⟨·, ·⟩1 on the
Lie algebra T1SU(2) = su(2):

⟨X,Y ⟩1 = −1

8
B(X,Y ) = −1

2
tr(XY ), X, Y ∈ su(2).

Here B denotes the Killing form of su(2). We call g(1) the normalized Killing metric. Take a quaternionic basis of
su(2):

i =

(
0

√
−1√

−1 0

)
, j =

(
0 −1
1 0

)
, k =

( √
−1 0
0 −

√
−1

)
.

By using this basis, the Lie group SU(2) is described as

SU(2) =

{ (
x0 +

√
−1 x3 −x2 +

√
−1 x1

x2 +
√
−1 x1 x0 −

√
−1 x3

) ∣∣∣∣ x2
0 + x2

1 + x2
2 + x2

3 = 1

}
.

In the spinor representation of the Euclidean 3-space E3, we identify E3 with su(2) via the correspondence

(x1, x2, x3)←→ x1i+ x2j + x3k =

( √
−1 x3 −x2 +

√
−1 x1

x2 +
√
−1 x1 −

√
−1 x3

)
.

Denote the left translated vector fields of {i, j,k} by {E1, E2, E3}. The commutation relations of {E1, E2, E3}
are

[E1, E2] = 2E3, [E2, E3] = 2E1, [E3, E1] = 2E2.

The left invariant 1-form
η(1) = g(1)(E3, ·)

is a contact form with Reeb vector field
ξ(1) := E3.

The metric g1 is compatible to η1. The contact metric condition

g(1)(X,ϕY ) =
1

2
dη(1)(X,Y ), X, Y ∈ su(2)

induces a left invariant endomorphism field ϕ as

ϕ(E1) = E2, ϕ(E2) = −E1, ϕ(E3) = 0.

It should be remarked that ξ1 is a unit Killing vector field. The resulting left invariant contact metric structure
(ϕ, ξ(1), η(1), g(1)) is Sasakian. The Lie group SU(2) acts isometrically on the Lie algebra su(2) by the Ad-action.

Ad : SU(2)× su(2)→ su(2); Ad(a)X = aXa−1, a ∈ SU(2), X ∈ su(2).

The Ad-orbit of k/2 is a 2-sphere S2(4) of curvature 4 in the Euclidean 3-space E3 = su(2). The Ad-action of
SU(2) on S2(4) is isometric and transitive. The isotropy subgroup of SU(2) at k/2 is

K1 =

{
exp(tk) =

(
e
√
−1t 0

0 e−
√
−1t

) ∣∣∣∣ t ∈ R
}
∼= U(1) =

{
e
√
−1t
∣∣∣ t ∈ R

}
.

Hence S2(4) is represented by SU(2)/U(1) as a Riemannian symmetric space. The natural projection

π1 : S3 → S2(4), π1(a) = Ad(a)(k/2)

is a Riemannian submersion and defines a principal U(1)-bundle over S2(4). This fibering is nothing but the
well known Hopf fibering. Moreover it is the Boothby-Wang fibering of S3 as a regular contact 3-manifold.
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7.8.2. Berger 3-sphere M3(c) Next, let us deform the Riemannian metric g(1) of the unit 3-sphere S3 as

g(c)(X,Y ) =
4

c+ 3

(
g(1)(X,Y )− c− 1

c+ 3
η(1)(X)η(1)(Y )

)
,

where c > −3 is a constant. The resulting Riemannian 3-manifold M3(c) = (S3, g(c)) is called the Berger sphere.
Precisely speaking, the original one due to Berger is (S3, c+3

4 g(c)) and c ̸= 1. Note that under the limit c→ −3
in Gromov-Hausdorff sense, (S3, c+3

4 g) converges to S3 equipped with the Carnot-Carathéodory metric. On
the other hand, under the limit c→ 1, (S3, c+3

4 g) collapses to S2.
Let us deform the contact form η1 and the Reeb vector field ξ(1) as

η(c) :=
4

c+ 3
η(1), ξ(c) :=

c+ 3

4
ξ(1).

Then g(c) is compatible to η(c). The Berger sphere M3(c) with c ̸= 0 is no longer a space form, but the ϕ-sectional
curvatures are constant c. In particular, M3(c) is a Sasakian space form.

The Reeb vector field ξ(c) generates a one parameter group of transformations on M3(c). Since ξ is a Killing
vector field with respect to the Berger metric, this transformation group acts isometrically on G = SU(2). The
transformation group generated by ξ(c) is identified with the following Lie subgroup K = Kc of G:

Kc =

{
exp

(
(c+ 3)t

4
k

) ∣∣∣∣ t ∈ R
}
∼= U(1).

Furthermore, the action of the transformation group generated by ξc corresponds to the natural right action of
Kc on SU(2):

SU(2)×Kc → SU(2); (a, k) 7→ ak.

By using the well-known curvature formula for Riemannian submersion due to O’Neill, one can see that
the orbit space G/Kc is a 2-sphere S2(c+ 3) of curvature c+ 3. The Riemannian metric gc is not only SU(2)-
left invariant but also Kc-right invariant. Hence SU(2)×Kc acts isometrically on SU(2). The Berger sphere
M3(c) is represented by (SU(2)×Kc)/Kc as a naturally reductive homogeneous space. For c ̸= 1, M3(c) has
4-dimensional isometry group. In particular, g is G-bi-invariant if and only if c = 1. In this case M3(1) is
represented by (SU(2)× SU(2))/SU(2) as a Riemannian symmetric space. Note that M3(1) has 6-dimensional
isometry group.

Consider an orthonormal frame field {e1, e2, e3} of M3(c) by

e1 :=

√
c+ 3

2
E1, e2 :=

√
c+ 3

2
E2, e3 :=

c+ 3

4
E3.

Then the commutation relations of this basis are

[e1, e2] = 2e3, [e2, e3] =
c+ 3

2
e1, [e3, e1] =

c+ 3

2
e2.

The Levi-Civita connection ∇ of (M3(c), g(c)) is described by

∇e1e1 = 0, ∇e1e2 = e3, ∇e1e3 = −e2,

∇e2e1 = −e3, ∇e2e2 = 0, ∇e2e3 = e1,

∇e3e1 =
c+ 1

2
e2, ∇e3e2 = −c+ 1

2
e1, ∇e3e3 = 0.

The Riemannian curvature R of (M3(c), g(c),∇) is described by

R1212 = c, R1313 = R2323 = 1,

and the sectional curvatures are:
K12 = c, K13 = K23 = 1.

The Ricci tensor field Ric and the scalar curvature ρ are computed to be

Ric11 = Ric22 = c+ 1, Ric33 = 2, ρ = 2(c+ 2).
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7.8.3. Generalized Berger 3-spheres Let us consider immersions of SU(2) into the complex projective plane
CP 2(4). Let us take the quaternion basis {i, j,k} of the Lie algebra su(2). Denote by {ϑ1, ϑ2, ϑ3} the dual basis of
{i, j,k}. The dual basis {ϑ1, ϑ2, ϑ3} is regarded as a left invariant frame field on SU(2). The bi-invariant metric
g1 is represented as

g1 = ϑ1 ⊗ ϑ1 + ϑ2 ⊗ ϑ2 + ϑ3 ⊗ ϑ3.

The Berger sphere metric gc is represented as

gc =
4

c+ 3

(
ϑ1 ⊗ ϑ1 + ϑ2 ⊗ ϑ2

)
+

(
4

c+ 3

)2

ϑ3 ⊗ ϑ3.

Let us equip a left invariant metric of the form

gα1,α2,α3
= (α1)

2ϑ1 ⊗ ϑ1 + (α2)
2ϑ2 ⊗ ϑ2 + (α3)

2ϑ3 ⊗ ϑ3,

where α1, α2, α3 are positive constants. Then we obtain a unimodular frame {eα1 , eα2 , eα3 } by

eα1 =
1

α1
E1, eα2 =

1

α2
E2, eα3 =

1

α3
E3.

Then we have the commutation relations

[eα1 , e
α
2 ] = cα3 e

α
3 , [eα2 , e

α
3 ] = cα1 e

α
1 , [eα3 , e

α
1 ] = cα2 e

α
2 ,

where
cα1 =

α1

α2α3
, cα2 =

α2

α3α1
, cα3 =

α3

α1α2
.

We introduce a left invariant almost contact structure (ϕα, ξα, ηα) compatible to the metric gα1,α2,α3 by

ξα = eα3 , ηα = gα1,α2,α3
(ξα, ·), ϕeα1 = eα2 , ϕeα2 = −eα1 , ϕeα3 = 0.

Then one can see that (ϕ, ξα, ηα, gα1,α2,α3
) is contact metric if and only if α3 = α1α2. In such a case,

(SU(2);ϕ, ξα, ηα, gα1,α2,α3
) is a contact (κ, µ)-space with

κ = 1− (α2
1 − α2

2)
2

(α1α2)4
, µ = 2− α2

1 + α2
2

(α1α2)2
.

The Berger 3-sphere M3(c) is obtained by the choice

α1 = α2 =
2√
c+ 3

, α3 =
4

c+ 3
.

Li determined isometric immersions of (SU(2), gα1,α2,α3
) into CP 2(4) under the assumption that the resulting

real hypersurfaces are Hopf.

Theorem 7.12 ([60]). Let f : (SU(2), gα1,α2,α3)→ CP 2(4) be an isometric immersion. Assume that the image
M = f(SU(2)) is a Hopf hypersurface. Then M is holomorphically congruent to one of the following homogeneous
hypersurfaces:

• A geodesic sphere of radius r ∈ (0, π/2). The induced metric is isometric to

g = sin2 r
(
ϑ1 ⊗ ϑ1 + ϑ2 ⊗ ϑ2 + cos2 r ϑ3 ⊗ ϑ3

)
. (7.2)

The metric g is a contact metric if and only if r = π/4 and the resulting metric is a Sasakian metric of constant
ϕ-sectional curvature 5. The image M is minimal if and only if r = π/3.

• The tube Mr of radius r ∈ (0, π/4) around the complex quadric Q1 = CP 1. The induced metric is isometric to

g = 4
(
sin2

(
r − π

4

)
ϑ1 ⊗ ϑ1 + sin2

(
r +

π

4

)
ϑ2 ⊗ ϑ2 + sin2 r ϑ3 ⊗ ϑ3

)
. (7.3)

The metric g is a contact metric if and only if r = π/8 and M is minimal in CP 2(4).
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One can see that the Hopf hypersurfaces in Theorem 7.12 are equivariant. On the other hand, Hu, Yin and Li
classified full equivariant CR minimal immersions f : (SU(2), gα1,α2,α3)→ CP 2(4).

Theorem 7.13 ([45]). Let f : (SU(2), gα1,α2,α3
)→ CP 2(4) be a full equivariant CR minimal immersion. Then up to an

inner automorphism of SU(2) and a holomorphic isometry of CP 2(4), f is

• a geodesic sphere of radius r = π/3 or
• a tube of radius π/8 around Q1.

The second named author obtained the following classification.

Theorem 7.14 ([82]). Let M be a Hopf hypersurface in CP 2(4). Then M is proper biharmonic if and only if it is
holomorphically congruent to an open part of a geodesic sphere of radius

r = cot−1

√
4±
√
13

3
.

8. Subelliptic biharmonic maps

Harmonic maps from or into strongly pseudo-convex CR-manifolds have been studied by several authors.
For instance, Ianus and Pastore [46] proved that every holomorphic map between contact metric manifolds is
harmonic. For more information on the harmonicity of holomorphic maps, we refer to [37, 38, 39, 50].

8.1. Pseudo-harmonic maps

Now let M = (M,S) be a (2n− 1)-dimensional strongly pseudo-convex CR-manifold equipped with Tanaka-
Webster connection ∇̂. We denote by (ϕϑ, T, ϑ, gϑ) the associated contact metric structure. The real expression
of S is denoted by (Dϑ, J). Take a smooth map f : (M,S)→ (M̃, g̃) of M into a Riemannian manifold (M̃, g̃).
The pseudo-second fundamental form ∇̂df of f is defined by Petit [80]:

(∇̂Xdf)Y = ∇f
Xdf(Y )− df(∇̂XY ), X, Y ∈ Γ (TM).

The pseudo-energy Eb(f) of f over a relatively compact domain Ω is defined by [4]:

Eb(f ; Ω) =

∫
Ω

1

2

2n−2∑
i=1

(f∗g̃)(ei, ei) dvϑ.

Here {e1, e2, . . . , e2n−1} is a local frame field of M which is orthonormal with respect to Webster metric gϑ and
of the form

en+i−1 = ϕϑei (i = 1, 2, . . . , n− 1), e2n−1 = T. (8.1)

The Euler-Lagrange equation of the pseudo-energy is obtained in [4]:

τb(f) = trDϑ
(∇̂df) =

2n−2∑
i=1

(∇̂df)(ei, ei) = 0.

The section τb(f) ∈ Γ (f∗TN) is called the pseudo-tension field. A smooth map f is said to be pseudo-harmonic (in
the sense of [4]) if τb(f) = 0. It should be remarked that

τb(f) = trDϑ
(∇df) =

2n−2∑
i=1

(∇df)(ei, ei), (8.2)

because of (3.8) (see (2.10) of [97]).
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8.2. Subelliptic biharmonic maps

The Jacobi operator Jb,f associated to a pseudo-harmonic map f is given by [4, p. 227]:

Jb,f (V ) = ∆̄f
bV − trDϑ

R̃(V,df)df,

where

∆̄f
bV = −

2n−2∑
i=1

(
∇f

ei∇
f
ei −∇

f

∇̂ei
ei

)
V, trDϑ

R̃(V,df)df =

2n−2∑
i=1

R̃(V,df(ei))df(ei).

Here ∇̂ is the Tanaka-Webster connection as before.
The pseudo-bienergy of a smooth map f is introduced by Dragomir and Montaldo [30]:

Eb,2(f ; Ω) =

∫
Ω

1

2
g̃(τb(f), τb(f)) dvϑ.

The Euler-Lagrange equation of the pseudo-bienergy is [30]:

τb,2(f) = −Jb,f (τb(f)) = 0.

A smooth map f is said to be subelliptic biharmonic if its pseudo-bitension field τb,2(f) vanishes.

8.3. Subelliptic biharmonic real hypersurfaces

Urakawa studied subelliptic biharmonicity of real hypersurfaces in complex projective space CPn(c). For the
sake of accuracy, here we explain Urakawa’s setting in [97].

Let (M,S) be a strongly pseudo-convex CR-manifold of dimension (2n− 1) and M̃n = (M̃n, g̃, J) a Kähler
manifold of complex dimension n ≥ 2.

We consider isometric immersions f : M → M̃n. To distinguish the almost contact structure associated to the
CR-structure (M,S) and the almost contact structure induced from M̃n, we denote the real expression of S by
(Dϑ, ϕϑ). The associated contact form and Reeb vector field are denoted by ϑ and T , respectively.

Urakawa studied isometric immersions f : M → M̃n of a strongly pseudo-convex CR-manifold (M,S) into
a Kähler manifold M̃n. Although the Kähler structure (g̃, J) induces an almost contact metric structure
(ϕ, ξ, η, f∗g̃) by (see also (4.1)):

Jdf(X) = df(ϕX) + ϵη(X)ν, df(ξ) = −ϵJν, g = f∗g̃, (8.3)

Urakawa only demands the condition f∗g̃ = gϑ. In other words, he did not demand any relations between
(ϕϑ, T, ϑ) and (ϕ, ξ, η).

Here we recall some terminologies.
The pseudo-tension field τb(f) and the tension field τ(f) are related by (cf. [4, Example 5.2]):

τb(f) = τ(f)− (∇df)(T, T ).

The pseudo-mean curvature vector field Hb of f is defined by

Hb =
1

2n− 1
τb(f).

Equivalently, Hb and the mean curvature vector field H are related as

Hb = H− 1

2n− 1
(∇df)(T, T ).

Note that τb(f) is called the pseudo mean curvature vector in [97].
According to Urakawa [97, Definition 5.1], an isometric immersion f : M → M̃n of a (2n− 2)-dimensional

strongly pseudo-convex CR-manifold M = (M ;ϕϑ, T, ϑ, gϑ) into a Kähler manifold (M̃n, g̃, J) of complex
dimension n is said to be admissible if its second fundamental form satisfies

(∇df)(X,T ) = 0
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for any X ∈ Γ (Dϑ). Urakawa showed that f is admissible if and only if T is a principal vector field.
Since f is an isometric immersion, the second fundamental form ∇df is expressed as (∇df)(X,Y ) =

gϑ(AX,Y )ν. Hence the tension field and pseudo-tension field are rewritten as (cf. [97, p. 160])

τ(f) = (2n− 1)Hν, τb(f) = (2n− 1)Hbν,

where

H =
1

2n− 1
trgϑA, Hb =

1

2n− 1

2n−2∑
i=1

gϑ(Aei, ei).

Here {e1, e2, . . . , e2n−1} is a local orthonormal frame field of the form (8.1). Set

Aij = gϑ(Aei, ej), i = 1, 2, . . . , 2n− 1

and
αϑ = A2n−1 2n−1.

Then we have

(2n− 1)Hb =

2n−2∑
i=1

Aii, (2n− 1)H =

2n−1∑
i=1

Aii = (2n− 1)Hb + αϑ.

Since f is admissible, T is a principal vector field with corresponding principal curvature αθ.
Since the pseudo-mean curvature vector field Hb is normal to the immersion f , we have

∇f
XHb = −df(AHb

X) +∇⊥
XHb.

Here ∇⊥ is the normal connection and AHb
is the Weingarten operator derived from Hb.

The pseudo-mean curvature vector field Hb is said to be pseudo-parallel in the sense of [97] if

∇⊥
XHb = 0

for any X ∈ Γ (Dϑ) (see [97, p. 159]). The derivative ∇fHb is computed as

∇f
XHb = (dHb)(X)ν +Hb∇f

Xν = (dHb)(X)ν −Hb df(AX).

Hence Hb is pseudo-parallel if and only if (dHb)(X) = 0 for any X ∈ Γ (Dϑ). Hence we deduce the following
fundamental fact:

Proposition 8.1. If all principal curvatures other than αϑ of an admissible isometric immersion f : M → M̃n are
constant, then the pseudo-mean curvature vector field is pseudo-parallel.

Now, let f : M → M̃n(c) be an isometric immersion of a (2n− 1)-dimensional strongly pseudo-convex CR-
manifold M = (M,ϕϑ, T, ϑ, g) into a complex space form M̃n(c) of constant holomorphic sectional curvature c.
Urakawa obtained the following result.

Theorem 8.1. Let M be a (2n− 1)-dimensional strongly pseudo-convex CR-manifold and f : M → M̃n(c) is an
admissible isometric immersion with unit normal vector field ν. Assume that the pseudo mean curvature vector field
is pseudo-parallel but does not vanish. Then M is subelliptic biharmonic if and only if either

1. g̃(Jdf(T ), ν) = 0 and

|(∇df)|Dϑ
|2 =

c(2n+ 1)

4
or

2. Jdf(T ) = g̃(Jdf(T ), ν)ν and

|(∇df)|Dϑ
|2 =

c(n− 1)

2
.

This result allows us to only consider real hypersurfaces in complex projective n-space CPn(c). Let us
compare the contact metric structure (ϕϑ, T, ϑ, gϑ) associated to (M,S) and the almost contact metric structure
(ϕ, ξ, η, g) induced from CPn(c).
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The case 1: Since f is an isometric immersion, we have g = f∗g̃ = gϑ. Next, ξ is defined by df(ξ) = −εJν, hence

g̃(Jdf(T ), ν) = −g̃(df(T ), Jν) = −g̃(df(T ),−εdf(ξ)) = εη(T ).

Thus the condition (1) of Theorem 8.1 is equivalent to η(T ) = 0.

The case 2: On the other hand, the condition (2) of Theorem 8.1 is

Jdf(T ) = εη(T )ν.

Here we notice that
g̃(Jdf(T ), Jdf(T )) = g̃(df(T ),df(T )) = g(T, T ) = 1.

On the other hand,
g̃(εη(T )ν, εη(T )ν) = η(T )2g̃(ν, ν) = η(T )2.

Hence η(T ) = ±1. Without loss of generality we may assume that η(T ) = 1. Hence

T = ξ, ϑ = η, ϕϑ = ϕ.

In this case, M is a contact metric hypersurface.
Let us study subelliptic biharmonicity of contact metric hypersurfaces in CPn(c). According to Theorem 6.5

and Theorem 6.6, contact metric hypersurfaces are one of the following list:

• a geodesic sphere of radius r = (2/
√
c) tan−1(

√
c/2) with sign ϵ = −1.

• a tube of r = (2/
√
c) tan−1{(

√
c+ 4−

√
c)/2} < π/(2

√
c) around the complex quadric Qn−1 ⊂ CPn(c) with

sign ϵ = 1.

For simplicity of description we normalize the holomorphic sectional curvature as c = 4.

Case (1) Sasakian geodesic sphere: Now let us investigate subelliptic biharmonicity of geodesic sphere of radius
r = π/4. This geodesic sphere has principal curvatures

α = 2 cot(2r), λ = − tan r

with multiplicities mα = 1 and mλ = 2(n− 1).
The pseudo-mean curvature is given by

1

2(n− 1)
(mλλ) = −

2(n− 1)

2(n− 1)
tan r ̸= 0.

Hence this geodesic sphere is not pseudo-harmonic. Next we have

|(∇df)|D|2 = mλλ
2 = 2(n− 1) tan2 r = 2(n− 1) tan2

π

4
= 2(n− 1).

This shows that the geodesic sphere of radius π/4 in CPn(4) is subelliptic biharmonic.

Case (2). non-Sasakian contact metric tube: Next we consider a tube M of radius r around complex quadrics. The
tube M is contact metric if and only if r = tan−1(

√
2− 1).

The principal curvatures are

λ1 = − cot r =: −t, λ2 = tan r =
1

t
, α = 2 tan(2r)

with multiplicities
m1 = m2 = n− 1, mα = 1.

The pseudo-mean curvature is computed as

1

2(n− 1)
(m1λ1 +m2λ2) =

n− 1

2(n− 1)

(
−t+ 1

t

)
.
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This shows that the tube is pseudo-harmonic if and only if t = ±1, that is, r = π/4. This contradicts r =
tan−1(

√
2− 1). Hence M is not pseudo-harmonic.

Next, we check the subelliptic biharmonicity. The subelliptic biharmonicity equation of M is

|(∇df)|D|2 = m1λ
2
1 +m2λ

2
2 = (n− 1)

(
t2 +

1

t2

)
= 2(n− 1).

From this equation, we deduce that r = π/4 again. Thus M is not subelliptic biharmonic. Summing up above
discussions, we get the following result.

Theorem 8.2. Let M ⊂ CPn(4) be a contact metric hypersurface in the complex projective space of constant holomorphic
sectional curvature 4. Then the inclusion map of M is subelliptic biharmonic if and only if it is locally holomorphically
congruent to a geodesic sphere of radius π/4. The geodesic sphere is a Sasakian space form of constant ϕ-sectional curvature
5 and not pseudo-harmonic. In addition there are no pseudo-harmonic contact metric hypersurfaces in CPn(4).

This theorem is interpreted as a variational characterization of Sasakian hypersurface in CPn(4).
Okumura [72] proved the following pinching theorem:

Theorem 8.3. Let M be a compact orientable real hypersurface of CPn(4) (n ≥ 2). If M satisfies the inequality

|A|2 ≤ 2(n− 1) + (2n− 1)Hg(Aξ, ξ),

then |A|2 = 2(n− 1) + (2n− 1)Hg(Aξ, ξ) holds and M is holomorphically congruent to Mp,q for some p and q.

Motivated from Okumura’s theorem, we propose the following problem:

Problem 1. Prove or disprove the following statement:
Let M be a compact strongly pseudo-convex CR-manifold and f : M → CPn(4) be an ismoteric immersion into the

complex projective space of constant holomorphic sectional curvature 4. Assume that M satisfies the inequality

|(∇df)|Dϑ
|2 ≤ 2(n− 1).

then |(∇df)|Dϑ
|2 = 2(n− 1) holds and M is holomorphically congruent to the geodesic sphere of radius π/4.

Problem 2. Can we construct explicit examples of the case 1 of Theorem 8.1 ? For instance, let M be a 3-
dimensional 3-Sasakian manifold with mutually orthogonal Reeb vector fields ξ1, ξ2, ξ3 (see e.g., [78, 83]). Can
we find any isometric immersion f : M → CP 2(4) such that df(ξ3) = −ϵJν and |(∇df)|Dη1

|2 = 5?

For recent studies on pseudo-harmonic maps due to Dong, Ren and their collaborators, see [25, 29, 81].

9. Levi-harmonicity of homogeneous real hypersurfaces

9.1. Levi-harmonic maps

Let (M ;ϕ, ξ, η, g) be an almost contact metric manifold and (M̃, g̃) be a Riemannian manifold. A smooth map
f : M → M̃ is said to be Levi-harmonic in the sense of Dragomir and Perrone [31, 79] if it satisfies

τD(f) := trD(∇df) =
2n−2∑
i=1

(∇df)(ei, ei) = 0.

For a smooth map f : (M ;ϕ, ξ, η, g)→ (M̃, g̃), Dragomir and Perrone introduced the following functional EL

for f over a relatively compact region Ω ⊂M

EL(f ; Ω) =

∫
Ω

1

2

2n−2∑
i=1

(f∗g̃)(ei, ei) dvg.

Then f is a critical point of EL if and only if it satisfies the Euler-Lagrange equation:

τD(f)− df(∇ξξ + (div ξ)ξ) = 0.
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Thus if M satisfies ∇ξξ = 0 and div ξ = 0, then the Levi-harmonic maps are characterized as critical points of
EL.

Here we investigate the Levi-harmonicity of the inclusion maps of homogeneous Hopf hypersurfaces in
CPn(4) and CHn(−4).

Let M be a homogeneous Hopf hypersurface of M̃n(c). Then we have

∇ξξ = ϵϕAξ = ϵϕ(αξ) = 0.

Next, take a locally defined unit principal vector field V orthogonal to ξ corresponding to the principal
curvature λi. Then we have

g̃(∇V ξ, V ) = g̃(ϵϕAV, V ) = ϵ λi g̃(ϕV, V ) = 0.

Thus we deduce that div ξ = 0.

Proposition 9.1. Let M be a Hopf hypersurface of a complex space form M̃n(c). Then the inclusion map ι is Levi-
harmonic if and only if it is a critical point of EL.

9.2. Type A hypersurfaces in CPn(4)

Let Mp,q be a type A real hypersurface of CPn(4), then the inclusion map ι satisfies

g̃(τD(ι), ν) = m1λ1 +m2λ2 = 2(q cot r − p tan r).

First we consider geodesics spheres. In case p = 0 or q = 0, we have g̃(τD(ι), ν) ̸= 0. Thus geodesics spheres can
not be Levi-harmonic. Next, in case p ̸= 0 and q ̸= 0, g̃(τD(ι), ν) = 0 holds if and only if

r = tan−1

√
q

p
.

Proposition 9.2. A real hypersurface Mp,q of type A in CPn(4) is Levi-harmonic if and only if its radius is r =

tan−1
√

q/p.

9.3. Type B hypersurfaces in CPn(4)

Let Mr be a real hypersurface of type B in CPn(4). Then we have

g̃(τD(ι), ν) = m1λ1 +m2λ2 = (n− 1) (− cot r + tan r) .

The solution t of g̃(τD(ι), ν) = 0 is t = cot r = ±1. This is impossible, since r ∈ (0, π/4). Thus we obtain the
following result.

Proposition 9.3. A real hypersurface Mr of type B in CPn(4) can not be Levi-harmonic.

9.4. Type C hypersurfaces in CPn(4)

Let M be a tube of radius r ∈ (0, π/4) around Gr2(Cp+2) with p = (n+ 1)/2. Then we have

g̃(τD(ι), ν) =m1λ1 +m2λ2 +m3λ3 +m4λ4

=− (n− 3)t+ 2
t+ 1

t− 1
+

n− 3

t
+

2(1− t)

t+ 1
= − (n− 3)t4 − 2(n+ 1)t2 + (n− 3)

t(t+ 1)(t− 1)
,

where t = cot r as before. Thus g̃(τD(ι), ν) = 0 if and only if

t2 =
n+ 1± 2

√
2(n− 1)

n− 3
.

We notice that
n+ 1 + 2

√
2(n− 1)

n− 3
> 1 (n ≥ 5), lim

n→∞

n+ 1 + 2
√

2(n− 1)

n− 3
= 1.

n+ 1− 2
√

2(n− 1)

n− 3
< 1 (n ≥ 5), lim

n→∞

n+ 1 + 2
√

2(n− 1)

n− 3
= 1.

Hence M is Levi-harmonic if and only if

r = cot−1

√
n+ 1 + 2

√
2(n− 1)

n− 3
.
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Proposition 9.4. A real hypersurface Mr of type C in CPn(4) is Levi-harmonic if and only if its radius is

r = cot−1

√
n+ 1 + 2

√
2(n− 1)

n− 3
.

9.5. Type D hypersurfaces in CPn(4)

Let M be a tube of radius r ∈ (0, π/4) around the Plücker image of Gr2(C5). Then

g̃(τD(ι), ν) =m1λ1 +m2λ2 +m3λ3 +m4λ4

=4(−t) + 4(t+ 1)

t− 1
+

4

t
+

4(1− t)

t+ 1
=
−4t4 + 24t2 − 4

t3 − t
=
−4(t4 − 6t2 + 1)

t(t+ 1)(t− 1)
,

where t = cot r as before. Thus g̃(τD(ι), ν) = 0 if and only if t2 = 3± 2
√
2. Since t2 > 1, we get t2 = 3 + 2

√
2 and

hence t = 1±
√
2. The possible solution is t = 1 +

√
2, that is, r = π/8.

Proposition 9.5. The only Levi-harmonic real hypersurface Mr of type D in CPn(4) is the tube of radius π/8 around
the Plücker image of Gr2(C5).

9.6. Type E hypersurfaces in CPn(4)

Let M be a tube of radius r ∈ (0, π/4) around SO(10)/U(5). Then

g̃(τD(ι), ν) =m1λ1 +m2λ2 +m3λ3 +m4λ4

=− 8t+
6(t+ 1)

t− 1
+

8

t
+

6(1− t)

t+ 1
=
−8(t4 − 5t2 + 1)

t(t+ 1)(t− 1)
,

where t = cot r as before. Thus the solutions to g̃(τD(ι), ν) = 0 are

t2 =
5±
√
21

2
.

Since t2 > 1, we have t2 = (5 +
√
21)/2 and hence t = (

√
7 +
√
3)/2.

Proposition 9.6. The only Levi-harmonic real hypersurface Mr of type D in CPn(4) is the tube of radius

r = cot−1

√
7 +
√
3

2

around SO(10)/U(5).

9.7. Type A0 hypersurfaces in CHn(−4)

From now on, we study Levi-harmonicity of homogeneous Hopf hypersurfaces in CHn(−4) =
SU(1, n)/S(U(1)×U(n)). Let SU(1, n) = NAK be the Iwasawa decomposition of SU(1, n) with K = S(U(1)×
U(n)). The nilpotent part N is the Heisenberg group. The complex hyperbolic space CHn(−4) is identified
with the solvable part S = NA. The orbit of the Heisenberg group N is a homogeneous real hypersurface of
type A0 called the horosphere of CHn(−4).

The horosphere M has principal curvatures α = 2 of multiplicity mα = 1 and λ1 = 1 of multiplicity of 2n− 2.
Obviously, M is neither minimal nor Levi-harmonic.

9.8. Type A1,0 hypersurfaces in CHn(−4)

The type A1,0 hypersurfaces are geodesic spheres and have principal curvatures α = 2 coth(2r) of multiplicity
mα = 1 and λ1 = coth r of multiplicity m1 = 2n− 2. Put t = coth r, then α = (1 + t2)/t. The mean curvature H
is given by

(2n− 1)H = m1λ1 +mαα =
(2n− 1)t2 + 1

t
> 0.

Hence M can not be minimal. On the other hand,

g̃(τD(ι), ν) = m1λ1 = 2(n− 1)t > 0.

Hence the geodesic sphere M is not Levi-harmonic.
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9.9. Type A1,1 hypersurfaces in CHn(−4)

A tube M = Mr of radius r > 0 around CHn−1 has principal curvatures α = 2 coth(2r) of multiplicity mα = 1
and λ1 = tanh r of multiplicity m1 = 2n− 2. The mean curvature H is given by

(2n− 1)H = m1λ1 +mαα =
t2 + 2n− 1

t
> 0, t = coth r.

Hence M can not be minimal. On the other hand,

g̃(τD(ι), ν) = m1λ1 =
2(n− 1)

t
> 0.

Hence the tube Mr is not Levi-harmonic.

9.10. Type A2 hypersurfaces in CHn(−4)

A tube M = Mr of radius r > 0 around CHℓ (1 ≤ ℓ ≤ n− 2). A tube M = Mr of radius r > 0 around CHn−1

has principal curvatures α = 2 coth(2r) of multiplicity mα = 1, λ1 = coth(r) of multiplicity m1 = 2(n− 1− ℓ)
and λ2 = tanh(r) of multiplicity m2 = 2ℓ. The mean curvature H is given by

(2n− 1)H = m1λ1 +m2λ2 +mαα =
(2n− 2ℓ− 1)t2 + 2ℓ+ 1

t
> 0, t = coth r.

Hence M can not be minimal. On the other hand,

g̃(τD(ι), ν) = m1λ1 +m2λ2 =
2(n− ℓ− 1)t2 + 2ℓ

t
> 0.

Hence the tube Mr is not Levi-harmonic.
Note that tubes Mr around CHℓ (0 ≤ ℓ ≤ n− 1) are orbits of S(U(1, ℓ)×U(n− ℓ)).

9.11. Type B hypersurfaces in CHn(−4)

A tube Mr of radius r around the totally geodesic Lagrangian real hyperbolic space RHn(c/4) is an orbit
of SO+(1, n). The tube Mr has principal curvatures α = 2 tanh(2r) of multiplicity mα = 1, λ1 = coth(r) of
multiplicity m1 = n− 1 and λ2 = tanh(r) of multiplicity m1 = n− 1. The mean curvature H is given by

(2n− 1)H = m1λ1 +m2λ2 +mαα =
4t2 + (n− 1)(t2 + 1)2

t(1 + t2)
> 0, t = coth r.

Hence M can not be minimal. On the other hand,

g̃(τD(ι), ν) = m1λ1 +m2λ2 =
(n− 1)(1 + t2)

t
> 0.

Hence the tube Mr is not Levi-harmonic.
It should be remarked that when r = coth−1

√
3 = log(2 +

√
3)/2, λ1 = α holds and hence Mcoth−1

√
3 has

two distinct principal curvatures λ1 =
√
3 of multiplicity m1 = n and λ2 = 1/

√
3 of multiplicity m2 = n− 1.

Moreover we have

(2n− 1)H =
(n− 1) + nt2

t
> 0, g̃(τD(ι), ν) = (n− 1)

(
t+

1

t

)
> 0.

As a conclusion, we obtain

Proposition 9.7. There are no Hopf hypersurfaces with constant principal curvatures in CHn(−4) which are minimal
or Levi-harmonic.

For recent study on minimal real hypersurfaces in complex hyperbolic space, we refer to [40] and references
therein.
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10. Biharmonic real hypersurfaces in quaternion projective space

10.1. The quaternion projective space

The quaternion projective n-space HPn is represented by Sp(n+ 1)/Sp(n)× Sp(1) as a homogeneous space.
We equip HPn with the metric g̃ induced from a negative constant multiple of the Killing form. Then the
resulting homogeneous Riemannian space is a real 4n-dimensional compact Riemannian symmetric space of
rank 1. Moreover HPn is a quaternionic symmetric space. We normalize the metric of HPn so that the maximal
sectional curvature of HPn is 4 and denote the resulting Riemannian symmetric space by HPn(4). Since HP 1

is the 4-sphere S4(4), hereafter we assume that n > 1. The biharmonicity criterion is given as follows ([47, 15
Theorem],[48, Theorem 6]).

Theorem 10.1. Let M ⊂ HPn(4) be a real hypersurface of a quaternion projective space of maximal sectional curvature
4 (n ≥ 2). Assume that M has non-zero constant mean curvature. Then M is biharmonic if and only if |A|2 = 4(n+ 2).
In such a case, M has scalar curvature

ρ = 4(4n− 3)(n+ 2) + (4n− 1)2H2.

10.2. Homogeneous real hypersurfaces

The homogeneous hypersurfaces in quaternion projective space were essentially classified by Iwata [53] and
D’Atri [27]. Any such hypersurface is either a tube around a totally geodesic subspace HP k ⊂ HPn(4) for some
k = 1, 2, . . . , n− 1 or a tube around a totally geodesic complex projective space CPn ⊂ HPn(4).

Berndt proved that a hypersurface in HPn(4) is curvature-adapted if and only if it is an open part of a
homogeneous hypersurface in HPn(4).

10.3. Geodesic spheres

Let Mr be a geodesic sphere of radius r in HPn(4) (0 < r < π/2). Then Mr has principal curvatures λ1 = cot r
of multiplicity m1 = 4(n− 1) and λ2 = 2 cot(2r) of multiplicity m2 = 3.

Theorem 10.2. A geodesic sphere Mr ⊂ HPn(4), (n > 1) is minimal if and only if its radius r is

r = tan−1

√
4n− 1

3
.

Proof. The mean curvature H of Mr is

(4n− 1)H = 4(n− 1)t+ 3

(
t− 1

t

)
.

Here we put t := cot r. Hence Mr is minimal if and only if

t =

√
3

4n− 1
. (10.1)

Thus the geodesic sphere of radius

r = tan−1

√
4n− 1

3

is minimal.

Next we classify proper biharmonic geodesic spheres.

Theorem 10.3. Geodesic spheres of radii

r = cot−1

√
2n+ 7± 2

√
n2 + 4n+ 13

4n− 1

are the only proper biharmonic geodesic spheres in HPn(4), n > 1.
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Proof. The square norm of the second fundamental form is given by

|A|2 = 4(n− 1)t2 + 3

(
t− 1

t

)2

= (4n− 1)t2 +
3

t2
− 6. (10.2)

Thus Mr is non-minimal and biharmonic if and only if

(4n− 1)t4 − 2(2n+ 7)t2 + 3 = 0.

Solving this equation, we get

t2 =
2n+ 7± 2

√
n2 + 4n+ 13

4n− 1
> 0.

Thus geodesic spheres of radii

r = cot−1

√
2n+ 7± 2

√
n2 + 4n+ 13

4n− 1

are proper biharmonic.

Remark 10.1. Although CPn(4) has no Einstein real hypersurfaces, HPn(4) has. In fact, the geodesic sphere Mr

of radius r = cot−1(1/
√
2n) is the only Einstein real hypersurface in HPn(4). The computation above shows

that the Einstein geodesic sphere is non-biharmonic.

10.4. Tubes of quaternionic subspaces

The tube Mk(r) of totally geodesic and quaternionic subspace HP k ⊂ HPn(4) of radius r ∈ (0, π/2) has
principal curvatures

λ = cot r, µ = − tan r, α1 = 2 cot(2r)

with multiplicities
mλ = 4(n− k − 1), mµ = 4k, mα1

= 3.

Theorem 10.4. The only minimal tubes around HP k ⊂ HPn(4) are tubes of radius

r = tan−1

√
4n− 4k − 1

4k + 3
.

Proof. The mean curvature H of Mk(r) is computed as

(4n− 1)H = 4(n− k − 1)t+ 4k

(
−1

t

)
+ 3

(
t− 1

t

)
= (4n− 4k − 1)t− 4k + 3

t
.

Hence M is minimal if and only if

r = tan−1

√
4n− 4k − 1

4k + 3
.

Theorem 10.5. The only non-minimal biharmonic tubes Mr around HP k are tubes of radii

r = cot−1

√
2n+ 7± 2

√
(n− 2k)2 + 4(n+ k) + 13

4n− 4k − 1
.

Proof. The square norm of the second fundamental form is given by

|A|2 = 4(n− k − 1)t2 +
4k

t2
+ 3

(
t− 1

t

)2

= (4n− 4k − 1)t2 +
4k + 3

t2
− 6.
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Thus Mk(r) is proper biharmonic if and only if

(4n− 4k − 1)t4 − 2(2n+ 7)t2 + 4k + 3 = 0. (10.3)

Thus

t2± =
2n+ 7±

√
(2n+ 7)2 − (4k + 3)(4n− 4k − 1)

4n− 4k − 1

=
2n+ 7± 2

√
(n− 2k)2 + 4(n+ k) + 13

4n− 4k − 1
> 0.

Thus there exist two proper biharmonic tubes.

10.5. Tubes of complex projective space

Let Mr be a tube of CPn of radius r ∈ (0, π/4). Then the principal curvatures of Mr are

λ = cot r, µ = − tan r, α1 = 2 cot(2r), α2 = −2 tan(2r)

with multiplicities
mλ = 2(n− 1), mµ = 2(n− 1), mα1

= 1, mα2
= 2.

Theorem 10.6. The only biharmonic tubes around CPn are minimal tubes of radius

r = cot−1

√
2n+ 3 + 2

√
2(2n+ 1)

2n− 1
.

Proof. First we look for minimal tubes. The mean curvature H of a tube Mr around CPn is given by

(4n− 1)H = 2(n− 1)t+ 2(n− 1)

(
−1

t

)
+

(
t− 1

t

)
+ 2

(
−4t
t2 − 1

)
= (2n− 1)t− 2n− 1

t
− 8t

t2 − 1

=
(2n− 1)t4 − 2(2n+ 3)t2 + 2n− 1

t(t2 − 1)
.

Thus Mr is minimal if and only if

(2n− 1)t4 − 2(2n+ 3)t2 + 2n− 1 = 0. (10.4)

Hence we get

t2 =
2n+ 3±

√
(2n+ 3)2 − (2n− 1)2

2n− 1
=

2n+ 3± 2
√

2(2n+ 1)

2n− 1
> 0.

We notice that
2n+ 3 + 2

√
2(2n+ 1)

2n− 1
> 1, 0 <

2n+ 3− 2
√

2(2n+ 1)

2n− 1
< 1.

Thus the only minimal tube is the one with radius

r = cot−1

√
2n+ 3 + 2

√
2(2n+ 1)

2n− 1
.

Next, we seek biharmonic tubes.

|A|2 = 2(n− 1)t2 +
2(n− 1)

t2
+ t2 − 2 +

1

t2
+

32t2

(t2 − 1)2
= (2n− 1)t2 +

2n− 1

t2
− 2 +

32t2

(t2 − 1)2
.

Hence |A|2 = 4(n+ 2) if and only if

(2n− 1)t8 − (8n+ 8)t6 + (50 + 12n)t4 − (8n+ 8)t2 + 2n− 1 = 0. (10.5)
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From this we have

n =
t8 + 8t6 − 50t4 + 8t2 + 1

2(t2 − 1)4
.

This shows that

2− n =
3t8 − 24t6 + 74t4 − 24t2 + 3

2(t2 − 1)4
> 0.

Thus Mr can not be proper biharmonic.

Martinez [64] studied ruled real hypersurfaces in HPn(4) (see also [3]). Here we propose the following
problem:

Problem 3. Classify biharmonic ruled hypersurfaces in HPn(4).

10.6. Some remarks

Remark 10.2. C. Brandão [16] studied biharmonic totally real submanifolds with parallel mean curvature vector
field of HPn(4) as well as biharmonic anti quaternionic submanifolds with parallel mean curvature vector field
of HPn(4). On the other hand, Kacimi and Cherif [55] studied biharmonic totally real submanifolds of HPn(4)
with constant mean curvature.

The classification [51, Theorem 10] is now corrected as follows:

Theorem 10.7. The proper biharmonic homogeneous hypersurfaces in simply connected compact Riemannian symmetric
spaces of rank 1 are given as follows:

• Totally umbilical small hyperspheres of radius r = 1/
√
2 in the unit sphere Sn.

• The product immersion Sn−p(1/
√
2)× Sp−1(1/

√
2) ⊂ Sn with n− p ̸= p− 1.

• The tubes around CPm(4) (0 ≤ m ≤ n− 2) of radii

r = cot−1

√
n+ 2±

√
(2m− n+ 1)2 + 4(n+ 1)

2n− 2m− 1

in CPn(4) of constant holomorphic sectional curvature 4.
• The geodesic spheres of radii

r = cot−1

√
2n+ 7± 2

√
n2 + 4n+ 13

4n− 1

in the quaternion projective space HPn(4) of maximal sectional curvature 4.
• The tubes around HP k (1 ≤ k ≤ n− 1) of radii

r = cot−1

√
2n+ 7± 2

√
(n− 2k)2 + 4(n+ k) + 13

4n− 4k − 1

in the quaternion projective space HPn(4) of maximal sectional curvature 4.

• Geodesic spheres of radii r = tan−1

√
(25± 2

√
130)/7 in Cayley projective plane OP 2(4) of maximal sectional

curvature 4.

Remark 10.3. The geodesic sphere Mr of radius r ∈ (0, π/2) in the Cayley projective plane OP 2(4) of maximal
sectional curvature 4 is

• Einstein if and only if r = tan−1(2
√
2/
√
3).

• a 1-type submanifold in the sense of Chen [20] via the first standard imbedding if and only if r =
tan−1(

√
17/
√
7).

• minimal if and only if r = tan−1(
√
15/
√
7).

Remark 10.4 (Volume stability). As we mentioned in the Introduction, the harmonicity of an isometric
immersion is equivalent to the minimality of the immersion. Let us consider a compact oriented minimal
real hypersurface M of the simply connected compact Riemannian symmetric space G/K of rank 1 and set
d(F) = dimR F for F = R, C, H and O. More explicitly we have d(R) = 1, d(C) = 2, d(H) = 4, and d(O) = 8.
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Denote by nullVol(M) the nullity of M with respect to the volume functional. Simons [85] and Gotoh
[41, 42, 43] proved that the volume nullity of M ⊂ G/K satisfies the inequality nullVol(M) ≥ d(F)n. Moreover, in
case G/K = Sn(1), the equality holds if and only if M is congruent to the totally geodesic sphere. Next, in case
G/K = CPn(4), HPn(4) or OP 2(4), the equality holds if and only if M is congruent to the minimal geodesic
sphere.

Remark 10.5. The Grassmannian manifold G̃r3(R7) of oriented 3-planes in R7 has the following totally geodesic
singular orbits under cohomogeneity one actions [10]:

• G̃r2(R6) and G̃r3(R6) (reflective)
• The space G2/SO(4) of all quaternionic subalgebras of the Cayley algebra O (reflective). Here R7 is

regarded as the imaginary part ImO of O.

For a tube of radius r around G̃r2(R6) ⊂ G̃r3(R7) is

• minimal if and only if (see [51, 52]):

r =
√
10 tan−1

√
3

2
.

• proper biharmonic if and only if
r =

π

4

√
10.

The associative calibration Ψ : O×O×O→ R is regarded as a smooth function on the Grassmannian manifold
G̃r3(ImO) and its range is the bounded closed interval [−1, 1]. Let us denote by M(t) the level set of the
associative calibration (t ∈ [−1, 1]). Then M(±1) are totally geodesic singular orbits under the cohomogeneity
one action. Moreover M(±1) is identified with the Grassmannian manifold G̃rass(ImO) of associative
subspaces. Moreover M(±1) is the quaternionic symmetric space G2/SO(4) which is the Grassmannian
manifold of quaternionic subalgebras of O. On the other hand, for any t ∈ (−1, 1), the level set M(t) is a
principal orbit of the cohomogeneity one action of G2. The level set is identified with G2/SO(3) and it is a
reflective submanifold of G̃r3(ImO). Note that G2/SO(4) ⊂ G̃r3(ImO) is non-reflective. Enoyoshi [36] studied
minimality and biharmonicity of M(t). She proved that

• M(t) is minimal if and only if t = 0. In such a case M(0) is austere.
• M(t) is proper biharmonic if and only if t = ±1/

√
10.

Remark 10.6. Urakawa proposed the following CR version of the generalized Chen conjecture:

Let M be a complete strongly pseudoconvex CR manifold, and (N,h) is a Riemannian manifold of
non-positive curvature. Then, every subelliptic biharmonic isometric immersion f : M → N must be pseudo-
harmonic.

On the other hand, in [23], we studied harmonicity and biharmonicity for smooth maps f : (N,h)→M . It is
not known whether the following statement is true.

Let M be a Sasakian manifold of constant ϕ-sectional curvature c ≤ −3. Then, every pseudo-Hermitian
biharmonic submanifolds in M is pseudo-Hermitian harmonic.
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