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In order to represent a respiratory system, a linear model has been applied and for 

comparison, the same linear model has been represented in terms of the fractional 

operators. In order to obtain fractional order simulations, a fractional order modeling 

toolbox, FOMCON, is used. By this manner, integer order and fractional order modeling 

performances are compared. For different parameter values that correspond to different 

scenarios, corresponding simulations are obtained and a comparison of parameter values 

and the integer and fractional order models are investigated. Then, a static model is used 

and simulated for different parameter values. Also, a stability analysis is implemented 

by investigating the bode plots of the static model. 

1. Introduction 

The human respiratory system is a complex network of organs and tissues responsible for the exchange of oxygen 

and carbon dioxide, essential for cellular respiration. It consists of the upper respiratory tract, including the nasal 

cavity, pharynx, and larynx, which filter, warm, and humidify incoming air, and the lower respiratory tract, 

comprising the trachea, bronchi, bronchioles, and lungs. Within the lungs, alveoli—tiny air sacs surrounded by 

capillaries—facilitate gas exchange via diffusion, where oxygen enters the bloodstream and carbon dioxide is 

expelled. The diaphragm and intercostal muscles regulate breathing through rhythmic contraction and relaxation, 

controlled by the medulla oblongata in response to blood CO₂ levels. This intricate system ensures oxygen 

delivery to tissues and the removal of metabolic waste, maintaining homeostasis and supporting life. 

The human respiratory system, responsible for the vital exchange of oxygen and carbon dioxide, has been 

extensively modeled to enhance our understanding of its intricate mechanics and physiological functions. These 

models range from simplified representations to complex, integrated systems that incorporate cardiovascular 

interactions and control mechanisms [16], [12]. Simplified models, for instance, focus on gas exchange dynamics 

within the lungs, exploring the relationship between molecular-level changes and alveolar partial pressure [12], 

[17]. Such models often revisit established assumptions, including the equivalence of airflow through the mouth 

and the rate of lung volume change, and the equilibrium status of oxygen-hemoglobin binding [12]. More 

comprehensive models aim to capture the interactions between the cardiovascular and respiratory systems, crucial 

for understanding the cardiopulmonary interplay [16]. These integrated models have been validated against 

human and animal data, providing a robust platform for studying short-term control mechanisms [16]. 

 

Computational models play a crucial role in consolidating experimental data obtained from diverse animal studies 

under varying conditions [13]. These models facilitate the investigation of respiratory network architecture and 

neural mechanisms, crucial for generating respiratory rhythm and patterns, and allow an understanding of how 
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these patterns reorganize under different physiological conditions [13]. The models are developed in parallel and 

iteratively with experimental studies and provide predictions guiding new experiments [13].  

Electrical circuit models offer a powerful and intuitive framework for simulating the complex dynamics of the 

human respiratory system, allowing researchers and clinicians to gain insights into its behavior under various 

physiological and pathological conditions [11]. By representing different components of the respiratory system, 

such as the lungs, airways, and respiratory muscles, as electrical elements like resistors, capacitors, and inductors, 

these models can mimic the flow of air and the exchange of gases in a way that is mathematically tractable and 

computationally efficient [12]. This approach facilitates the investigation of respiratory mechanics, gas exchange 

dynamics, and the neural control of breathing [13]. Such models provide a mathematical framework to link 

between "molecular-level" and "systems-level" models [12]. The transformation of the respiratory system into 

analogous electrical circuits is remarkably beneficial, facilitating the employment of well-developed circuit 

analysis methodologies to anticipate system responses across a spectrum of conditions, thus presenting a flexible 

instrument for both investigative pursuits and clinical implementations [12]. Furthermore, the ability to simulate 

respiratory function using electrical circuit models enables the exploration of different scenarios, such as 

mechanical ventilation, airway obstruction, and respiratory muscle fatigue. These simulations can help optimize 

ventilator settings, predict the effects of therapeutic interventions, and improve the management of respiratory 

diseases [13].  

 

The human respiratory system, characterized by its intricate network of airways and alveolar structures, exhibits 

complex impedance behavior that is not adequately represented by classical integer-order models. Fractional-

order circuits, employing elements with non-integer order derivatives and integrals, offer a more accurate and 

nuanced approach to capturing the system's dynamic characteristics. This enhanced accuracy stems from the 

ability of fractional-order models to represent the distributed nature of the respiratory system's components, such 

as the viscoelasticity of lung tissue and the varying diameter of the airways, with greater fidelity [14]. Fractional-

order models inherently possess memory effects, which are crucial for accurately simulating the respiratory 

system's response to varying breathing patterns and external stimuli [14]. By incorporating fractional-order 

elements, such as constant phase elements, these models can better capture the frequency-dependent behavior 

observed in respiratory impedance measurements, providing a more complete picture of the system's dynamics. 

Traditional modeling approaches often rely on simplified representations of the respiratory system, such as 

lumped parameter models, which may not fully capture the complexities of airflow and gas exchange [15]. 

Fractional-order models, on the other hand, offer a more flexible framework for incorporating these complexities, 

allowing for a more accurate representation of the system's behavior across a wide range of conditions [14].  

2. Human Respiratory System: Linear Model 

As described in the introduction part, electrical model of a respiratory system has benefits in terms of its simplicity 

and efficiency to apply different scenarios for an individual. There exist many different models for a respiratory 

system. In this work, a linear model is assumed with the following parameter values; 𝑅𝐶, fluid mechanical 

resistance in central airways, 𝑅𝑃, fluid mechanical resistance in peripheral airways, 𝐶𝐿, lung compliance, 𝐶𝑊, 

chest wall compliance, 𝐶𝑆, shunt compliance, 𝐿𝐶, inertance in central airways to gas flow. The details and 

description of the model can be found in [1] and for a detailed biological background of the respiratory system 

with other systems, one may see [20]. Please see Figure 1 for a circuit diagram of the considered model. If the 

Kirchoff’s first law is applied to the closed circuit, the following equation is obtained [1]. 

𝑅𝑃𝑄𝐴 + (
1

𝐶𝐿

+
1

𝐶𝑊

) ∫(𝑄𝐴)𝑑𝑡 =
1

𝐶𝑆

∫(𝑄 − 𝑄𝐴)𝑑𝑡 

The following equations are used to represent the inertance, Lc, to gas flow in the central airways: 

𝑃𝑎𝑤 =
1

𝐶𝑆
∫(𝑄 − 𝑄𝐴)𝑑𝑡 (1) 
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𝑃𝑎0 = 𝑄𝑅𝐶 +
1

𝐶𝑆
∫(𝑄 − 𝑄𝐴)𝑑𝑡 + 𝐿𝐶

𝑑𝑄

𝑑𝑡
 (2) 

By rearranging equations 1 and 2, we obtain the following equation: 

𝑃𝑎0 − 𝑃𝑎𝑤 = 𝐿𝐶

𝑑𝑄

𝑑𝑡
+  𝑄𝑅𝐶 . (3) 

The corresponding linear model and the circuit design are illustrated in Figure 1. For a healthy adult, the 

parameter values are assumed as 𝑅𝐶 = 1 𝑐𝑚𝐻2𝑂𝑠𝑙𝑡−1, 𝑅𝑃 = 0.5 𝑐𝑚𝐻2𝑂𝑠𝑙𝑡−1 , 𝐶𝐿 = 0.2 𝑙𝑡𝑐𝑚𝐻2𝑂−1, 𝐶𝑊 =

0.2 𝑙𝑡𝑐𝑚𝐻2𝑂−1 , 𝐶𝑆 = 0.005 𝑙𝑡𝑐𝑚𝐻2𝑂−1 and 𝐿𝐶 = 0.01 𝑐𝑚𝐻2𝑂 𝑠2𝑙𝑡−1.  In order to obtain respiratory breath 

rates, we adjust the amplitude to 2.5cm and frequency to 1.57 𝑟𝑎𝑑𝑠−1. Then, we obtain,  

 

1.57

2π 
= 0.25 𝐻𝑧 = 15 𝑏𝑟𝑒𝑎𝑡ℎ𝑠 𝑚𝑖𝑛−1  

Therefore, by adjusting frequency as 6.28, 12.56, 25.12, 50.24 and 100.48, we obtain 60, 120, 240, 480 and 960 

𝑏𝑟𝑒𝑎𝑡ℎ𝑠 𝑚𝑖𝑛−1, respectively. An individual has a respiratory rate per minute depending on his/her age and health 

condition [19]. A study discovered that just 33% of individuals arriving at an emergency department with an 

oxygen saturation below 90% exhibited an elevated respiratory rate [18]. Therefore, 15 and 30 𝑏𝑟𝑒𝑎𝑡ℎ𝑠 𝑚𝑖𝑛−1 

are considered and compared in this work.  

 
Figure 1. Circuit design representation of the linear model. The quantity 𝑃0=0.  

 

A patient with emphysema is represented with parameter values 𝐶𝐿 = 0.4 𝑙𝑡𝑐𝑚𝐻2𝑂−1 and 𝑅𝑃 =

7.5 𝑐𝑚𝐻2𝑂𝑠𝑙𝑡−1. As expected, and investigated from the simulation results with 15 𝑏𝑟𝑒𝑎𝑡ℎ𝑠 𝑚𝑖𝑛−1, airflow 

increases with the rapid breaths and then the patient cannot breath anymore and the tidal volume is not measured 

when the breathing stops (see Figure 2).  

 

 

Figure 2. Airflow and tidal volume graphs for a patient with emphysema with 15 breaths min-1  

In order to compare, the same model has been designed in terms of the fractional operator. In order to achieve 

this goal a fractional order modeling toolbox, FOMCON, [2] is used. FOMCON toolbox uses Caputo type 

fractional derivative which is defined as follows: [3],[4],[5]  
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Definition 1: Let 𝑓 ∈  𝐶−1
𝑚 , m ∈ N ∪ {0}. Then the left-sided Caputo fractional derivative of 𝑓 is defined as 

 

(4) 

Moreover, it is stated that [3],[4],[5], 

  

(5) 

Fractional order counterparts of the same model is simulated. In the literature, there exist some works that 

investigate the respiratory system dynamics using fractional order derivatives. To name a few of them, respiratory 

compartmental models [6], [7], data fitting [8] impedance [9] or state-space versions [10] of the electrical models 

can be mentioned. Therefore, the simulations can be repeated with an updated version of the toolbox and with 

different fractional order derivatives. In Figures 6 and 7, a comparison of the integer order derivatives and 

fractional order derivatives are represented. As can be seen from the figures, the healthy individual and the patient 

individual data differ in the cases where the integer order derivative and the fractional order derivative is used. 

When the real world case is considered, as can be compared from the plots, more realistic results are obtained.  

 
Figure 3. Pressure at the airway opening and volume graphs (from up to down) without proportional 

feedback effect for 15 and 960 𝑏𝑟𝑒𝑎𝑡ℎ𝑠 𝑚𝑖𝑛−1 (from left to right), respectively. 

 

 
Figure 4. Proportional feedback of the ventilator system [1]. 
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Figure 5. Pressure at the airway opening and volume graphs (from up to down) with proportional 

feedback effect for 15 and 960 𝑏𝑟𝑒𝑎𝑡ℎ𝑠 𝑚𝑖𝑛−1 (from left to right), respectively. 

In this work, a fractional derivative of order 0.5 is simulated and compared with the integer order derivative. In 

Figures 7 and 8, one may see the simulation results of integer order derivative and fractional order derivative.  

 
Figure 6. Air flow, tidal volume, pressure at the airway opening graphs of 30 𝑏𝑟𝑒𝑎𝑡ℎ𝑠 𝑚𝑖𝑛−1 for a healthy 

individual (up) and a patient with esophageal balloon (bottom) when integer order derivative is used. 
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Figure 7. Air flow, tidal volume, pressure at the airway opening graphs of 30 𝑏𝑟𝑒𝑎𝑡ℎ𝑠 𝑚𝑖𝑛−1 for a healthy 

individual (up) and a patient with esophageal balloon (bottom) when fractional-order derivative 0.5 is used. 

Then, a model of the respiratory gas exchange and respiratory control system, to determine the partial pressures 

of 𝑂2 and 𝐶𝑂2 in alveolar air for a given metabolic 𝐶𝑂2 production rate, metabolic 𝑂2 consumption rate is 

considered. Assume the metabolic hyperbola for 𝐶𝑂2 and for 𝑂2 are given as [1],  

 

𝑃𝐴𝐶𝑂2 = 𝑃𝐼𝐶𝑂2 +
863𝑉𝐶𝑂2

′

𝑉𝐴
′  (6) 

and 

𝑃𝐴𝑂2 = 𝑃𝐼𝑂2 −
863𝑉𝑂2

′

𝑉𝐴
′  (7) 

Parameter values can be assumed as; 𝑃𝐼𝑂2 = 150 𝑚𝑚𝐻𝑔, 𝑃𝐼𝐶𝑂2 = 0 𝑚𝑚𝐻𝑔, metabolic 𝐶𝑂2 production rate 

200ml/min, metabolic 𝑂2 consumption rate 200ml/min, 𝑉𝐷
′ = 1𝑙𝑡/𝑚𝑖𝑛. 

One may assume that [1],  

𝑃𝐴𝐶𝑂2 = 𝑃𝑎𝐶𝑂2 (8) 

and 

𝑃𝐴𝑂2 = 𝑃𝑎𝑂2 (9) 

and therefore only 𝑃𝐴𝑂2 versus 𝑃𝐴𝐶𝑂2 is displayed (see Figure 8). Moreover, for the given parameter values, 

steady-state values are obtained. For the given parameter values, the person is a healthy one with 𝑃𝑂2 = 99.9989. 

Then, the apneic threshold value is increased to 42 from 37. Then the steady-state value for 𝑃𝑂2  is obtained as 

94.1666. This indicates that the person is not able to take enough oxygen and the ventilation value is decreased 

to 5.4824 from 6.0056. If a gas mixture containing 7% 𝐶𝑂2 in air exist then the 𝑃𝑂2  value decreases to 66.5767. 

For frequency response and the stability of the model, a chirp signal is applied. The model is a static model and 
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to obtain a dynamic model, firstly an input-output model is obtained. Then in order to observe Bode plots, a chirp 

signal is applied. We apply the initial conditions as indicated earlier and from the plots, we observe that it is 

stable (see Figure 9). 

 
Figure 8. Graph of 𝑃𝐴𝑂2 versus 𝑃𝐴𝐶𝑂2. 

 

 

                     
Figure 9. Bode plots to check the stability of the system. 

 

3. Conclusions 

The modeling of the human respiratory system through fractional order circuits represents an advancement in 

biomedical engineering, bridging the gap between classical integer-order models and the complex, non-local 

behavior observed in actual pulmonary mechanics. By employing fractional calculus, researchers have captured 

the viscoelastic properties of lung tissue, the memory effects in airway resistance, and the frequency-dependent 
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behavior that integer-order models fail to adequately represent. Furthermore, the compact mathematical 

representation offered by fractional order models facilitates more efficient computational implementation while 

maintaining physiological relevance. As diagnostic technologies continue to advance, these models will likely 

play an increasingly crucial role in personalized medicine, offering clinicians powerful tools for patient-specific 

respiratory assessment, disease progression monitoring, and therapeutic intervention optimization. The 

integration of fractional order circuit models into clinical practice stands to increase our understanding and 

treatment of respiratory disorders by providing a more faithful representation of the underlying biophysical 

processes. 
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