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ABSTRACT

Space fractional differential operators are used to study long-range interactions, and time 
differential operators handle memory effects. A semi-infinite circular cylinder is taken into 
consideration to analyse both effects in a two-dimensional thermoelastic situation where heat 
conduction is influenced by internal heat generation. A prescribed jump function is applied to 
the bottom of the semi-infinite circular cylinder, and the time-dependent heat flux happens at 
the curved edge of the cylinder. The transformative approach of Laplace, Fourier, and Hankel 
was used to solve the governing equation of heat transfer with Caputo and the finite fractional 
derivatives of Riesz. The outcomes are expressed in terms of the Bessel function series. The 
numerical calculations are performed with the material properties of pure copper, and the 
graphical representations of the thermal distributions are successfully plotted.
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INTRODUCTION

Many academics and mathematicians have success-
fully modified numerous previous models of physical phe-
nomena using calculus with fractions during the past few 
decades. Currently, an exciting and relevant subject in the 
study of thermoelasticity research is the modelling of the 
partial differential thermal equation of fractional order 
(both in time and space). The main advantage of fractional 
derivatives is that they are capable of evaluating the transfer 
properties of many types of materials and processes. The 
general development of fractional derivatives can be found 
in many books and encyclopaedias by eminent researchers, 
such as [1–7].

In the study of thermoelasticity of various solids of frac-
tional order, two types of fractional operators are used: time 
fraction and space fraction. Time fractional operators deal 
with the memory behaviour, while space fractional opera-
tors deal with the interaction over long ranges. A number 
of studies on memory analysis have been reviewed in recent 
years by many renowned researchers, such as Povstenko 
[8-12], Ezzat et al. [13-15], Caputo and Mainardi [16, 17], 
Said et al. [18], Sherief and Raslan [19, 20], Lamba [21], 
Lamba and Deshmukh [22, 23], Kumar and Kamdi [24], 
Verma et al. [25], Youssef [26], and Abouelregal [27]. In 
order to investigate the mixed bio-convection flow of a 
nano-fluid containing gyrotactic microorganisms and the 
mixed convective flow of a micropolar nano-fluid, Rashad 

https://jten.yildiz.edu.tr
https://orcid.org/0000-0002-6283-1681
http://creativecommons.org/licenses/by-nc/4.0/


J Ther Eng, Vol. 11, No. 1, pp. 240−253, January, 2025 241

et al. [28-30] presented the cylinder problem. The effects 
of chemical reactions on unsteady MHD fluid flow on an 
infinite vertical plate embedded with porous material and 
variable suction were numerically investigated by Murali et 
al. [31, 32].

Compared to temporal modelling, there are only a few 
studies dealing with long-range interaction due to the com-
plexity of the analytical response of heat with fractional 
derivatives of Caputo and Riesz. El-Sayed and Gaber [33] 
explained some important properties of fractional deriva-
tives of Caputo and finite Riesz type and presented the solu-
tion of partial diffusion differential equations. The empirical 
response for the thermoelastic one-dimensional space-time 
fractional issues was found by Fil’Shtinskii et al. [34] in half-
space using the integral transform method. Ciesielski and 
Leszczynski [35] studied the stationary one-dimensional 
fractional order numerically based on the finite difference 
method. Momani [36] solved the spatiotemporal fractional 
diffusion wave in the context of Caputo sense in a confined 
spatial domain. Povstenko [37] formulated the thermal 
stress equations for the generalised Telegraph equation with 
fractional derivatives of time-spatial order and presented 
a solution for the nonhomogeneous axisymmetric case. 
Assiri [38] performed the numerical study considering the 
one-dimensional time-spatial variable nonlinear fractional 
thermoelasticity using the finite nonstandard difference 
approach. The two-dimensional structures space-time frac-
tional heat conduction problem was quantitatively exam-
ined by Ozdemir et al. [39] with second order space and 
time variables in place of anomalous diffusion. In order 
to investigate the thermal diffusion responses, Atta [40] 
took into account the Atangana-Baleanu fractional variable 
problem of an unbounded medium with a spherical cavity. 

In the context of a generalised concept of thermoelas-
ticity based on memory dependent components with time 
delay effects, Abouelregal et al. [41–44] have accomplished 
some outstanding work. Very recently, Lamba et al. [45] 
successfully investigated the response of space-time frac-
tional order thermoelastic response in a layer and deter-
mined temperature and stress function.

The evolution of memory-containing systems, which 
are usually complex and dissipative systems, can also be 
well described by the study of fractional order theory. 
However, based on the review of the literature, it seems that 
only one-dimensional heat conduction problems involving 
fractional space-time derivatives have been studied using 
numerical methods up to this point. The implications of 
memory and long-range interaction in two-dimensional 
thermoelasticity have not been examined till date in the 
analytical or computational elements of the field. In con-
trast, the study of different solid bodies based on memory 
and long-range interactions is very beneficial and urgently 
required in order to build different material structures, 
particularly in high-heat engineering applications such as 
aerospace and space research.

Hence to overcome the gap of research the author 
motivated to construct a mathematical model by consid-
ering a massive circular cylinder of infinite length with a 
quasi-static approach under both memory and long range 
interaction effect. To solve the evolved system of fraction-
ally ordered heat equation the integral transform method 
is used, and the results obtained analytically are measured 
numerically for a cylinder of pure copper material and pre-
sented graphically. Researchers in the material sciences, 
those developing new materials, and those advancing the 
theory of thermoelasticity using a quasi-static method uti-
lizing fractional calculus may find great value in this work. 
Finally, the main objective or aspect of the current effort 
is to understand how memory and long-range interactions 
affect the thermal behaviour of a two-dimensional solid 
with certain boundaries. 

MODELING OF THE THERMOELASTIC PROBLEM

To examine the exact thermal behaviour, the spatiotem-
poral fractional nonhomogeneous boundary region val-
ued problem of heat conduction in a semi-infinite circular 
cylinder with extension 0 ≤ r ≤ b, 0 ≤ z < ∞ is taken into 
account together with heat generation g(r,z,t). (The physical 
structure of the potential problem is shown in Fig. 1.) The 
jump function P(t) is prescribed on the bottom surface (z 
= 0) of a semi-infinite circular cylinder, and a time-depen-
dent heat flux f(z,t) is applied at the curved circular bor-
der (r = b). The integral transform approach is employed 
to solve the governing heat transfer, which has Caputo and 
Riesz’s finite fractional derivatives. 

This type of modeling by mathematical approach will 
be beneficial in solving engineering challenges, mostly in 

Figure 1. Geometry of a space-time semi-infinite cylinder.
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the development of new structural materials. Researchers 
studying materials, developing new materials, and attempt-
ing to improve the theory of thermoelasticity using a qua-
si-static approach and fractional calculus may also find the 
outcomes obtained in this article useful.

Space-time Fractional Heat Transfer Equation
The semi-infinite circular cylinder’s temperature with 

space-time fractional-order derivatives satisfying the dif-
ferential equation,

  

(1)

 Initial and boundary constraints as 

   (2)

   
(3)

   (4)

   
(5)

Here T(r,z,t) denotes the temperature, K and a are, 
respectively, the material’s thermal conductivity & ther-
mal diffusivity, P(t) denotes the prescribed jump function,  
g(r,z,t)/ K denotes a rate at which heat is produced inside 
the cylinder and f(z,t) denotes the applied time-dependent 
heat flux.

In the formation of heat equation (1), both space-time 
fractional-order derivatives are assumed here ∂α / ∂tα stands 
for Caputo type time fraction derivation of order α and ∂β / 
∂zβ represent the Riesz space fraction derivation of order β. 
Many complicated systems, including the multi-scaling of 
time and spatial variables, exhibit aberrant behaviour that 
can be explained by this kind of assumed modelling. 

Hence, these kinds of thermoelastic problems can be 
used to study the dynamics of viscoelastic materials like 
polymers, the atmosphere’s pollution diffusion, cell-diffu-
sion processes, signals theory, control theory, electromag-
netic theory, etc.

Displacement Potential and Thermal Stresses
The displacement temperature relationship for thin cir-

cular cylinders within the framework of two-dimensional 
thermoelasticity takes the following form [46]:

  (6)

  (7)

where U denotes the component of displacement, e 
denotes dilation, v and at, respectively, stands for notation 
of Poisson’s ratio & thermal expansion coefficient of the 
copper pure material cylinder.

Introducing 

  (8)

One have 

  
(9)

where δik represents the Kronecker delta sign and µ is 
the Lame constant.

For axial symmetry case

  (10)

The displacement potential function Ω’s differential 
equation is written as

  
(11)

The stress components σrr and σθθ are expressed as

  
(12)

  
(13)

The state of traction free surface r = b can be taken as

   (14)

Additionally, inside the circular cylinder, in the planar 
condition of stress

 

Therefore, for it to assess the displacement and thermal 
stress expressions in the assumed domain, it is essential 
to first study the temperature distribution function from 
equation (1) with conditions (2) to (5).

Equations (1) to (14) show the mathematical modelling 
of the two-dimensional space-time fraction problem of 
thermoelasticity under investigation.

Solution of Space-time Fractional Heat Transfer Equation
To simplify the transfer of heat stated in equation (1) 

with space-time derivatives of fractional order, the first 
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definition of Caputo fractional derivative of function T(t)
is defined as in Povstenko [5]:

with the rule of Laplace transform as

   
(15)

where, s is the parameter and n is a positive integer and 
p = 1, 2, 3, ..., n-1.

On applying the transform specified in equation (15) to 
(1) and using the corresponding initial conditions (4) and 
(5), one obtains

   
(16)

In Laplace’s domain, the boundary conditions change to

   (17)

   
(18)

Secondly, for the variable z, we express the finite Fourier 
integral transform and its inverse formula over the range 0 
≤ z < ∞ as

   
(19)

   
(20)

 

where

 

Equation (1) contains the Riesz space fraction deriva-
tion of order β, which is expressed below using [3].

   

(21)

where the fractional integrals of Riemann-Liouville 
with (2 - β) > 0 are

  
(22)

   
(23)

and the sin-Fourier transform of equations (22) and 
(23) written as

  
(24)

  
(25)

 

 On utilizing the standard results and definition stated 
above (in equations (19) and (21) to (25)) to (16) and using 
the corresponding conditions (17), one obtains

  
(26)

and transformed boundary becomes 

   
(27)

Over the variable r in the range 0 ≤ r ≤ b, the Hankel 
transform and its inverse transform are described as

  
(28)

  
(29)

where 

  
(30)

here β1, β2, β1, ... are the roots of the transcendental 
equation

  (31)
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The below result is obtained by employing the integral 
transform stated in equation (28) to the system of equations 
(26) and (27).

  
(32)

where

 

The final expression of temperature is obtained by 
inverting the Laplace, Fourier, and Hankel transformations. 
By employing the inversion formula stated in equations 
(20) and (29) to (32), one obtains

  
(33)

where

Eα,α
 denotes the generalized Mittag-Leffler function.

Determination of Displacement and Thermal Stresses
Equation (33) in formula (11) yields

  
(34)

Following the standard result

By resolving equation (34) as follows, one gets the 
expression of the displacement potential function

  
(35)

 

 The radial stress function and the angular stress func-
tion are expressed using equation (35) in equations (12) 
and (13), respectively.

  
(36)

  
(37)

Special Case

where ω = 10 > 0, δ represents the Dirac-delta function, 
and r is the radii expressed in metres.

At time t → τ = 1, heat is released instantly from the heat 
source g(r,z,t), a significant Instantaneous point heat source 
positioned in the centre of a semi-infinite circular cylinder 
in the radial direction r.

Dimensions
A semi-infinite solid cylinder radius is set at b = 3m, 

and a semi-infinite circular cylinder’s central circular paths 
are taken into account while setting r1 = 1.5m.

Material Properties
A thin circular copper (pure) cylinder has been numer-

ically calculated with the following material characteristics 
[46]:

Numerical Analysis
For the purpose of calculating numerically this prob-

lem, the following dimensionless variables are introduced.

It is far more difficult to solve differential equations of 
fractional (or non-integer) order accurately, consistently, 
and efficiently than it is to solve them in the typical inte-
ger-order case. Moreover, most computer tools do not pro-
vide built-in methods for solving problems of this type. 
So in this study, we use Mathematica software to perform 
numerical calculations by applying the proposed special 
case, setting the dimensions for the thin circular cop-
per (pure) cylinder material characteristics, and creating 
dimensionless forms for all the variables.

All these numerical investigations were observed for all 
variables to analyse the effects of space-time breaking in a 
solid cylinder. These calculations are shown in the corre-
sponding figures. Figures 2–6, respectively, show the com-
putational outcomes for the dimensionless temperature 
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distribution and the dimensionless radial and angular stress 
distribution along the time, radius, and thickness directions 
for different values subjected to applied boundaries and 
heat generation.

Figures 2(a), 2(b), and 2(c), respectively, represent the 
memory response of the dimensionless temperature, radial 
stress, and angular versus time (at fixed r = 0.5, z = 1) for 
various values of α(β = 2). Initially, the temperature, radial 

Figure 2. (c) Nondimensional angular stress distribution versus time (at r = 0.5, z = 1) for various values of α(β = 2).

Figure 2. (b) Nondimensional radial stress distribution versus time (at r = 0.5, z = 1) for various values of α(β = 2).

Figure 2. (a) Nondimensional temperature distribution versus time (at r = 0.5, z = 1) for various values of α(β = 2).
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stress, and angular stress functions are zero; further tem-
perature and radial stress increase with time, while vice 
versa in angular stresses. For the small value of the time 
fraction parameter, a larger distribution of temperature 
variation is observed, whereas equilibrium in radial and 

angular stresses occurs for the small value of the time frac-
tion parameter as compared to the higher values. Also, 
temperature and stress variations exhibit uniform flow 
behaviour with respect to time for the fractional-order 
parameter values of α = 0.5, 1, 1.5, 2.

Figure 3. (c) Nondimensional angular stress distribution versus time (at r = 0.5, z = 1) for various values of β(α = 1).

Figure 3. (b) Dimensionless radial stress distribution versus time (at r = 0.5, z = 1) for various values of β(α = 1).

Figure 3. (a) Dimensionless temperature flow versus time (at r = 0.5, z = 1) for various values of β(α = 1).
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Figures 3(a), 3(b), and 3(c), respectively, represent the 
long-range interaction impact on non-dimensional tem-
perature, radial stress, and angular versus time (at fixed r = 
0.5, z = 1) for various values of β(α = 1). At t = 0 tempera-
ture, radial stress and angular stress functions are zero; fur-
ther temperature increases with passage of time, whereas 
angular stress decreases with increase in time. Radial stress 

function increases with time, reaches its peak at t = 2, and 
afterwards is found to be decreasing. The larger distribution 
in temperature and stresses is observed for a small value of 
the space-fraction parameter β. Significant discrimination 
in temperature and stress variations occurs only for high 
values of time and spatial variables. Hence, it can be con-
cluded that the temperature flow and stress dispersion not 

Figure 4. (c) Nondimensional angular stress distribution versus radius (at t = 1, z = 1) for various values of α(β = 2).

Figure 4. (b) Nondimensional radial stress distribution versus radius (at t = 1, z = 1) for various values of α(β = 2).

Figure 4. (a) Nondimensional temperature distribution versus radius (at t = 1, z = 1) for various values of α(β = 2).
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only depend on the neighborhood values of a selected point 
but also depend on remote points.

Figures 4(a), 4(b), and 4(c), respectively, show the mem-
ory response of the non-dimensional temperature, radial 
stress, and angular stress versus radius (at fixed t = 1, z = 
1) for various values of α(β = 2). From all the plotting, it is 
found that the maximum distribution of temperature and 

stresses is observed in the midpoint of the solid cylinder due 
to the strength of the instantaneous point heat source at r = 
1.5, and on the outer radii r = 3, the variation in temperature 
and stresses is zero. Also, temperature and stress variations 
exhibit non-uniform flow behaviour with respect to radius 
for weak, normal, and superconductivity. Further elevation 
in distribution occurs for small fractional parameter values; 

Figure 5. c) Nondimensional angular stress distribution versus radius (at t = 1, z = 1) for various values of β(α = 1).

Figure 5. (b) Nondimensional radial stress distribution versus radius (at t = 1, z = 1) for various values of β(α = 1).

Figure 5. (a) Nondimensional temperature distribution versus radius (at t = 1, z = 1) for various values of β(α = 1).
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hence, a significant impact of time-fractional is noted along 
the radial direction for thermal variation.

Figures 5(a), 5(b), and 5(c), respectively, show the long-
range interaction impact on the non-dimensional tem-
perature, radial stress, and angular stress versus radius (at 
fixed t = 1, z = 1) for various values of β(α = 1). From all 

the plotting, it is cleared that the maximum distribution 
of temperature and stresses is observed in the middle of 
the solid cylinder due to the strength of the instantaneous 
point heat source at r = 1.5, and on the outer radii r = 3, 
variation in temperature and stresses is zero. Further, a sig-
nificant impact of space-fractional parameters is obtained 

Figure 6. (c) Nondimensional angular stress distribution versus thickness (at t = 1, r = 0.5) for various values of α(β = 2).

Figure 6. (b) Nondimensional radial stress distribution versus thickness (at t = 1, r = 0.5) for various values α(β = 2).

Figure 6. (a) Nondimensional temperature distribution versus thickness (at t = 1, r = 0.5) for various values α(β = 2).
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from plotting of temperature and stress functions radially. 
A sufficient discrimination in thermal curve variation 
is observed for different values of β in temperature and 
radial stress variation. Radial and angular stresses increase 
gradually with an increase in radius, reaching their peak 
at the midpoint and becoming zero at the outer radii. The 

resultant curve variation is found to be smoother for the 
greater space-fractional fractional parameter.

Figures 6(a), 6(b), and 6(c), respectively, show the mem-
ory impact on the non-dimensional temperature, radial 
stress, and angular stress versus thickness (at fixed t = 1, z 
= 1) for various values of β(α = 1). Variation in temperature 

Figure 7. (c) Nondimensional radial stress distribution versus thickness (at t = 1, r = 0.5) for various values of β(α = 1).

Figure 7. (b) Nondimensional radial stress distribution versus thickness (at t = 1, r = 0.5) for various values of β(α = 1).

Figure 7. (a) Nondimensional temperature distribution versus thickness (at t = 1, r = 0.5) for various values of β(α = 1).
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and thermal stresses increases slowly on moving from lower 
to upper surfaces, and sufficient discrimination in the plot-
ting of curves is noted for large thicknesses. Hence, it can be 
concluded that a memory response is sufficiently affected by 
a large thickness for different time-fractional parameters.

Figures 7(a), 7(b), and 7(c), respectively, represent the 
long-range interaction impact on the non-dimensional 
temperature, radial stress, and angular stress versus thick-
ness (at fixed t = 1, z = 1) for various values of β(α = 1). 
Temperature increases rapidly with thickness for different 
space fractions, whereas radial stress and angular stress 
decrease initially with an increase in thickness until z = 1.25 
and then increase towards the upper plane surface. A suffi-
cient impact of space fractional values is observed for all the 
plots moving from the lower to the upper face of the cylin-
drical region. Also, a longer interaction in radial stresses is 
obtained as compared to angular stress distribution along 
thickness direction.

The global tendency is predicted by the fractional-or-
der derivative heat equation for space and time. The clas-
sical equation of heat conduction for the fractional value 
of space-time fractional derivatives is interpolated using 
both the wave equation and the local diffusion equation. 
Furthermore, as a result of the fractional order theory, the 
non-local operator anticipates a delayed reaction to natural 
physical stimuli, in contrast to the instantaneous response 
to the non-localized generalised theory of heat conduc-
tion. In order to better simulate real-world thermoelastic 
behaviour in the model, space-time fractional-order deriv-
atives studies for various solids are useful in capturing the 
true behaviours of materials.

The Series Solution Converges
Let’s examine at the manner in which the series solution 

converges.

Then 

We have

 

This implies T converges for all r > 0.

RESULTS AND DISCUSSION

In this manuscript, a two-dimensional quasi-static 
thermoelastic problem of a time-spatially fractional 

semi-infinite solid circular cylinder with derivatives 
Caputo’s and Riesz fractional order is mathematically mod-
elled. The solution of the governing heat transfer with an 
internal heat source is studied using the transformative 
approaches of Laplace, Fourier and Hankel and satisfies 
the corresponding applied bounds. The thermal behaviour 
modelled successfully illustrates the memory and remote 
interaction in the temperature distribution, radial and 
angular stress for different space-time fraction parameters 
along the time, radius and thickness directions. Boundary 
cases of the work, such as the wave equation, Laplace’s 
equation, and diffusion equation, can also be studied and 
verified using numerical representations.

CONCLUSION

The main observations of the work are discussed down:
1. By fixing β = 2 and α = 0 equation (1), describe the 

Laplace equation, and its solution and thermal fluctu-
ation within predetermined boundaries can be easily 
examined from the analytical part above.

2. For β = 2 and α = 1 equation (1) reduces to the classical 
diffusion equation, and for β = 2 and α = 2 equation (1) 
describes a wave equation. In both the equations, vari-
ation of temperature, radial stress, and angular stress 
are successfully investigated and examined in the above 
numerical computation with respect to time, radius, 
and thickness direction. 

3. For 0 < α < 1; 1 < α < 2 and β = 2 equation (1) gives 
the diffusion equation based on time-fractional, and the 
impact of memory can be easily seen in temperature and 
stress distributions, as discussed in graphical plotting.

4. For 1 < β < 2; and α = 1 (1) gives the diffusion equation 
based on space-fractional, and the effect of long-range 
interaction in temperature and stress distributions is 
successfully described in numerical computation.

5. For α = 1, β = 1 and α = 1, β = 1.5 equation (1) represents 
the interpolation behaviour for temperature and stress 
functions. 

6. For 1 < α < 2; 1 < β < 2 equation (1) shows the diffu-
sion equation based on both space-time fractional, and 
in this range both memory and long-range interaction 
impact are successfully studied for a two dimensional 
circular solid with heat generation.

7. A significant impact of temperature, radial and angular 
stress distribution is noted for different space-time frac-
tional parameters on varying time, radius, and thick-
ness. Hence, it can be concluded that both space and 
time fractional order parameters may contribute to an 
important factor in the classification of material prop-
erties and be useful in physical processing.

8. The response obtained in this study predicts desired 
delayed responses to physical stimuli found in nature.
In this study, we have determined both delayed and 

long-range interactions in a solid circular cylinder for weak, 
intermediate, and superconductivity. Thermal effects are 
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also investigated and successfully presented for the two-di-
mensional problem with semi-infinite length. The results of 
the study may be useful for the structural design of various 
objects used in the physical processing of many engineering 
applications.

NOMENCLATURE

T(r,z,t) Temperature, 
K Material’s thermal conductivity 
a Thermal diffusivity
P(t) Jump function
g(r,z,t)/ K Rate at which heat is produced inside the 

cylinder 
f(z,t) Time-dependent heat flux
∂α / ∂tα Caputo type time fraction derivation of order α
∂β / ∂zβ Riesz space fraction derivation of order β
U Component of displacement
e Dilation
v Poisson’s ratio 
at Thermal expansion coefficient 
δik Kronecker delta 
µ Lame constant
Ω Displacement potential function
σrr Radial stress 
σθθ Angular stress 
Eα,α Mittag-Leffler function
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