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ABSTRACT

A novel approach is formulated to scrutinize the stagnation point flow of chemically react-
ing Casson fluid past a convective stretching sheet. Additionally, the combined impact of a 
non-uniform heat source/sink and variable thermal conductivity on the fluid flow is exam-
ined. With the aid of a suitable similarity transformation, the governing partial differential 
equations are transmogrified into corresponding ordinary differential equations. bvp4c, an 
in-built technique of MATLAB, is implemented to acquire the numerical solutions. The ap-
purtenant parameters that exert influence on the concentration distribution, temperature 
distribution, and velocity profile are depicted graphically. The effects of various physical pa-
rameters such as Casson fluid parameter, magnetic field parameter, Prandtl number, Schmidt 
number, Eckert number, Biot number, variable thermal conductivity parameter, non-uniform 
heat source/sink parameters and velocity slip parameter are shown in plots for several ranges 
of values. In a constrained scenario, the accuracy and validity of the numerical technique uti-
lized are justified by analogizing the procured outcomes with the pre-existing results in the lit-
erature. The influence of pertinent parameters that regulate the Nusselt number, skin friction 
coefficient, and Sherwood number is presented in tabular form. An upsurge in the variable 
thermal conductivity parameter reduces the temperature for internal heat generation, but for 
internal heat absorption, it diminishes the temperature adjacent to the wall and skyrockets the 
temperature far away from the wall. This current study is of immediate interest in the field of 
the aerospace industry due to the indispensability of variable thermal conductivity in lunar 
soft lander technology.
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INTRODUCTION

On account of their prominence in physiological fluid 
dynamics as well as in the study of industry and engineer-
ing, various scientists expatiated about the flow dynamics 
of stagnation point under different circumstances. Over the 
last few years, the evaluation of stagnation flow towards a 
stretching surface has primarily been under consideration 
with the stipulation that, on its own plane, it is presumed 
that the velocity with which the sheet stretches is propor-
tionate to the distance from the stagnation point. Such 
flows past stretching sheets often occur in engineering 
processes. Knowledge of the stagnation flow assists in the 
design of thrust bearings and radial diffusers, drag reduc-
tion, transpiration cooling, as well as thermal oil recovery. 
Moreover, the production of polymer sheets by continuous 
extrusion stands as an exemplar for its application in the 
manufacturing industry. Crane [1] was the instigator who 
analytically obtained the closed-form similarity solution of 
two-dimensional flow, which is attributable to the stretch-
ing plate. This groundbreaking investigation by Crane [1] 
has fascinated many authors. One of them was Chiam [2], 
who synthesized the stagnation point fluid flow from the 
stretching plate problem. He concluded that the flow in the 
proximity of the stretching surface is similar to the distant 
inviscid fluid flow from the plate; inevitably, there is no 
development of a boundary layer. Analytically, the problem 
of quadratically stretching sheet was elucidated by Kumaran 
and Ramanaiah [3]. The definitive Crane problem [1] was 
interpreted in their study as an incompressible viscous 
fluid. Pioneering work in heat transfer analysis incorpo-
rating thermal radiation was carried out by Raptis [4]. A 
typical aspect of all the above-mentioned assessments is the 
presupposition that the conventional no-slip condition is 
adhered to by the flow field at the sheet. In certain situa-
tions, nevertheless, a partial slip boundary condition must 
be utilized as the assertion of no slip no longer holds. C. L. 
M. H. Navier was the one who first proposed this slip-flow 
condition more than a century ago, and such a slip con-
dition has been utilized recently in fluid flow studies over 
coated and rough surfaces, permeable walls, slotted plates, 
and liquid and gas flows in microdevices. This motivated 
Andersson [5] to derive the solution of viscous partial slip 
flow across a stretching sheet analytically.

Mahapatra and Gupta [6] deduced that the outcomes 
were contrary to those of Chiam [2]. It was asserted by them 
that a viscous layer emerges close to the stretching surface, 
and the framework of the boundary layer in the vicinity 
of the stagnation point relies upon “the velocity ratio of 
the stretching surface to that of the frictionless potential 
flow.” Paullet and Weidman [7] numerically deduced the 
stagnation-point solution of flow across a stretching sheet. 
In partial differential equations (PDEs) form, Wang [8] 
demonstrated the Navier-Stokes system for the stagnation 
flow. More specifically, numerous metallurgical proce-
dures involve the process of cooling. This is achieved by 

drawing the continuous filaments or strips through a qui-
escent fluid; occasionally, stretching of these strips occurs 
during the drawing process. The cooling rate has a signif-
icant impact on the final product’s qualities when copper 
wires are annealed and thinned. The cooling rate can be 
restrained, and the desired final products may be earned. 
This is achieved by pulling the strips in an electrically con-
ducting fluid with the application of a magnetic field [9]. 
With these in mind, Ishak et al. [10] numerically enunci-
ated the stagnation point flow with the incorporation of a 
magnetic field via the Keller-Box method. The prominence 
of stagnation point flow in the field of hemodynamics was 
emphasized by Misra et al. [11]. The model proposed by 
them not only finds applications in species separation and 
drug delivery but also stands as a complement to studies 
on microcirculatory systems. Under the existence of a heat 
source/sink, heat transfer across a stretching sheet on MHD 
stagnation point flow was analyzed by Agbaje et al. [12]. 
In their survey, results were procured by employing the 
Chebyshev spectral method-based perturbation technique 
and the Spectral Quasi-Linearization Method (SQLM). 
Further, it is figured out that the temperature amplifies 
with an upsurging heat source/sink parameter. Recently, 
Ghasemi and Hatami [13] scrutinized the consequence of 
incorporating thermal radiation on the stagnation point 
fluid flow across a stretching sheet. “It is often argued that 
heat transfer, mass deposition, pressure, and other parame-
ters are at their highest rates near the stagnation point.” [14]

“All the above investigations are, however, confined to 
flows of Newtonian fluids. In recent years, it has generally 
been recognized that in industrial applications, non-New-
tonian fluids are more appropriate than Newtonian fluids. 
For instance, in certain polymer processing applications, 
one deals with the flow of a non-Newtonian fluid over a 
moving surface. That non-Newtonian fluids are finding 
increasing application in industry has given impetus to 
many researchers.” Casson fluid is the most crucial type 
among various non-Newtonian fluids [15]. “Examples of 
Casson fluid include jelly, tomato sauce, honey, soup, and 
concentrated fruit juices, etc. Human blood can also be 
treated as Casson fluid.” Leveraging the Homotopy Analysis 
Method, Mustafa et al. [16] procured the solution of Casson 
fluid flow adjacent to the stagnation point across stretch-
ing surfaces analytically. They furnished the outcomes per-
taining to a unique situation where the Casson parameter 
goes to infinity. In fluid mechanics, as the name suggests, 
viscous dissipation occurs by virtue of viscous stresses and 
is the eradication of fluctuating velocity gradients. This 
partially irreversible process transforms the fluid’s kinetic 
energy into internal energy. It was concluded by Mustafa 
et al. [16] that the Eckert number (viscous dissipation 
parameter) augments the temperature. Bhattacharyya 
[17] inquired about heat transfer at the stagnation point 
of Casson fluid flow past a shrinking/stretching sheet. He 
employed the classical Runge-Kutta RK4 shooting tech-
nique, out of which he stated that “the range of velocity 
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ratio parameter for which similarity solution exists is unal-
tered for any change in Casson parameter.” Exact solutions 
were procured for the heat transfer effects across a stretch-
ing sheet by Mukhopadhyay et al. [18] and Bhattacharyya 
et al. [19]. Ultimately, they inferred that the impact of rising 
values of the Casson parameter depletes the velocity, but on 
the contrary, the temperature is augmented. Bhattacharyya 
[20] “considered two-dimensional magnetohydrodynamic 
stagnation point flow of an electrically conducting Casson 
fluid and heat transfer due to a stretching sheet under the 
effect of thermal radiation.” It was alluded by them that the 
fluid’s velocity depreciates with augmenting velocity ratio 
parameter. Kameswaran et al. [21] emphasized the signif-
icance of stagnation point flow on the simultaneous heat 
and mass transfer problem beyond a shrinking/stretching 
sheet. He employed the MATLAB bvp4c ODE solver for 
a Casson fluid flow and declared that an escalation in the 
stretching ratio upsurges the fluid velocity, which conse-
quently diminishes the concentration. Of late, Lund et al. 
[22] reinspected the impact of viscous dissipation and radi-
ation of stagnation point Casson fluid flow towards shrink-
ing/stretching surfaces. Observations made by them stated 
that the temperature skyrocketed with an escalating Eckert 
number and radiation.

All the aforementioned studies were accomplished by 
taking into consideration that the fluid exhibits constant 
physical properties, but pragmatic circumstances necessi-
tate variable physical properties [23]. “Thermal conduc-
tivity is one of such properties, which is assumed to vary 
linearly with the temperature. The variation in conductiv-
ity considered as a function of temperature is seen to be 
approximately linear as shown in Kays and Crawford [24], 
in the range of temperatures 0°F to 400°F.” [25] A “semi-em-
pirical formula” of the aforementioned form for the thermal 
conductivity was extrapolated and solved using the regular 
perturbation technique by Arunachalam and Rajappa [26]. 
Chiam [27] obtained both closed-form analytical solutions 
and numerical solutions of stagnation point flow accom-
panied by variable thermal conductivity past a stretching 
sheet. A similar work to [27] was carried out by Chiam [28], 
in which he analysed the influence of variable thermal con-
ductivity on flow along a linearly stretching sheet. Unlike 
[27], in [28], it was concluded that a copious amount of 
computational work was minimized by the employment of 
the Runge Kutta algorithm-based shooting technique. Over 
a decade later, Sharma and Singh [29] inspected the conse-
quences of variable thermal conductivity by incorporating 
a magnetic field in the vicinity of a stagnation point across 
a linearly stretching sheet. He exploited a fourth-order 
Runge-Kutta-based shooting scheme and reported that the 
Hartmann number tends to proliferate with temperature. 
The above-mentioned studies on variable thermal conduc-
tivity did not focus on non-Newtonian fluids. This moti-
vated Venkateswarlu and Satya Narayana [30] to assess the 
effect of Casson fluid flow with variable thermal conductiv-
ity and viscous dissipation over a stretching sheet under the 

existence of mass transfer. Numerical computations were 
carried out by them, and they stated that the temperature 
enhances with augmenting Eckert number and Casson fluid 
parameter. Modern research by Yu et al. [31] showed that it 
is necessary for the lunar lander to dissipate heat during the 
lunar day for the purpose of maintaining the instrument 
module warm during the lunar night. This could only be 
accomplished by variable thermal conductivity. This essen-
tiality of variable thermal conductivity in the technology of 
lunar soft landers serves as evidence for its indispensabil-
ity in the field of the aerospace industry. In the recent past, 
Dhange et al. [32] inspected variable thermal conductivity 
effects on MHD Casson fluid flow across a stretching sheet.

Due to the overwhelming practical applications of heat 
source/sink, it is noteworthy to consider their impact on 
heat transfer processes [33, 34]. Though heat source/sink 
have a uniform rate within the conducting medium [35], 
in many situations of practical importance, it is often 
argued that the temperature-dependent and space-depen-
dent modes are the two acceptable modes of heat source 
and heat sink. Even though its influence may be regarded as 
constant, some scientists claim it to be varying or non-uni-
form. Initial studies by Abo-Eldahab and El Aziz [36] were 
carried out on the impact of non-uniform heat source, but 
were constrained to Newtonian fluids. Under the impinge-
ment of internal heat absorption/generation, it was declared 
by them that an upsurge in magnetic parameter decreased 
the Nusselt number and friction factor. Motivated by the 
preceding article under discussion, Abel and Mahesha [37] 
explored the viscoelastic fluid flow past stretching surfaces 
by incorporating a non-uniform heat sink/source (internal 
heat absorption/generation) together with variable thermal 
conductivity. Additionally, it was concluded by them that 
“the effect of space and temperature dependent heat source/
sink parameters is to generate temperature for increasing 
positive values and absorbs temperature for decreasing 
negative values.” Moreover, under the prescribed surface 
temperature, the variable thermal conductivity parameter 
resulted in an upsurge in temperature. We will, however, 
not repeat this analysis here. Nevertheless, this investigation 
by Abel and Mahesha [37] stands as evidence for the com-
bined existence of variable thermal conductivity together 
with a non-uniform heat sink/source in the fluid flow. Later, 
Monica and Sucharitha [38] scrutinized the non-uniform 
heat source/sink for different fluids and under different 
geometry. It was inferred by them that, upon the existence 
of internal heat absorption/generation, escalating values of 
the Casson fluid parameter amplified the temperature. A 
recent numerical analysis was undertaken by Li et al. [39] 
on the Casson nanoparticles in the vicinity of the stagna-
tion point, together with internal heat absorption/genera-
tion and viscous dissipation. It is obvious that the results 
obtained from the shooting technique graphically represent 
that the velocity diminishes as the Casson fluid parameter 
shoots up.
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“Convective heat transfer studies are very important in 
processes involving high temperatures, such as gas turbines, 
nuclear plants, and thermal energy storage.” Pioneering 
work on the interaction between radiation and natural con-
vection was carried out by Ali et al. [40]. The hot and cold 
surfaces were considered, and dimensionless temperatures 
for both were explicitly mentioned. It was Aziz [41] who 
initiated the inspection of the convective surface boundary 
condition. A noteworthy equation of boundary conditions 
far away from the fluid and on the surface was mentioned. 
By extending the work of [41], Ishak [42] obtained simi-
larity solutions for heat transfer in the fluid flow by incor-
porating convective boundary conditions. The impact of 
convective boundary conditions over a stretching surface 
was scrutinized by Makinde and Aziz [43]. It was concluded 
numerically by them that the rising values of the Biot num-
ber, which characterize convective heating, tend to enhance 
the temperature distribution. With the incorporation of the 
convective boundary condition, Yao et al. [44] inspected 
the problem of heat transfer and obtained the exact solu-
tion. The numerical solution for stagnation-point flow with 
convective boundary conditions across a stretching sheet 
was discussed by Mohamed et al. [45]. The shooting tech-
nique was employed, and an enhancement in the stretching 
parameter increased the velocity profile. All the aforesaid 
surveys on convective boundary conditions did not take 
Casson fluid into consideration. Recently, Raza [46] scru-
tinized the flow of a chemically reacting Casson fluid at 
a stagnation point past a convective stretching sheet. He 
employed the Runge-Kutta Fehlberg scheme to conclude 
that the rising Schmidt number diminishes the concen-
tration. Dessie [47] extended the work of [46] by employ-
ing the Lie-group analysis technique and the Runge-Kutta 
method on stagnation-point Casson fluid flow to study the 
consequences of viscous dissipation, thermal radiation, and 
partial slip over a convective stretching sheet. It is obvious 
that the fluid’s velocity declines as velocity slip skyrockets. 
Moreover, the intensification of homogenous chemical 
reactions diminishes the concentration of the flow.

Convective flows, along with the impact of chemical 
reactions and accompanied by simultaneous heat and mass 
transfer, emerge in various transport processes. This occurs 
in diverse fields of science and engineering applications, 
both naturally and artificially. Moreover, this phenome-
non plays a crucial role in chemical vapor deposition on 
surfaces, power and cooling industries, hydrometallurgical 
industries [48], and petroleum industries [49]. “Irreversible 
chemical reaction and differences in the molecular weight 
between the values of the reactants and the products” cause 
changes in fluid density gradients. Chemical reactions are 
classified as either homogenous or heterogeneous. This is 
determined by “whether it is a single-phase volume reac-
tion or the reaction occurs at an interface.” At a given phase, 
a reaction that occurs uniformly throughout is said to be 
a homogeneous reaction. A heterogeneous reaction, on 
the other hand, occurs within a phase’s boundary or in a 

restricted area. Pioneering work on constructive or destruc-
tive chemical reactions from a stretching sheet was under-
taken by Andersson et al. [50]. Vajravelu et al. [51] employed 
the Keller-box scheme to numerically study the “diffusion 
of a chemically reactive species from a stretching surface.” 
The consequences of destructive/constructive chemical 
reactions on viscous incompressible fluids were assessed 
by Bhattacharyya et al. [52] and emphasized the fact that 
chemical reactions are vital in the diffusion of concentra-
tion. With the employment of the Runge-Kutta method, 
they stated that the concentration decreased with augment-
ing the reaction rate. “Diffusion of chemically reactive spe-
cies in Casson fluid flow” past stretching surfaces was shed 
light on by Mukhopadhyay and Vajravelu [53]. Abbas et al. 
[54] analyzed the “diffusion of chemically reactive species 
in stagnation-point flow.” With different geometry under 
consideration, the constructive and destructive chemical 
rates with a uniform heat sink/source were scrutinized by 
Jena et al. [55]. Recently, Khan et al. [56] inspected the con-
sequences of constructive/destructive chemical reactions 
in viscous fluids with the existence of convective boundary 
conditions via the Homotopy Analysis Method. A detailed 
review of convective boundary layer flow problems on var-
ious mathematical models was presented by Kanafiah et al. 
[57].

Keeping the above-mentioned things in mind and to the 
best of the authors’ knowledge, no prior study was accom-
plished to inspect the combined impact of a non-uniform 
heat source/sink (internal heat generation/absorption) and 
variable thermal conductivity on the stagnation point flow 
of Casson fluid. Inspired by the afore-mentioned surveys, 
the present article probes to inspect the influence of stag-
nation point flow on Casson fluid with internal heat gen-
eration/absorption and variable thermal conductivity past 
a convective stretching sheet under the influence of con-
structive/destructive chemical reactions. This stands as 
the prime novelty behind this study. Respective ordinary 
differential equations (ODEs) that correspond to the gov-
erning PDEs are acquired by virtue of an ideal similarity 
transformation. Then the resulting equations are cracked 
by employing bvp4c, an in-built MATLAB technique. 
Graphical solutions are depicted for the impact of pertinent 
parameters on velocity profiles, temperature distributions, 
and concentration distributions. Also, values of the skin 
friction coefficient, Nusselt number, and Sherwood num-
ber are presented in tabular form. In a constrained scenario, 
the solutions obtained are validated against the pre-existing 
literature. The essentiality of variable thermal conductivity 
in the lunar soft lander technology serves as evidence for its 
indispensability in the field of aerospace industry.

MATHEMATICAL FORMULATION

Consider a steady electrically conducting viscous incom-
pressible Casson fluid past a stretching sheet. The x-axis is 
assumed to be along the stretched sheet. Additionally, the 
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y-axis is presumed to be normal to the x-axis. The stagna-
tion point is at the origin O. Two equal and opposite forces 
are applied along the x–axis by retaining fixed origin, which 
causes the sheet to stretch with a velocity Uw(x) = cx  (for c 
> 0). It is presumed that the flow is constrained to the half 
plane y > 0. Moreover, a uniform magnetic field of strength 
B is imposed in the transverse direction. It is anticipated that 
the sheet’s surface is heated convectively from a hot fluid 
that possesses heat exchange coefficient hf and temperature 
Tf. In the same way, the Casson fluid’s free stream velocity 
is acknowledged as U∞(x) = ax (for a > 0). Furthermore, it 
is postulated that, at the fluid interface, there exists a partial 
velocity slip [47] (Fig. 1).

The rheological equation of state for an isotropic and 
incompressible flow of a Casson fluid is

  

(1)

where eij  is the (i,j)th component of the deformation rate, 
π is the product of the component of deformation rate with 
itself, π = eijeij, πc is the critical value of this product based 
on the non-Newtonian model, µB is the plastic dynamic vis-
cosity of the non-Newtonian fluid, and py is the yield stress 
of the fluid.” [18] 

Regarding Casson fluid, where π > πc and , 
the dynamic viscosity is

  (2)

Upon substitution of py in (2), we get

  (3)

where β known as the Casson fluid parameter, quan-
tifies the non-Newtonian behavior, impacting the fluid’s 

viscosity and yield stress. The flow becomes Newtonian as 
β → ∞.

Corresponding to the framework under deliberation, 
the governing equations are formulated as: [47]

  (4)

  (5)

  
(6)

  (7)

Here, K is the variable thermal conductivity. q"' is the 
non-uniform heat source/sink. qr is the radiative heat flux. 
D is the coefficient of mass diffusivity. Moreover, k1 is the 
reaction rate, where k1 > 0 signifies destructive reaction 
and k1 < 0 corresponds to constructive reaction. Utilizing 
Rosseland approximation [58] for thermal radiation, qr is 
expressed as:

   (8)

where k* is the “absorption coefficient” and σ* is the 
“Stefan–Boltzmann constant”. “We assume that the tem-
perature differences within the flow are such that T4 may 
be expressed as a linear function of temperature. This is 
accomplished by expanding T4 in a Taylor series about T∞ 
and neglecting higher order terms, thus” [4]

With reference to Chiam [34], K is expressed as:

  (9)

where  and  (ε - small parameter). 

Moreover, q"' is modelled with the following equation 
as reference:

  (10)

where A* is the “coefficient of space-dependent internal 
heat generation/absorption” and B* is “coefficient of tem-
perature-dependent internal heat generation/absorption”. 
When both A* > 0 and B* > 0 this denotes “internal heat 

Figure 1. Schematic diagram of the flow problem.
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generation” and when both A* < 0 and B* < 0 this indicates 
“internal heat absorption.” [36]

The pertinent boundary conditions [47] are: 

  
(11)

  (12)

Solution Technique
In order to procure the corresponding ODEs pertaining 

to the PDEs that govern the fluid flow, a suitable similar-
ity transformation is employed. As mentioned by Aziz [41] 
and Raza [46], a suitable similarity transformation with η as 
the similarity variable is introduced as follows:

  
(13)

  (14)

  (15)

  (16)

Upon substitution of equations (8) – (10) and (13) – 
(16) in equations (4) – (7), (11) and (12), we get the trans-
formed governing equations as

  (17)

  

(18)

  (19)

together with the transformed boundary conditions as 
follows: 

  (20)

  (21)

Various dimensionless parameters obtained during this 
transformation are

The quantities which are of physical importance 
(namely Cfx, Nux and Shx) are acquired as follows:

where  is the local Reynolds number,  
is the reduced Sherwood number Sh,  is the reduced 
Nusselt number Nu, and  is the reduced skin fric-
tion coefficient Cf. 

Numerical Procedure
“It is not always easy to solve the equations analytically; 

thus one may need numerical methods in that scenario”. 
Various numerical methods employed to solve the heat and 
mass transfer problem of Casson fluids were presented as a 
brief review in [59]. The boundary value problems (BVPs) 
are resolved numerically by means of MATLAB. The trans-
mogrified governing equations (17)-(19) accompanied by 
the transmogrified boundary conditions (20) and (21) are 
numerically resolved by implementing the bvp4c package 
of MATLAB. “bvp4c is a finite difference algorithm that 
incorporates the three-stage Lobatto IIIa collocation for-
mula. bvp4c can be effectuated by altering the BVP as an 
initial value problem (IVP)” [60]. In MATLAB, when solv-
ing BVPs the user must provide a guess to assist the solver 
in computing the desired solution. MATLAB BVP solvers 
call for users to provide guesses for the mesh and solution. 
Although MATLAB BVP solvers take an unusual approach 
to the control of error in case of having poor guesses for 
the mesh and solution, especially for the nonlinear BVP, a 
good guess is necessary to obtain convergence. The calcula-
tions are simulated using the MATLAB R2019a on a laptop 
with Intel Core i5 2.40 GHz. Moreover, this method delivers 
enhanced computing results with minimal CPU time (~1–2 
seconds) per evaluation. The following linearity technique 
is deployed:

“y1 = f, y2 = f ', y3 = f '', y4 = θ, y5 = θ', y6 = φ and y7 = φ',”
and hence the equations (17)-(19) become
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and y7' = -Sc y1 y7 + kScy6
Moreover, the boundary conditions are articulated as:

However, the outcomes are evaluated at the far field η∞= 
ηmax (= 5).

RESULTS AND DISCUSSION

Validation of the Numerical Outcomes
To corroborate the authenticity of the numerical tech-

nique employed, the values of f "(0), -θ'(0) and -ϕ'(0) under 
a constrained scenario are correlated with the pre-existing 
outcomes that are available in the literature. For Newtonian 
fluid in the absence of a magnetic field, the values of f "(0) 
for numerous α was deduced and tabulated in Table 1. The 
outcomes procured match those of [8] and [17]. The outputs 
of heat transfer coefficient -θ'(0) for various α under limit-
ing cases are compared with those of [8] and [21] (Table 2). 
The numerical values obtained exhibit a good agreement. 
Moreover, it is perceivable that α amplifies the heat transfer. 
For specific chemical reaction parameter, Schmidt number, 
and for a Casson fluid, the values of -ϕ'(0) are obtained and 
tabulated (Table 3). Under special case, the values are in 
best accord with those of [46] and [47].

Impact of Several Parameters on Cf, Nu and Sh
The values of Cf, Nu and Sh for multifarious pertinent 

parameters are tabulated in Tables 4, 5 and 6 respectively. 
Cf reduces with a rise in M and α. However, the reverse 
phenomenon is observed for A and β. These are obviously 
depicted in Table 4. From the Table 5, it is manifested that 
an enhancement in α and Bi skyrockets the heat transfer. 

But, on the contrary, Nu declines with increasing values of 
M, ε, N, Ec, A*, B*, A and β. Also, Sh reduces with increas-
ing M, A and β but, skyrockets with enhancement of α and 
k (Table 6). Under limiting cases, the results match those of 
[46] and [47].

Table 4. Numerical values of Cf for fixed values Pr = 0.7, Sc 
= 0.7, ε = 0.2, N = 1, Ec = 0.01, A* = B* = -0.01, k = 0.3 and 
Bi = 0.5

M α A β

0.5 2 2.5 0.2 -1.56663
2.5 -1.68475
5.5 -1.79015
0.5 2.5 -2.36958

3 -3.18355
2 4 -1.12166

7.5 -0.67643
2.5 0.8 -0.67635

2.5 -0.44357

Table 3. Comparison of -ϕ'(0) with Raza [46] and Dessie 
[47] for several values of Sc and k when Pr = 0.7, M = 0.5, A 
= 0.5, β = 0.3 and Bi = 0.2

Sc k -ϕ'(0)

Raza [46] Dessie [47] Present study
0.5 0.5 0.60627 0.6062704 0.6062745
1.0 0.5 0.80891 0.8089132 0.8089160
1.5 0.5 0.93656 0.9365614 0.9365605
2.0 0.5 1.02588 1.0259312 1.0259353
0.7 0 0.91982 0.9198254 0.9198258
0.7 0.5 0.70096 0.7009613 0.7009618
0.7 1.0 0.50891 0.5089122 0.5089134
0.7 2.0 0.22047 0.2204713 0.2204715

Table 2. Comparison of -θ'(0) with Wang [8] and 
Kameswaran et al. [21] for several values of velocity ratio 
parameter 

α -θ'(0)

Wang [8] Kameswaran et al. [21] Present Study
0 0.811301 0.8113013 0.811301532
0.1 0.86345 0.8634517 0.863451813
0.2 0.91330 0.9133028 0.913302946
0.5 1.05239 1.0514584 1.051458489
1 1.25331 1.2533141 1.253314154

Table 1. Comparison of f "(0) with Wang [8] and 
Bhattacharyya [17] for several values of velocity ratio 
parameter

α f"(0)

Wang [8] Bhattacharyya [17] Present Study
0 1.232588 1.2325878 1.232587589
0.1 1.14656 1.1465608 1.146560931
0.2 1.05113 1.0511299 1.051129925
0.5 0.71330 0.7132951 0.713294910
1 0 0 0
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Impact of Involved Parameters on Velocity Profile f '(η), 
Temperature Distribution θ(η) and Concentration 
Distribution ϕ(η)

To elucidate briefly, the striking effect of various perti-
nent parameters on f '(η), θ(η) and ϕ(η) are demonstrated 
through figures. The values β = 0.2, M = 0.5, ε = 0.2, N = 
1, α = 2, A*= B*= -0.01, Ec = 0.01, Pr = 0.7, Sc = 0.7, k = 
0.3, A = 0.5 and Bi = 0.5 are taken as fixed throughout this 

numerical study, except the varying values are clearly noted 
in the respective figures.

Figure 2 demonstrates the consequence of magnetic 
field parameter M on f '(η). The transport rate declines by 
virtue of transverse magnetic field. This is due to the drag 
which gets developed due to Lorentz force. The existence 
of magnetic field in an electrically conducting fluid tends 
to produce a dragging or retarding force against the flow. 
“This type of resistive force tends to slow down the motion 

Table 5. Numerical values of Nu for fixed values Pr = Sc = 0.7

M ε N Ec A* B* α A Bi β -θ'(0)
0.5 0.2 1 0.01 –0.01 –0.01 2 2.5 0.5 0.2 0.25790
2.5 0.25534
5.5 0.25321
0.5 0.5 0.23963

1.2 0.20923
0.2 3 0.21214

5 0.18662
1 0.05 0.25616

0.1 0.25400
0.01 0.01 0.22345

0.02 0.20617
–0.01 0.02 0.25282

0.04 0.24920
–0.01 2.5 0.26711

3 0.27575
2 4 0.25508

7.5 0.25197
2.5 0.8 0.31717

1.2 0.36445
0.5 0.8 0.25316

2.5 0.25141

Table 6. Numerical values of Sh for Pr = 0.7, Sc = 0.7, ε = 0.2, N = 1, Ec = 0.01, A* = B* = -0.01 and Bi = 0.5

M α A β k -ϕ'(0)
0.5 2 2.5 0.2 0.3 0.86187
2.5 0.84897
5.5 0.83788
0.5 2.5 0.89139

3 0.91935
2 4 0.84456

7.5 0.82645
2.5 0.8 0.83580

2.5 0.82602
0.2 0.5 0.93495

1 1.09948
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of the fluid in the boundary layer which, in turn, reduces 
the rate of heat convection in the flow and this appears in 
increasing the flow temperature.” A strong Lorentz force 
acts as a medium to generate more heat to the fluid from 
the surface. Hence, the temperature distribution θ(η) gets 
enhanced as M rises which is evident from Figure 3.

It is perceptible from Figure 4 that the enhancement of 
the Casson parameter β declines f '(η). This is attributable 
to the fact that an upsurge in β diminishes the yield stress, 
which results in a reduction of the velocity. Higher values of 
β creates a resistance to the fluid flow. Physically, flows with 
high Casson number corresponds to solid-like behaviour. 
Moreover, it is noteworthy to mention that as β → ∞, the 
fluid behaves like a Newtonian fluid i.e., simple viscous 
fluid. Quite opposite behaviour is perceived for augmenting 

values of β on the temperature distribution (Fig. 5). This 
reduction in θ(η) is by virtue of rising Casson parameter 
which is related to declination of the fluid’s yield stress.

The consequence of variable thermal conductivity 
parameter ε on the temperature distribution is demon-
strated in Figure 6. The variation range of ε is regarded as, 
“for air 0 ≤ ε ≤ 6, for water 0 ≤ ε ≤ 0.12 and for lubrication 
oils -0.1 ≤ ε ≤ 0” [61]. Simultaneous effect of non-uniform 
heat source/sink and variable thermal conductivity plays a 
major role in the temperature distribution of the convective 
stretching sheet under consideration. As both A* > 0 and B* 
> 0 i.e., for internal heat generation, an increase in ε reduces 
the temperature. But this is not the case for internal heat 
absorption. i.e., both A* < 0 and B* < 0, an enhancement 
in ε, diminishes θ(η) very near to the wall and as the fluid 

Figure 4. Velocity profile for various β.

Figure 3. Temperature distribution for various M.

Figure 2. Velocity profile for various M.

Figure 5. Temperature distribution for various β.
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moves away from the wall, θ(η) skyrockets. This dramatic 
effect is due to the influence of variable thermal conductiv-
ity in the convective boundary condition.

The impact of incorporating the thermal radiation in 
the energy equation is delineated in Figure 7. Escalation of 
the temperature domain in the fluid flow is observed when 
thermal radiation is taken into consideration. This is by vir-
tue of the enhancement of K∞ in an electrically conducting 
fluid. In addition, physically, this is in consonance with the 
aspect that amplifying N augments the thermal boundary 
layer thickness. Intensification of the effective thermal dif-
fusivity occurs due to thermal radiation  which results in 
proliferation of θ(η). This shows that the radiation parame-
ter positively impacts the convective heat transfer.

The effect on velocity ratio parameter (α) on f '(η), θ(η) 
and ϕ(η) are illustrated in Figures 8 – 10 respectively. When 

α > 1, it implies that the free stream velocity is lesser than 
the surface velocity. In such a situation, the flow velocity 
f '(η) skyrockets as α rises. When α = 1, it corresponds to 
the case when stretching velocity and free stream velocity 
are equal. It is conspicuous from the figure that when the 
free stream and stretching velocities are equal, “there is no 
boundary layer of Casson fluid flow” in close proximity to 
the surface. It is observed that for α < 1, i.e., the free stream 
velocity outstrips the surface velocity, the fluid flow’s veloc-
ity augments with an increase in α. There is a decline in θ(η) 
and ϕ(η) for rising values of several α. This is obvious from 
Figures 9 and 10 respectively.

“The Eckert number provides a measure of the kinetic 
energy of the flow relative to the enthalpy difference 
across the thermal boundary layer. It is used to character-
ize heat dissipation in high-speed flows for which viscous 

Figure 7. Temperature distribution for various N.

Figure 6. Temperature distribution for various ε. Figure 8. Velocity profile for various α.

Figure 9. Temperature distribution for various α.
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dissipation is significant.” From Figure 11, “it is evident that 
θ(η) skyrockets as Ec augments. This occurs due to fric-
tional heating in the fluid which causes heat to be gener-
ated as Ec increases. Consequently, an upsurge in Ec leads 
to work being done against the stresses of the viscous fluid, 
which transmutes kinetic energy into internal energy. Also, 
Eckert number signifies the quantity of mechanical energy 
converted via internal friction to thermal energy i.e., heat 
dissipation. This indirectly emphasizes the vitality of vis-
cous dissipation in the energy equation.

Figure 12 portrays the consequence of space-depen-
dent internal heat generation/absorption parameter A* on 
θ(η). The graph demonstrates that the energy gets released 
for rising A* > 0 (heat source) whereas the energy gets 
absorbed for A* < 0 (heat sink) for decreasing A* which in 
turn causes θ(η) to fall considerably. Similarly, the striking 

consequence of temperature-dependent internal heat gen-
eration/absorption parameter B* is illustrated in Figure 
13. Particularly, when B* < 0 (heat sink), the energy gets 
absorbed in the boundary layer for decreasing B* which 
eventually reduces θ(η). But, for augmenting values of B* > 
0 (heat source), the energy gets generated which cause the 
temperature to augment. 

The simultaneous effect of Pr and Sc on θ(η) and ϕ(η) 
are scrutinized in Figures 14 and 15 respectively. The 
impacts are evaluated for air (Pr = 0.7, Sc = 0.7), metha-
nol at 25°C (Pr = 6.83, Sc = 1.14) and ethanol at 25°C (Pr 
= 18.05, Sc = 1.29). Simultaneous rise of Schmidt number 
and Prandtl number reduces the temperature adjacent 
to the wall but contrarily, enhances away from the wall. 
When both Schmidt number and Prandtl number rises, a 
reduction in concentration distribution is observed. These 

Figure 10. Concentration distribution for various α.

Figure 13. Temperature distribution for various B*.

Figure 12. Temperature distribution for various A*.

Figure 11. Temperature distribution for various Ec.
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results are attributable to the fact that the Prandtl number 
has a negative relationship with thermal conductivity and 
Schmidt number has a negative relationship with mass 
diffusivity.

The impact of constructive/destructive chemical reac-
tion rate on ϕ(η) is explicitly shown in Figure 16. Regarding 
constructive chemical reaction (k < 0), ϕ(η) rises with aug-
menting (absolute) values of the reaction rate parameter, 
but for destructive chemical reaction (k > 0), the opposite 
trend is noticed, i.e., ϕ(η) declines with augmenting k. “In 
other words, the reaction-rate parameter is a decelerating 
agent. This is due to the fact that the conversion of the spe-
cies takes place as a result of chemical reaction and thereby 
reduces the concentration in the boundary-layer.”

Figures 17 and 18 demonstrates the striking effect of A 
on f '(η) and θ(η) respectively. The velocity slip primarily 

decelerates the fluid motion that implicitly substantiates 
a depletion in the net movement of the fluid molecules. 
Hence, amplifying values of A causes the fluid’s velocity to 
diminish. Towards the full slip i.e., as A → ∞, the frictional 
resistance between the viscous fluid and the sheet gets 
eradicated. Moreover, the sheet’s stretching does no longer 
obtrude any fluid motion. This in turn upsurges the tem-
perature distribution for various A.

The striking impact of Biot number on θ(η) is illustrated 
in Figure 19. At any location, the parameter Bi is directly 
proportional to hf. Thus “as expected, the stronger con-
vection results in higher surface temperatures, causing the 
thermal effect to penetrate deeper into the quiescent fluid”. 
The temperature upsurges with increasing Bi. “It is found 
that the fluid temperature is linear in the absence of the Biot 
number, and an increase of the Biot number, increases the 

Figure 14. Temperature distribution for various Pr and Sc.

Figure 15. Concentration distribution for various Pr and Sc.

Figure 16. Concentration distribution for various k.

Figure 17. Velocity profile for various A.
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fluid temperature and thermal boundary layer thickness.” 
As Bi goes to infinity, the boundary condition (20) reduces 
to θ(0) → 1 as Bi → ∞. Hence, it is evident that the solution 
is anticipated to approach the classical solution of constant 
surface temperature problem.

CONCLUSION

The synergy of “variable thermal conductivity” and 
“non-uniform heat source/sink” on the stagnation point 
flow of Casson fluid past a convective stretching sheet, 
together with constructive/destructive reactions are 
inspected. The ODEs corresponding to the governing PDEs 
are deduced by virtue of a well-suited similarity trans-
formation. bvp4c, an in-built technique of MATLAB is 
exerted to acquire the numerical solutions. “The impacts of 

multifarious dimensionless parameters on velocity profile, 
temperature and concentration distributions are illustrated 
graphically. The effect of involved parameters on skin fric-
tion coefficient, Nusselt number and Sherwood number are 
tabulated.” The paramount findings of this evaluation are 
summed up as follows:
1. For internal heat generation, an increase in variable 

thermal conductivity parameter reduces the tempera-
ture. But this is not the case for internal heat absorption. 
An enhancement in ε, diminishes the temperature near 
the wall and as the fluid moves far away, the tempera-
ture distribution skyrockets. 

2. The temperature-dependent and space-dependent 
internal heat absorption/generation (non-uniform 
heat sink/source) parameter augments the temperature 
distribution.

3. A simultaneous increase in Prandtl number and 
Schmidt number diminishes the temperature near the 
wall. But on the contrary, the temperature augments far 
away from the wall. 

4. An amplification in the velocity slip, Casson parameter 
and magnetic field parameter reduces the fluid velocity. 
Moreover, the friction factor gets enhanced with rising 
values of velocity slip and Casson fluid parameter.

5. Augmenting Eckert number, thermal radiation and Biot 
number escalates the temperature distribution. The 
heat transfer skyrockets with rising Biot number and 
diminishes with increasing Eckert number and thermal 
radiation parameter. 

6. The concentration distribution gets declined with a 
rise in velocity ratio parameter, Schmidt number and 
Prandtl number, and destructive chemical reaction. 
There is an escalation of mass transfer with intensifica-
tion of the velocity ratio parameter, and the Sherwood 
number gets reduced with augmentation of the Casson 
fluid parameter.

7. For constant thermal conductivity with homogenous 
chemical reactions and in the absence of non-uniform heat 
source/sink, the outcomes are identical to those of [47].
Though the essentiality of variable thermal conductiv-

ity in the lunar soft lander technology serves as a poten-
tial application in the field of the aerospace industry, it is 
very significant to highlight a few limitations regarding this 
research work. Such limitations will not only help research-
ers analyse this work but also provide insights to extend it. 
In order to add an outlook and some future directions to 
the present work, one can study entropy generation, Soret-
Dufour effects, or consider the three-dimensional investi-
gation for the same geometry.

NOMENCLATURE 

a, c positive constants
x, y Cartesian coordinates
τij (i,j)th component of stress tensor
B Magnetic field intensity (Tesla)

Figure 19. Temperature distribution for various Bi.

Figure 18. Temperature distribution for various A.
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Tf Temperature of hot fluid (K)
u Velocity component in the x direction (ms-1)
v Velocity component in the y direction (ms-1)
D Coefficient of mass diffusivity
T Temperature (K)
C Concentration (kgm-3)
Cw Surface concentration
C∞ Ambient fluid concentration
T∞ Ambient fluid temperature
Kw Surface thermal conductivity
K∞ Free stream conductivity of the fluid
L Velocity slip
f Dimensionless stream function
M Magnetic field parameter
N Radiation parameter
α velocity ratio parameter
Ec Eckert number
Pr Prandtl number
Sc Schmidt number
k Reaction rate parameter
A Dimensionless velocity slip parameter
Bi Biot number
Cfx Skin friction coefficient
Nux Local Nusselt number
Shx Local Sherwood number

Greek symbols
µ Dynamic viscosity (kgm-1 s-1)
β Casson fluid parameter
v Kinematic viscosity (m2 s-1)
ρ Density (kgm-3)
cp Specific heat capacity at constant pressure (Jkg-1 K-1)
σ Electrical conductivity
ψ Stream function
η Similarity variable
θ Dimensionless temperature
ϕ Dimensionless concentration
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