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Abstract  Öz  

This study examines how gender-based disparities emerge 

in recommender systems through feedback loops. While 

fairness has been studied in static settings, little is known 

about how repeated user-system interactions impact 

different demographic groups over time. To address this, 

we utilize a dynamic simulation framework using synthetic 

interactions and ten feedback iterations. Based on the 

MovieLens-1M dataset, users are grouped by gender and 

evaluated using metrics such as calibration, diversity, and 

long-tail exposure. Results show that female users 

consistently receive less favorable outcomes, with 

popularity bias measures (GAP, MRMC) indicating a 

growing disadvantage over time. Diversity and novelty 

scores also decline more sharply for women. These findings 

suggest that feedback loops can reinforce existing 

inequalities in recommender systems. The employed 

framework provides a valuable tool for analyzing the 

evolution of fairness across iterations and highlights the 

need for gender-sensitive algorithms that maintain fairness 

over time. 

 Bu çalışma, öneri sistemlerinde geri besleme döngüleri 

yoluyla cinsiyete dayalı eşitsizliklerin nasıl ortaya çıktığını 

incelemektedir. Adalet konusu durağan ortamlarda 

araştırılmış olsa da yinelenen kullanıcı-sistem 

etkileşimlerinin zaman içinde farklı demografik grupları 

nasıl etkilediği hakkında çok az bilgi bulunmaktadır. Bu 

durumu ele almak için, sentetik etkileşimler ve on geri 

besleme iterasyonu içeren dinamik bir simülasyon 

çerçevesi kullanılmıştır. MovieLens-1M veri kümesine 

dayalı olarak kullanıcılar cinsiyete göre gruplanmış ve 

kalibrasyon, çeşitlilik ve uzun kuyruk içeriklere erişim gibi 

metriklerle değerlendirilmiştir. Sonuçlar, kadın 

kullanıcıların sistemden sürekli olarak daha olumsuz 

sonuçlar aldığını göstermekte; GAP ve MRMC gibi 

popülerlik yanlılığı metrikleri ise zamanla artan bir 

dezavantajı ortaya koymaktadır. Ayrıca, kadın kullanıcılar 

için çeşitlilik ve yenilik skorlarının daha keskin bir şekilde 

düştüğü gözlemlenmiştir. Bu bulgular, geri besleme 

döngülerinin öneri sistemlerinde mevcut eşitsizlikleri 

pekiştirebileceğini ortaya koymakta ve zaman içinde 

adaleti koruyacak cinsiyete duyarlı algoritmalara duyulan 

ihtiyacı vurgulamaktadır. 

Keywords: Gender fairness, Recommender systems, 

Feedback loop, Popularity bias, Demographic disparity. 

 Anahtar kelimeler: Cinsiyet adaleti, Öneri sistemleri, Geri 

besleme döngüsü, Popülerlik yanlılığı, Demografik 

eşitsizlik. 

1 Introduction 

Recommender systems (RSs) have become pivotal in 

addressing the issue of information overload by delivering 

personalized content tailored to individual users [1]. These 

systems are widely applied across e-commerce, digital 

media, education, and healthcare sectors, improving user 

experiences through context-aware suggestions [2, 3]. Major 

platforms like Netflix, Spotify, and Amazon utilize RSs to 

analyze user behavior, providing personalized 

recommendations for movies, music, and products, thereby 

enhancing user engagement. 

Collaborative filtering (CF) has emerged as one of the 

dominant techniques within RSs. These methods can be 

broadly categorized into two types: user-based CF, which 

predicts preferences by identifying patterns in user behavior, 

and item-based CF, which relies on the similarity between 

items. While these methods have proven effective, they face 

a significant challenge: popularity bias. This bias occurs 

when frequently interacted items are recommended over less 

popular ones, resulting in a skewed distribution of 

recommendations and reduced diversity [4, 5]. As popular 

items dominate, less-known items often fail to be 

represented, further exacerbating the problem [6]. 

Popularity bias not only diminishes the variety of 

recommended content but also hampers the discovery of new 

or niche items. This results in a lack of diversity in the 

content presented to users, negatively impacting their overall 

satisfaction with the system [7]. Moreover, this imbalance 

affects both content creators, whose niche products struggle 
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for visibility, and service providers, who face declining user 

engagement and satisfaction. The focus on popular items 

leads to a narrowing of content exposure, where 

recommendations tend to be repetitive, and the variety of 

items shrinks [8]. 

Another critical issue arising from popularity bias is the 

calibration problem, where RSs fail to match users’ true 

preferences accurately. As popular items dominate 

recommendations, the system's outputs may become 

miscalibrated, leading to less personalized suggestions that 

don’t reflect users’ true interests [9]. This misalignment 

between recommended items and user preferences 

underscores the need for more accurate calibration within 

RSs to enhance the relevance and fairness of suggestions. 

Recent research has increasingly focused on how 

popularity bias differentially impacts user groups, 

particularly through demographic attributes such as gender. 

While prior studies have identified distinct engagement 

patterns with popular content between male and female 

users, they have predominantly relied on static evaluations, 

neglecting the dynamic nature of real-world recommender 

systems [10]. Specifically, how feedback loops amplify or 

mitigate gender-based disparities in recommendation 

outcomes over time remains largely unexplored. This gap is 

critical, as iterative interactions between users and systems 

can compound biases and lead to systemic unfairness. 

Addressing this limitation, our study contributes a dynamic, 

gender-aware evaluation framework that captures the 

evolving nature of fairness in recommender systems, 

highlighting structural disadvantages faced by female users 

as feedback loops progress. 

In this study, we employ a framework that examines the 

impact of popularity bias on male and female users across 

multiple recommendation cycles. Our main contributions 

include: 

• We utilize a dynamic simulation framework with 

synthetic feedback to monitor the evolution of 

recommendation fairness over time. 

• We conduct the first gender-specific longitudinal 

analysis of HPF, MMMF, and VAECF, showing 

how feedback loops affect fairness, calibration, and 

accuracy. 

• We analyze proportional changes across iterations 

to reveal gender-specific learning patterns and 

inform the design of fairness-aware systems. 

The remainder of this paper is structured as follows: 

Section 2 reviews related works on popularity bias, fairness, 

and feedback mechanisms in RSs. Section 3 introduces the 

proposed simulation environment methodology for 

modeling iterative feedback loops and outlines the 

experimental setup, including the datasets, CF algorithms, 

and evaluation metrics used. Section 4 presents the results 

and discusses the key insights gained. Section 5 discusses the 

limitations of the utilized framework. Finally, Section 6 

concludes the paper, summarizing the findings and 

suggesting directions for future research. 

2 Related work 

Popularity bias in RSs is well-documented, as algorithms 

disproportionately favor popular items while often ignoring 

less-known or niche alternatives [11-13]. This imbalance 

restricts users’ access to diverse content, reduces user 

satisfaction, and creates systemic disadvantages for content 

providers [14, 15]. 

Researchers have proposed three major strategies to 

mitigate popularity bias: pre-processing, in-processing, and 

post-processing approaches. Pre-processing methods modify 

the user–item interaction matrix to reduce inherent biases 

and have also been applied to incorporate privacy-aware or 

fairness-sensitive filtering mechanisms [16]. For instance, 

privacy-preserving collaborative recommenders can mitigate 

popularity bias by transforming user-item interactions before 

model training. Recent studies indicate that such pre-

processing techniques effectively limit bias amplification 

while maintaining recommendation performance [17]. In-

processing alters algorithmic learning processes to improve 

fairness [18]. Post-processing techniques re-rank 

recommendations to demote overrepresented items or 

promote underrepresented ones [19-21]. 

In addition to traditional accuracy metrics, recent 

research have emphasized the importance of beyond-

accuracy measures such as fairness, diversity, novelty, and 

coverage [22, 23]. Abdollahpouri [24] categorize fairness 

into three dimensions: consumer fairness (C-fairness), 

provider fairness (P-fairness), and stakeholder fairness (S-

fairness). 

Studies have shown that not all users are affected equally 

by popularity bias. Individual user characteristics, such as 

personality traits, interaction levels, or profile consistency, 

significantly influence the level of bias experienced [11, 25]. 

For instance, less extroverted or novelty-averse users are 

likelier to receive less accurate and less diverse 

recommendations. 

A growing body of work investigates how demographic 

attributes, such as gender, age, and cultural background, 

impact the quality and fairness of recommendations. 

Ekstrand et al. [16] revealed significant differences in rating 

behavior between male and female users in book 

recommendation platforms. Ferwerda et al. [18] observed 

that female users prefer more diverse music content, yet 

recommender systems often fail to reflect this preference. 

Deldjoo et al. [26] found that recommendation quality varies 

by gender, contributing to systemic inequity. To address this, 

group-sensitive approaches, such as group-based calibration, 

have been proposed, which improve fairness and satisfaction 

[27]. 

Another critical area in recent research involves feedback 

loops. These loops occur when user interactions influence 

future recommendations, often reinforcing popularity bias 

over time. Chaney et al. [28] and Kowald et al. [15] 

demonstrated that feedback loops can shrink the 

recommendation space and diminish diversity. Mansoury et 

al. [29] showed that continuous user interaction with popular 

items amplifies systemic bias. Krauth et al. [30] used 

dynamic simulation models to analyze how such loops 
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evolve, revealing that these effects disproportionately impact 

different user groups. 

Despite these advances, relatively few studies have 

examined how demographic subgroups, particularly based 

on gender, are dynamically influenced by feedback loops in 

recommender systems. Our work addresses this gap by 

categorizing users by gender and systematically evaluating 

how each group is impacted in terms of accuracy, diversity, 

and fairness. Furthermore, we analyze these impacts in a 

dynamic simulation environment that incorporates feedback 

loops, allowing us to observe how male and female users are 

differently affected over time. This comprehensive approach 

contributes to the development of more equitable and user-

sensitive recommendation strategies. 

3 Materials and methods 

This section explains the feedback loop, experimental 

methodology, dataset, algorithms, and evaluation metrics 

under separate subheadings. 

3.1 Feedback loop 

This section presents the simulation developed to model 

feedback loops in RSs. The simulation is designed to analyze 

the dynamic interactions between recommendation 

algorithms and user profiles over multiple iterations, 

emphasizing the impact of popularity bias, fairness, and 

beyond-accuracy metrics on various user segments. 

3.1.1 Initialize rating matrix 

The process starts with the user-item rating matrix 𝑅, 

where each entry 𝑟𝑢,𝑖 shows the interaction between user 𝑢 

and item 𝑖. This matrix serves as the basis for predicting user 

preferences and generating top-N recommendations. 

3.1.2  Categorize items into popular and niche 

Items are sorted by rating frequency (𝑓𝑖) in descending 

order. Pareto principle, the cumulative top 20% of items that 

account for approximately 80% of all ratings are classified 

as Popular (Head) items, while the remaining items are 

considered Niche (Tail). This classification enables a more 

realistic and balanced analysis of the impact of 

recommendation algorithms on item exposure. 

3.1.3 Group users by gender 

Users are divided into two groups, Women and Men, 

using the gender information from the dataset. This 

segmentation supports a targeted analysis of 

recommendation dynamics for different demographic 

groups. 

3.1.4 Feedback loop iterations 

The framework operates through an iterative feedback 

loop, consisting of the following sequential steps: 

• Compute Predictions: A CF algorithm is used to 

estimate the predicted rating 𝑟̂𝑢,𝑖 for each user-item 

pair (𝑢, 𝑖) in the dataset. 

• Generate top-𝑁 Recommendations: For each user, a 

personalized top-N recommendation list is created 

by ranking items in descending order based on their 

predicted ratings. 

• Evaluate Recommendations: The quality of the 

generated recommendations is assessed using a 

combination of accuracy, fairness, and beyond-

accuracy metrics (e.g., diversity, novelty, 

calibration). To analyze group-specific impacts, 

metrics are aggregated separately for each gender 

group by averaging individual user scores. 

• Update User Profiles: To simulate user interactions 

within the feedback loop, synthetic ratings are added 

to user profiles in a controlled and consistent 

manner. First, each user's profile size is computed 

and normalized using min-max scaling to ensure 

equitable treatment across users with varying 

activity levels. The normalized profile size 

determines the number of synthetic interactions 𝑐𝑢 

to be added from the current top-N recommendation 

list. Next, each user’s historical average rating 𝜇𝑢 is 

calculated and used as the synthetic rating value. 

This rating is then assigned to the top-𝑐𝑢 items in the 

recommendation list, simulating the user's 

engagement with the most highly ranked items. Note 

that this simulation assumes full engagement with 

the top-𝑐𝑢 items in each iteration. Future 

enhancements may include modeling stochastic 

behavior such as partial interaction or user dropout 

to better reflect real-world dynamics. 

• Matrix Update and Iteration Continuation: After 

each iteration, the user-item matrix is updated to 

include these synthetic interactions, enabling the 

recommender system to model how user profiles 

evolve over multiple iterations. This procedure 

ensures realistic feedback loop dynamics by 

preserving consistency with users’ prior rating 

behavior while reflecting their personalized 

recommendation experience 

3.2 Experimental setup and procedure 

Recommendation lists were generated using leave-one-

out cross-validation, where one interaction from each user's 

profile is used as the test set, while the remaining interactions 

form the training set. The recommendation model is trained 

on this training set, and predictions are made for all items 

concerning the held-out interaction. This process is repeated 

for every user, ensuring a thorough evaluation of each one. 

The top-𝑁 items with the highest prediction scores are then 

selected for recommendation, with 𝑁 =10 in this study. 

Experiments were conducted using the proposed 

framework over 10 iterations, dynamically updating user 

profiles to simulate a feedback loop. Metrics were calculated 

for the Women and Men groups to analyze changes in 

recommendation quality, fairness, and beyond-accuracy 

dimensions over time. This iterative approach effectively 

captures the dynamic effects of popularity bias and evaluates 

algorithm performance in adapting to gender-based user 

preferences. 

3.3 Dataset 

This study utilizes the MovieLens-1M (ML) dataset, 

which comprises 1,000,209 ratings from 6,040 users across 
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3,900 movies [31]. It provides rich demographic 

information, including age, gender, and occupation, 

alongside movie metadata such as genres and release years 

[32]. This detailed information supports a comprehensive 

analysis of recommendation dynamics and popularity bias. 

3.4 Used CF algorithms 

This study utilizes three advanced CF algorithms: 

Hierarchical Poisson Factorization (HPF) [33], Maximum 

Margin Matrix Factorization (MMMF) [34], and Variational 

Autoencoder for Collaborative Filtering (VAECF) [35].  

These algorithms utilize various modeling techniques to 

enhance both recommendation accuracy and diversity. HPF 

is a probabilistic model that represents user preferences 

using latent factors, modeling user-item interactions with a 

Poisson distribution. This approach effectively handles 

sparse data and cold-start users by leveraging hierarchical 

priors. MMMF, on the other hand, optimizes item rankings 

by maximizing the margin between relevant and irrelevant 

items. Unlike traditional matrix factorization models, 

MMMF focuses on preserving the relative order of items, 

making it particularly effective for ranking tasks. 

Meanwhile, VAECF employs deep generative models to 

learn complex interaction patterns by encoding user 

preferences into a probabilistic latent space and 

reconstructing them for rating prediction. This non-linear 

approach allows VAECF to capture intricate relationships 

between users and items, resulting in more accurate and 

diverse recommendations.  

These algorithms were selected due to their diverse 

methodological foundations, including probabilistic, 

margin-based, and deep generative approaches, which 

provide a balanced comparative ground for analyzing 

feedback dynamics. Rather than aiming for state-of-the-art 

accuracy, this study prioritizes diversity in algorithmic 

perspectives to assess fairness and bias amplification over 

time. 

Common algorithms, such as basic matrix factorization, 

BPR, or graph-based recommenders, were excluded to 

maintain focus and interpretability in long-term simulations. 

Including a broader range of models would increase 

computational complexity and reduce the clarity of 

longitudinal comparisons. 

All algorithms were implemented using the Cornac 

framework [36] in Python, with hyperparameter settings 

aligned with the original publications to ensure 

reproducibility and consistency in experimental evaluations. 

3.5 Evaluation metrics 

This study evaluates the impact of popularity bias within 

the proposed feedback loop framework using a diverse set of 

metrics, including accuracy, popularity bias, calibration, and 

beyond-accuracy measures [21, 37, 38]. These metrics 

collectively assess the quality, fairness, and diversity of 

recommendations, providing a comprehensive evaluation of 

system performance from multiple perspectives. 

Fairness metrics assess whether a recommendation 

system provides balanced outcomes for both users and items. 

From the user perspective, they measure alignment with 

individual preferences while mitigating biases that may 

disadvantage certain groups. From the item perspective, they 

ensure fair exposure across different popularity levels, 

preventing an overemphasis on popular content. This study 

employs multiple fairness metrics to evaluate both user- and 

item-based fairness dimensions. 

3.5.1 Group Average Popularity (∆GAP) 

This metric assesses how recommendation algorithms 

impact item popularity across various user groups [11]. It 

compares the average popularity of items in users’ historical 

profiles (𝐺𝐴𝑃𝑝(𝑔)) with the popularity of recommended 

items (𝐺𝐴𝑃𝑟(𝑔)). A smaller ∆GAP indicates better alignment 

between recommendations and users’ past preferences, 

promoting fairness. 

The metric is computed as: 

 

Δ𝐺𝐴𝑃 =
𝐺𝐴𝑃𝑟(𝑔) − 𝐺𝐴𝑃𝑝(𝑔)

𝐺𝐴𝑃𝑝(𝑔)
 (1) 

 

A positive ∆GAP suggests that recommended items are 

more popular than users’ historical preferences, while a 

negative ∆GAP indicates recommendations favor niche 

items. A value of zero reflects a fair balance. 

3.5.2 Mean Rank Miscalibration (MRMC) 

MRMC measures fairness from a user perspective, 

evaluating how well recommendations align with a user's 

historical preferences for popular (Head) and niche (Tail) 

items [39]. It calculates the divergence between the user's 

historical popularity distribution (𝑝) and the cumulative 

popularity distribution of recommended items at each rank 𝑗. 
For a given user 𝑢, Rank Miscalibration (RMC) is 

computed as: 

 

𝑅𝑀𝐶(𝑢) =
∑  𝑁
𝑗=1 Divergence (𝑝, 𝑞(𝑅𝑗

∗))

𝑁
 (2) 

 

The overall MRMC score is obtained by averaging RMC 

across all users: 

 

𝑀𝑅𝑀𝐶 =
∑  𝑢∈𝑈 𝑅𝑀𝐶(𝑢)

|𝑈|
 (3) 

 

A lower MRMC value indicates better alignment 

between recommendations and user preferences, ensuring 

fairer and more personalized suggestions. 

3.5.3 Average Popularity of the Recommended Items 

(APRI) 

The APRI metric assesses the popularity bias in 

recommendation lists by measuring the average popularity 

of the recommended items. It helps evaluate whether the 

system disproportionately favors widely known items over 

less popular ones [21]. 

For a given top-N recommendation list {i₁, i₂, ..., iₙ} for 

user 𝑢, each item's popularity (𝑃ᵢ) is calculated as the 
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proportion of users who have rated that item in the dataset. 

The APRI score is then computed as: 

 

𝐴𝑃𝑅𝐼 = ∑  

𝑖∈𝑁

𝑃𝑖
|𝑁|

 (4) 

 

where N is the set of recommended items, and Pᵢ 

represents an item’s popularity. A lower APRI score 

indicates a fairer recommendation system by ensuring a 

more balanced exposure of items with different popularity 

levels. 

3.5.4 Ratio of Popular Items (RPI) 

The RPI metric measures the proportion of popular items 

in the top-N recommendation list, differentiating between 

frequently rated (head) and less popular (tail) items [21]. 

Unlike APRI, which evaluates general popularity levels, RPI 

focuses on the categorical distribution of recommended 

items. 

Popular items are identified using the Pareto principle 

[40], where “head” items account for 20% of total ratings. 

Given a top-N recommendation list {i₁, i₂, ..., iₙ}, the RPI 

score is calculated as: 

 

𝑅𝑃𝐼 =
∑  𝑖∈𝑁 𝟙(𝑖 ∈ 𝐻)

|𝑁|
 (5) 

 

where H represents the set of head items, and 𝟙(i ∈ H) is 

an indicator function returning 1 if item i belongs to H and 0 

otherwise. 

A lower RPI score indicates a more diverse 

recommendation list, reducing the dominance of popular 

items and promoting the inclusion of niche content. 

3.5.5 Normalized Discounted Cumulative Gain (nDCG) 

The nDCG metric assesses the effectiveness of a 

recommendation system in ranking items according to user 

preferences [41]. It accounts for both the position of 

recommended items and their actual relevance, ensuring that 

higher-rated items appear earlier in the list. 

To achieve this, the metric first computes the Discounted 

Cumulative Gain (DCG) by summing the relevance scores 

of recommended items, where relevance is discounted 

logarithmically based on rank. Then, the Ideal DCG (IDCG) 

is calculated by ranking items in the best possible order 

according to their actual ratings. The final nDCG score is 

obtained by normalizing DCG with IDCG, ensuring that 

scores range between 0 and 1. The formula for nDCG is 

given in Equation (6): 

𝑛𝐷𝐶𝐺𝑢
𝑁 =

𝐷𝐶𝐺𝑢
𝑁

𝐼𝐷𝐶𝐺𝑢
𝑁

 (6) 

 

where DCG measures the gain from ranked items, and 

IDCG represents the maximum possible gain if items were 

perfectly ordered. A higher nDCG score indicates that the 

system ranks relevant items more effectively, improving 

recommendation accuracy. 

3.5.6 Precision, Recall, and F1-Score 

To assess the accuracy of top-N recommendation lists, 

we use Precision, Recall, and F1-score, which collectively 

evaluate how well the system delivers relevant 

recommendations.  

Precision (𝑃@𝑁𝑢) measures the proportion of 

recommended items that are actually relevant to the user, 

assessing recommendation accuracy. Recall (𝑅@𝑁𝑢) 

calculates the proportion of relevant items successfully 

retrieved out of all possible relevant items in the user’s 

profile. To determine relevance, items rated 4 or 5 on a 5-star 

scale are considered suitable [42]. 

The F1-score (𝐹1@𝑁𝑢)  balances precision and recall, 

providing a harmonic mean of both metrics, as defined in 

Equation (7): 

 

𝐹1@𝑁𝑢 = 2 ×
𝑃@𝑁𝑢 × 𝑅@𝑁𝑢

𝑃@𝑁𝑢 + 𝑅@𝑁𝑢

 (7) 

 

A higher F1-score indicates a well-balanced 

recommendation list that optimally captures both relevance 

and coverage. 

3.5.7 Average Percentage of Long-tail Items (APLT) 

The APLT metric measures the proportion of 

recommended items that belong to the long-tail portion of 

the catalog, promoting diversity and reducing popularity bias 

[24]. Based on the Pareto principle [40], items are 

categorized as “head” (top 20% of items receiving 80% of 

ratings) or “tail” (remaining items). The APLT score is 

calculated as shown in Equation (8): 

 

𝐴𝑃𝐿𝑇𝑢 =
|{𝑖 ∣ 𝑖 ∈ (𝑁𝑢 ∩ 𝑇)}|

|𝑁𝑢|
 (8) 

 

where 𝑁𝑢 is the set of recommended items for user u, and 

T represents long-tail items. A higher APLT value indicates 

a greater emphasis on less popular items, enhancing 

recommendation diversity. 

3.5.8 Novelty 

The Novelty metric assesses a recommendation system’s 

ability to introduce users to new items rather than repeatedly 

suggesting familiar ones [43]. It measures the proportion of 

recommended items that the user has not previously rated, 

encouraging content exploration. The Novelty score is 

computed as shown in Equation (9): 

 

 Novelty 
𝑢
=
|{𝑖 ∣ 𝑖 ∉ 𝐼𝑢}|

|𝑁𝑢|
 (9) 

 

where 𝑁𝑢 is the set of recommended items, and 𝐼𝑢 

represents items the user has already rated. A higher Novelty 

value indicates that the system effectively diversifies 

recommendations by suggesting previously unseen content. 

3.5.9 Entropy 

The Entropy metric quantifies the diversity of 

recommended items by assessing how evenly they are 
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distributed across the catalog [44]. It evaluates whether the 

system over-recommends a small subset of items or provides 

a more balanced selection. Entropy is computed using 

Equation (10): 

 

 Entropy = −∑  

𝑖∈𝐾

Pr(𝑖)log2⁡ Pr(𝑖) (10) 

 

where Pr(i) represents the relative frequency of item i in 

the combined recommendation lists. A higher Entropy value 

indicates greater diversity, ensuring a broader range of items 

are recommended. 

3.5.10 Long Tail Coverge (LTC) 

The LTC metric measures how well a recommendation 

system incorporates long-tail items, promoting diversity and 

fairness [24]. It evaluates whether the system effectively 

recommends less popular items instead of focusing solely on 

the most popular ones. The LTC score is calculated as shown 

in Equation (11): 

 

𝐿𝑇𝐶 =
|𝐼ℕ∩𝑇|

|𝑇|
 (11) 

 

where ∣T∣ represents the total number of long-tail items, 

and |𝐼ℕ∩𝑇| is the set of recommended long-tail items. A 

higher LTC score indicates improved long-tail 

representation, enhancing recommendation diversity. 

4 Experimental results  

This section provides a comprehensive evaluation of the 

proposed framework by analyzing the performance of the 

HPF, MMMF, and VAECF algorithms across the MLM and 

PER datasets over t = 10 iterations. The results are assessed 

using fairness, accuracy, and beyond-accuracy metrics. The 

initial iteration results are examined, and the proportional 

changes between the 1st and 10th iterations are analyzed. 

The primary objective of these analyses is to understand how 

the recommendation framework differently impacts male 

and female user groups. The focus is particularly on how the 

iterative feedback loop influences the metrics. This approach 

enables a deeper understanding of the dynamics introduced 

by the simulation and the varying effects on different user 

profiles. Additionally, paired t-tests were conducted to assess 

whether the observed differences between different gender 

groups were statistically significant. 

 

 

Figure 1. Proportional changes in ∆GAP from the 1st to 

the 10th iteration for different gender groups in the MLM 

dataset. 

 

Figure 1 illustrates the proportional changes in the ΔGAP 

metric between the 1st and 10th iterations for different 

gender groups across the HPF, MMMF, and VAECF 

algorithms. Examining the initial iteration values, the HPF 

algorithm recorded 160.10 for men and 152.37 for women, 

while the VAECF algorithm showed 103.27 for men and 

96.47 for women. The MMMF algorithm had the lowest 

initial ΔGAP values, with 61.54 for men and 49.78 for 

women. 

When these initial values are considered alongside the 

proportional changes throughout the iterations, it is observed 

that the HPF algorithm, despite having the highest initial 

ΔGAP values, exhibited relatively lower proportional 

changes over the iterations. Similarly, the VAECF 

algorithm, which started with lower ΔGAP values compared 

to HPF, did not demonstrate significant changes throughout 

the iterations. On the other hand, the MMMF algorithm, 

which initially had the lowest ΔGAP values, showed the 

most substantial proportional change over the iterations. This 

suggests that the MMMF algorithm optimized the model 

more aggressively during the learning process and had a 

greater impact on gender-based differences as iterations 

progressed. Notably, the changes observed in the MMMF 

algorithm were more pronounced for women compared to 

men, indicating that the model may exhibit different learning 

dynamics based on gender. Furthermore, the differences 

observed for the MMMF and VAECF algorithms were found 

to be statistically significant at the 99% confidence level. 

Figure 2 illustrates the proportional changes in the 

MRMC metric between the 1st and 10th iterations for 

different gender groups across the HPF, MMMF, and 

VAECF algorithms. Examining the initial iteration values, 

the HPF algorithm recorded an initial MRMC value of 

0.3149 for men and 0.3618 for women. For the VAECF 

algorithm, these values were 0.2310 for men and 0.2437 for 

women, while the MMMF algorithm had the lowest initial 

MRMC values, with 0.1381 for men and 0.1314 for women. 

 

 

Figure 2. Proportional changes in MRMC from the 1st to 

the 10th iteration for different gender groups in the MLM 

dataset. 

 

When these initial values are considered alongside the 

proportional changes throughout the iterations, it is observed 

that the HPF algorithm, despite having the highest initial 

MRMC values, exhibited the lowest proportional change 

over the iterations. Similarly, the VAECF algorithm, which 

started with a lower MRMC value compared to HPF, 

0

20

40

60

80

100

120

K
K

0

K
K

5

K
K

1
0

K
K

1
5

K
K

2
0

B
a

sı
n

ç
 d

a
y

a
n

ım
ı,

 

M
P

a

Karışım kodu

56 400 °C 600 °C 800 °C 1000 °C



 

 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. Erken Görünüm / InPress 

Y. Zoralioglu, E. Yalcin 

 

 

demonstrated a more noticeable change throughout the 

iterations. On the other hand, the MMMF algorithm, which 

initially had the lowest MRMC values, showed the most 

substantial proportional change, indicating a greater impact 

on model optimization. Additionally, the MMMF algorithm 

exhibited a highly similar change for both men and women, 

suggesting a more balanced learning process between gender 

groups compared to the other algorithms. In contrast, the 

VAECF algorithm showed a higher proportional change for 

women than for men, indicating that this algorithm may 

exhibit different learning dynamics based on gender. These 

findings suggest that the initial MRMC levels are directly 

related to the rate of change in optimization during the 

iteration process and that the model's learning dynamics may 

vary across gender groups as iterations progress. Moreover, 

the differences observed for the HPF and VAECF algorithms 

were found to be statistically significant at the 99% 

confidence level. 

 

 

Figure 3. Proportional changes in APRI from the 1st to 

the 10th iteration for different gender groups in the MLM 

dataset. 

 

Figure 3 illustrates the proportional changes in the APRI 

metric between the 1st and 10th iterations for different 

gender groups across the HPF, MMMF, and VAECF 

algorithms. Examining the initial iteration values, the HPF 

algorithm had the highest starting APRI values (men: 

0.3912, women: 0.3638), the VAECF algorithm showed 

moderate values (men: 0.3229, women: 0.2985), and the 

MMMF algorithm had the lowest initial APRI levels (men: 

0.2507, women: 0.2219). 

When these initial values are considered alongside the 

proportional changes throughout the iterations, it is observed 

that the MMMF algorithm, despite having the lowest initial 

APRI values, exhibited the highest proportional change. In 

contrast, the HPF and VAECF algorithms showed more 

limited variations, with MMMF demonstrating the most 

significant change for both men and women. This suggests 

that the MMMF algorithm had a greater impact on the 

model’s optimization process and that there are notable 

differences in learning dynamics among the algorithms. 

 

 

Figure 4. Proportional changes in RPI from the 1st to the 

10th iteration for different gender groups in the MLM 

dataset. 

 

Figure 4 illustrates the proportional changes in the RPI 

metric between the 1st and 10th iterations for different 

gender groups across the HPF, MMMF, and VAECF 

algorithms. Examining the initial iteration values, the HPF 

algorithm had the highest starting RPI values (men: 0.9606, 

women: 0.9145), the VAECF algorithm showed moderate 

values (men: 0.7722, women: 0.6985), and the MMMF 

algorithm had the lowest initial RPI levels (men: 0.5214, 

women: 0.4275). 

When these initial values are considered alongside the 

proportional changes throughout the iterations, it is observed 

that the MMMF algorithm, despite having the lowest initial 

RPI values, exhibited the highest proportional change. In 

contrast, the HPF and VAECF algorithms showed more 

limited variations, with MMMF demonstrating a more 

significant change for women. This suggests that the MMMF 

algorithm had a greater impact on the model’s optimization 

process and that gender-based differences in learning 

dynamics may exist. 

 

 

Figure 5. Proportional changes in nDCG from the 1st to 

the 10th iteration for different gender groups in the MLM 

dataset. 
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Figure 6. Proportional changes in Precision from the 1st 

to the 10th iteration for different gender groups in the 

MLM dataset. 

 

 

Figure 7. Proportional changes in Recall from the 1st to 

the 10th iteration for different gender groups in the MLM 

dataset. 

 

The evaluation of the HPF, MMMF, and VAECF 

algorithms across various accuracy metrics, including 

nDCG, Precision, Recall, and F1-Score, reveals consistent 

patterns in performance and improvement trends. Analyzing 

the initial iteration values, it is observed that the VAECF 

algorithm has the highest starting values across all metrics 

for both male and female users. The HPF algorithm ranks 

second in initial performance, while the MMMF algorithm 

exhibits the lowest baseline levels. These findings indicate 

that VAECF is initially more effective; however, differences 

in improvement trends throughout the iteration process 

become a key factor in distinguishing the algorithms. 

 

 

Figure 8. Proportional changes in F1-Score from the 1st 

to the 10th iteration for different gender groups in the 

MLM dataset. 

 

When evaluating the proportional changes between the 

1st and 10th iterations, significant improvements in all 

accuracy metrics are observed for the MMMF and HPF 

algorithms, and these improvements are reflected in Figures 

5, 6, 7, and 8. The HPF algorithm demonstrates a more 

pronounced performance increase, particularly for female 

users, while the MMMF algorithm shows notable 

improvement across accuracy metrics, maintaining a more 

balanced performance enhancement across genders. In 

contrast, despite having the highest initial values, the 

VAECF algorithm exhibits a more limited change 

throughout the iteration process compared to the other 

algorithms. This suggests that HPF and MMMF have greater 

adaptability and optimization potential, resulting in 

significant performance improvements over iterations. 

Furthermore, differences in learning dynamics between 

genders are evident, as HPF and MMMF offer higher 

proportional improvements for female users, while VAECF 

maintains a more stable progression. These findings indicate 

that although VAECF provides a strong initial predictive 

capability, HPF and MMMF offer greater optimization 

advantages throughout the iterative learning process. 

Additionally, the differences observed in the APRI, RPI, 

nDCG, Precision, Recall, and F1-score metrics between 

male and female user groups were found to be statistically 

significant for all algorithms at the 99% confidence level. 

The evaluation of the HPF, MMMF, and VAECF 

algorithms on the APLT metric highlights notable 

differences in computational efficiency. At the first iteration, 

MMMF has the highest APLT values, with 0.4786 for males 

and 0.5725 for females, indicating that it requires the longest 

prediction time. VAECF follows with 0.2278 for males and 

0.3015 for females, while HPF demonstrates the lowest 

initial latency, with 0.0394 for males and 0.0855 for females, 

suggesting a more efficient computational process. 

 

 

Figure 9. Proportional changes in APLT from the 1st to 

the 10th iteration for different gender groups in the MLM 

dataset. 

 

As shown in Figure 9, the proportional changes between 

the 1st and 10th iterations reveal a substantial reduction in 

APLT for all algorithms. HPF and VAECF experience the 

most significant decrease, particularly for female users, 

where VAECF shows a steeper decline. The MMMF 

algorithm, despite having the highest initial APLT values, 

also undergoes a considerable reduction. However, it still 

maintains relatively higher latency compared to HPF and 
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VAECF. Also, the differences observed in the APLT metric 

between male and female user groups were found to be 

statistically significant when using the HPF and MMMF 

algorithms. 

 

 

Figure 10. Proportional changes in Novelty from the 1st 

to the 10th iteration for different gender groups in the 

MLM dataset. 

 

The evaluation of the HPF, MMMF, and VAECF 

algorithms on the novelty metric highlights significant 

differences in recommendation diversity. Analyzing the 

initial iteration values, the MMMF algorithm has the highest 

starting novelty levels, with 0.4387 for males and 0.5099 for 

females. The HPF algorithm yields values of 0.3998 for 

males and 0.4891 for females, while the VAECF algorithm 

has the lowest initial values, at 0.3198 for males and 0.3863 

for females. This suggests that the MMMF and HPF 

algorithms initially provide a broader recommendation set, 

whereas VAECF generates more restricted suggestions. 

As shown in Figure 10, the proportional changes between 

the 1st and 10th iterations indicate a substantial decline in 

novelty values for all algorithms. HPF and VAECF, in 

particular, show a significantly larger decrease for female 

users. Although MMMF starts with the highest novelty 

levels, it experiences a more gradual decline compared to the 

other algorithms. This indicates that HPF and VAECF refine 

their recommendations more aggressively over iterations, 

leading to a more specialized set of suggested items. In 

contrast, MMMF maintains a relatively broader 

recommendation space with a more balanced reduction in 

novelty. Also, the differences observed in the novelty metric 

between male and female user groups were not found to be 

statistically significant for any of the algorithms. 

 

 

Figure 11. Proportional changes in Entropy from the 1st 

to the 10th iteration for different gender groups in the 

MLM dataset. 

 

The evaluation of the HPF, MMMF, and VAECF 

algorithms on the entropy metric highlights differences in the 

uncertainty and diversity of recommendation systems. 

Analyzing the initial iteration values, the VAECF algorithm 

has the highest starting entropy levels, with 0.0001391 for 

males and 0.0003552 for females. The MMMF algorithm 

follows, with values of 0.0001290 for males and 0.0003317 

for females. The HPF algorithm has the lowest initial entropy 

values, at 0.0001036 for males and 0.0002704 for females, 

indicating that its recommendation system is the least 

uncertain. 

As shown in Figure 11, the proportional changes between 

the 1st and 10th iterations indicate a decline in entropy values 

for all algorithms. This reduction is more pronounced for 

female users. Despite starting with the highest entropy 

values, the VAECF algorithm experiences the sharpest 

decline throughout the iterations. The MMMF algorithm also 

shows a noticeable reduction, though less drastic than 

VAECF. The HPF algorithm, while initially having the 

lowest entropy levels, maintains a more balanced decrease 

over the iterations. This suggests that HPF gradually reduces 

recommendation diversity in a controlled manner, whereas 

VAECF undergoes a more drastic shift toward a narrower 

range of recommendations. Additionally, the differences 

observed in entropy between male and female user groups 

were found to be statistically significant when using the HPF 

and MMMF algorithms. 

 

 

Figure 12. Proportional changes in LTC from the 1st to 

the 10th iteration for different gender groups in the MLM 

dataset. 

 

The evaluation of the HPF, MMMF, and VAECF 

algorithms on the LTC metric highlights differences in how 

recommendation systems adapt to user preferences. 

Analyzing the initial iteration values, the VAECF algorithm 

has the highest starting LTC levels, with 3.36206E-05 for 

males and 6.96556E-05 for females. The MMMF algorithm 

yields results of 2.4599E-05 for males and 5.30419E-05 for 

females. The HPF algorithm has the lowest initial LTC 

values, at 9.02163E-07 for males and 2.28629E-06 for 

females, indicating that it has the slowest learning rate in 

terms of recommendation adjustments. 

As shown in Figure 12, the proportional changes between 

the 1st and 10th iterations indicate a significant decline in 

LTC values for all algorithms. HPF and VAECF, in 

particular, show a more substantial reduction for female 
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users. Although VAECF starts with the highest LTC values, 

it experiences the sharpest decline throughout the iterations. 

The MMMF algorithm also shows a noticeable reduction, 

though less drastic than VAECF. The HPF algorithm, while 

having the lowest initial levels, maintains the most balanced 

decrease over iterations. These findings suggest that HPF 

optimizes its recommendation system more steadily, while 

VAECF, despite its initially rapid learning, undergoes the 

most significant shift in later iterations. The differences 

observed in the LTC metric between male and female user 

groups were found to be statistically significant at the 99% 

confidence level only when using the MMMF algorithm. 

5 Limitations  

This study assumes that users consume all items 

recommended in the top-N lists at each iteration, which 

simplifies the simulation of the feedback loop. However, in 

real-world scenarios, users rarely consume the entire 

recommendation list, and the proportion of consumed items 

can vary widely across different domains and user groups. 

Importantly, consumption patterns may exhibit gender-

related differences, with male and female users potentially 

engaging with recommended content in different ways. 

This limitation could impact the observed dynamics of 

fairness, popularity bias, and diversity in the system. For 

instance, if one gender tends to consume fewer 

recommendations, the feedback loops and resulting biases 

might evolve differently than modeled here. Furthermore, 

because the simulation generates fully synthetic user 

interactions, the findings may not fully capture complex real-

world behaviors such as partial engagement, user fatigue, or 

changing preferences over time. Therefore, caution should 

be exercised when generalizing the results, and future work 

should validate the framework using real user data or more 

sophisticated behavioral models. 

Therefore, incorporating variable consumption rates, 

potentially conditioned on demographic factors such as 

gender, would provide a more realistic simulation 

framework and deeper insights into the dynamics of fairness. 

6 Conclusion and future work 

This study proposes a dynamic feedback loop framework 

to analyze the long-term impacts of gender-based fairness 

and popularity bias in recommender systems. The developed 

simulation infrastructure models the system's evolution over 

time by updating user profiles at each iteration based on the 

recommended items. This framework enables the tracking of 

how fairness metrics change dynamically as synthetic 

feedback accumulates over time, thereby filling a gap in 

fairness research under feedback loop conditions. 

Three collaborative filtering algorithms (HPF, MMMF, 

and VAECF) were evaluated in terms of both their initial 

performance and their progression over multiple iterations of 

the feedback loop. The results indicate that the MMMF 

algorithm achieved higher values for calibration and 

diversity metrics among female users. The HPF algorithm 

demonstrated more balanced improvement in overall 

accuracy metrics, whereas the VAECF algorithm initially 

showed strong performance but limited gains as the feedback 

loop progressed. 

In terms of fairness metrics, popularity-driven 

disparities—measured using indicators such as GAP, 

MRMC, and RPI—increased over time. Higher values in 

these metrics were observed for the female user group, 

highlighting the growing differentiation across user groups 

as iterations progressed. Additionally, the system faced 

increasing difficulty in maintaining access to long-tail 

content and preserving diversity over time. Our proportional 

change analysis across iterations uncovered gender-specific 

learning behaviors, offering actionable insights for fairness-

aware algorithm design. 

These findings suggest that recommender systems should 

not only focus on initial accuracy performance but also 

monitor how fairness, diversity, and calibration evolve 

dynamically throughout user interaction. The differing 

impacts on user groups, specifically those based on gender 

in this study, underscore the necessity of designing more 

adaptive, user-aware algorithms. This study provides the first 

longitudinal, gender-specific comparison of HPF, MMMF, 

and VAECF in this context, revealing how feedback loops 

can intensify disparities in both fairness and performance 

metrics. 

For future research, incorporating stochastic models of 

user interaction, such as varying engagement levels, 

feedback noise, and dropout behaviors, could enhance the 

realism of simulations. Additionally, extending the 

demographic analysis beyond gender (e.g., age, occupation) 

and validating the framework on larger, real-world datasets 

will contribute to more generalizable insights. Developing 

personalized and group-sensitive recommendation strategies 

will be essential for mitigating fairness concerns that arise in 

feedback-driven systems. 
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