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Abstract
Recent studies in machine learning are based on models in which parameters or state
variables are restricted by a restricted boundedness. These restrictions are based on prior
information to ensure the validity of scientific theories or structural consistency based
on physical phenomena. The valuable information contained in the restrictions must
be considered during the estimation process to improve the accuracy of the estimation.
Many researchers have focused on linear regression models subject to linear inequality
restrictions, but generalized linear models have received little attention. In this paper,
the parameters of beta Bayesian regression models subjected to linear inequality restric-
tions are estimated. The proposed Bayesian restricted estimator, which is demonstrated
by simulated studies, outperforms ordinary estimators. Even in the presence of multi-
collinearity, it outperforms the ridge estimator in terms of the standard deviation and the
mean squared error. The results confirm that the proposed Bayesian restricted estimator
makes sparsity in parameter estimating without using the regularization penalty. Finally,
a real data set is analyzed by the new proposed Bayesian estimation method.
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1. Introduction
Beta regression models (BRMs), proposed by [14], have become a popular choice for an-

alyzing response variables that fall within the range (0, 1). Various applications of BRMs
have been studied for instance the percentages of body fat [13], the proportion of crude
oil after distillation and fractionation [32], the color characteristics of hazelnuts [19]. Typ-
ically, the maximum likelihood estimator is used to estimate the model parameters. For
recent developments in parameter estimation methods for beta regression models (BRMs),
see [2,4,5,25,37]. However, in certain applications, incorporating prior information about
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the parameters into the model can be advantageous. This prior information can enhance
the accuracy of the estimation process. It is typically introduced into the model in the
form of constraints, linear or non-linear, and may involve equality or inequality conditions.

In BRMs, linear equality restrictions have been studied by [6,34], who aimed to improve
the Beta Liu Estimator (BLE) and the Beta maximum likelihood estimator (BMLE), re-
spectively, by using shrinkage methods such as James-Stein, positive James-Stein, and pre-
liminary test approaches. Compared to equality restrictions, there are situations where it
becomes necessary to impose linear inequality constraints on regression parameters. These
constraints help maintain structural consistency with physical phenomena or ensure the
validity of scientific theories. For example, in applied econometrics, certain regression
coefficients may be required to be non-negative or non-positive [7, 31]. In hyperspectral
imaging, physical considerations often demand that coefficients be non-negative [26]. Sim-
ilar applications of inequality restrictions can be found in astronomy and zoology [41], as
well as in geodesy [42].

In the classical framework, linear regression models subject to linear inequality restric-
tions have been extensively studied (see [11,12,18,23,29]). More recently, in the era of big
data, it has been shown that incorporating non-negativity constraints can induce sparsity
in linear regression models without the need for regularization [27, 38]. Similar findings
have also been reported for generalized linear models (GLMs) [20]. However, Bayesian
models provide a straightforward approach for incorporating linear inequality restrictions
into the estimation process. Several studies have investigated Bayesian inference in lin-
ear regression models subject to such restrictions. Notable contributions include [15, 16],
[10], [28], and more recently [40] and [35]. Most of these studies focus on multiple lin-
ear regression models; however, similar restrictions can also arise in applications where
GLMs are applicable. [17] introduced an algorithm for Bayesian estimation under linear
inequality restrictions in GLMs, but it relies on certain conditions that may not always
be satisfied. For example, these conditions do not hold in the case of BRMs with a logit
link function. More recently, [36] proposed an algorithm within the GLM framework that
accommodates linear inequality restrictions using any link function, specifically in Gamma
regression models. Therefore, a practical method that enables Bayesian inference in BRMs
subject to linear inequality restrictions is needed. The aim of this paper is to address this
gap by focusing on Bayesian inference in BRMs under such constraints.

We organize the article as follows: The BRMs and the maximum likelihood estimator
of the regression parameters are presented in Section 2. Section 3 introduces our Bayesian
estimation method for BRMs subject to linear inequality constraints. In Section 4, we com-
pare the performance of the proposed Bayesian estimator with existing methods through
two simulation studies. The results indicate that our estimator outperforms alternatives
such as the Maximum Likelihood Estimator (MLE) and the Ridge estimators in terms
of standard deviation, mean squared error, and relative efficiency. Section 5 presents an
analysis of a real-life dataset, which confirms the simulation results. Section 6 concludes
the paper.

2. Beta Regression Model and Estimation
The beta regression model for a response variable confined to the interval (0, 1) was

first proposed by [14], who introduced a monotonic differentiable function, known as the
link function, to relate the mean of the response variable to a set of independent variables.
Assume yi is a continuous random variable following the beta probability density function

f(yi) = Γ(γ)
Γ(µiγ)Γ ((1 − µi)γ)yµiγ−1

i (1 − yi)(1−µi)γ−1, i : 1, 2, . . . , n, (2.1)

where 0 < yi, µi < 1, and γ > 0. Here, Γ(.) denotes the gamma function and γ is referred
to as the precision parameter, which is assumed to be known and constant throughout
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this paper. The model allows the mean of the response variable to depend on a linear
predictor through a link function g(.), defined as

g(µi) = log( µi

1 − µi
) = X⊤

i β = ηi; i : 1, 2, . . . , n

where β = (β1, β2, . . . , βp)⊤ is a vector of p unknown parameters, Xi = (xi1, xi2, . . . , xip)⊤

is vector of covariates for the ith observation and ηi is the linear predictor. To find
the estimation of β, the log-likelihood function is required. For BRM, the log-likelihood
function is defined as

ℓ(y|β, γ, X) = n log
(
Γ(γ)

)
+

n∑
i=1

{
(γ − 1) log(1 − yi) − log(yi)

}

+
n∑

i=1

{
γµi log( yi

1 − yi
) − log

(
Γ(γµi)

)
− log

(
Γ(γ(1 − µi))

)}
(2.2)

The beta maximum likelihood estimator (BMLE) of the vector β is obtained using the
iterative re-weighted least squares (IRLS) method as

β̂BMLE = (X⊤ĈX)⊤X⊤ĈU , (2.3)
where

Ĉ = diag(C1, C2, . . . , Cn),

Ci = γ

{
Ψ′(µ̂iγ) + Ψ′((1 − µ̂i)γ)

} 1{
g′(µ̂i)

}2 ,

U = η̂ + Ĉ
−1

T̂ (ỹ − µ̃),

T̂ = diag( 1
g′(µ̂1) ,

1
g′(µ̂2) , . . . ,

1
g′(µ̂n)),

µ̃ = (µ̃1, µ̃2, . . . , µ̃n)⊤; µ̃i = Ψ(µ̂iγ) − Ψ((1 − µ̂i)γ),

ỹ = (ỹ1, ỹ2, . . . , ỹn)⊤; ỹi = log( yi

1 − yi
),

and Ψ(.) denotes digamma function.

3. Bayesian Inference in Restricted Beta Regression
In this section, we first begin with the model under the assumption that X⊤ĈX is

non-singular. Then, in the following section, through a simulation study, we demonstrate
that when X⊤ĈX becomes singular, the beta Bayesian estimator based on linear inequal-
ity restrictions naturally serves as a penalty in the estimation process. The restrictions
imposed on the model parameters are defined as follows:

Hβ ≤ G, (3.1)
where H is a pre-specified q × p matrix, and G is a vector of length q. Here, the number
of restrictions q may exceed the number of parameters p, and it is assumed that the
restricted subspace defined by (3.1) is non-empty. In traditional Bayesian inference, when
no restrictions are imposed on the model parameters, the multivariate normal distribution
is typically used as the prior distribution for the parameter vector β

β ∼ Np(µβ, Σβ), (3.2)
However, in our case, there is a strong belief that the model parameters satisfy the re-
striction in (3.1). Therefore, using (3.2) as an unrestricted prior may lead to inefficient
Bayesian estimates. To illustrate this point, consider the case where Yi ∼ N(µ, σ2), with
known σ2. The unrestricted estimator of µ is the sample mean (Ȳ =

∑n
i=1 yi/n). If we
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know that µ ≤ b, the sample mean Ȳ might violate this constraint. In such cases, a
restricted estimator can be defined as:

µ̂ = Ȳ I(Ȳ ≤ b) + bI(Ȳ > b)

where I(.) is the indicator function. Consequently, we incorporate the prior information
from (3.1) into the prior distribution by considering the truncated multivariate normal
distribution

β ∼ TNp(µβ, Σβ, H, G), (3.3)

where TNp(µβ, Σβ, H, G) denotes the truncated multivariate normal distribution, whose
probability density function is given by

π(β) =
exp

{
(β − µβ)⊤Σ−1

β (β − µβ)
}∫

Hβ≤G exp
{
(β − µβ)⊤Σ−1

β (β − µβ)
}
dβ

I(Hβ ≤ G). (3.4)

Using the prior distribution above, the posterior distribution of β is given by

π(β|Y, X, γ) = ℓ(y|β, γ, X)π(β)

∝
[ n∑

i=1

{
γµi log( yi

1 − yi
) −

{
log(Γ(γµi)) + log

(
Γ

(
γ(1 − µi)

))
}
}]

× exp
{
(β − µβ)⊤Σ−1

β (β − µβ)
}
I(Hβ ≤ G). (3.5)

Obviously, this posterior distribution does not have a closed-form expression. Therefore,
to obtain the estimator, one must generate random samples from the distribution in (3.5).
[17] showed that if the likelihood function has the following form

ℓ(Y |β, X) ∝ exp{Y ⊤Xβ −
n∑

i=1
Υ(X⊤

i β)} (3.6)

where Υ(.) is a positive, convex, and invertible function such that Υ′′(z) > 0 ∀z, then the
product slice sampling method can be efficiently used to draw samples from the posterior.
However, when comparing the likelihood function of the Beta regression model in (2.2) with
the form in (3.6), it becomes evident that the conditions required to apply the algorithm
of [17] are not satisfied in the case of Beta regression models.

We use the Metropolis-Hastings algorithm to derive the beta Bayesian Linear Inequality
Restricted Estimator (BBIRE). The proposal distribution in the algorithm is specified as

β ∼ TNp(β(t−1), Σpro, H, G). (3.7)

where Σpro is a p × p positive definite matrix.
Several algorithms have been proposed for generating samples from a truncated mul-

tivariate normal distribution subject to linear inequality constraints (see, for example,
[8,15,16,21,30,33]). However, most of these methods are only practical when the number
of restrictions q < p. In this study, we employ the sampling method introduced by [22],
which uses a sequence of Gibbs sampling cycles to generate samples from the truncated
multivariate normal distribution. In each cycle, sampling from truncated univariate nor-
mal distributions is performed using efficient, customized rejection sampling techniques
tailored to the type of restriction.

In the following section, we compute the BBIRE using the samples obtained from the
Metropolis-Hastings algorithm described above. Our analysis demonstrates that the pro-
posed estimator outperforms existing methods, even in the presence of multicollinearity
within the dataset.
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4. Simulation Study
In this section, the performance of the proposed estimator is illustrated using two sim-

ulated data scenarios. In Scenario A, the covariates are independent or exhibit weak
intercorrelation. In contrast, Scenario B assumes a high degree of intercorrelation among
the covariates.

4.1. Random Data Generation
In both scenarios, the predictor function and the mean are considered as follows:

ηi = Xi1β1 + Xi2β2 + Xi3β3 + Xi4β4, (4.1)

µi = exp{ηi}
1 + exp{ηi}

; i : 1, 2, . . . , n (4.2)

The covariates are generated from a multivariate normal distribution with a mean vector
0 = (0, 0, 0, 0)⊤ and a covariance matrix C, where Cij = ρ|i−j|; i, j = 1, 2, . . . , 4. The
parameter ρ controls the degree of intercorrelation among the covariates. The true values
of the regression coefficients are set as β = (1, 1, 1, 1)⊤. We also investigated the effect
of sample size on the performance of the BBIRE estimator compared to other estimators,
using sample sizes of n = 20 and n = 50. Different values of the precision parameter γ
are considered, specifically γ = 5 and γ = 10. Finally, the observations of the response
variable are generated from Beta(µiγ, (1 − µi)γ).

It is possible that values of zero and one may appear in the generated data. To address
this issue, we follow the recommendation of [39] by rescaling the values of the dependent
variable using the following transformation

Ỹi = Yi(n − 1) + 0.5
n

. (4.3)

Based on the parameter values, the inequality restrictions of interest are specified as
follows:

β1 ≤ 1.5,

β1 − β2 + β3 ≤ 1.5,

β3 ≤ 1.5.

4.2. Specializing Hyperparameters
The hyperparameters in (3.3) are set as

µβ = 0 and Σβ = (X⊤X)−1 (4.4)

For the proposal distribution, the covariance matrix is set as the inverse of the Fisher
information matrix

Σpro = I−1(β) = 1
γ

(X⊤ĈX)−1 (4.5)

where Ĉ is calculated using the BMLE. In addition to BBIRE and the ordinary estimators
used in both scenarios, the Beta Bayesian unrestricted estimator (BBUNE) is also obtained
by employing the multivariate normal distribution with the hyperparameters specified in
(4.4) as the prior distribution for β.
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4.3. Criteria for Evaluating the Estimators
After designing our experiment, the criteria for comparing the estimators are defined.

To determine the proposed Bayesian estimator, the mean of the simulated data is used,
which corresponds to assuming a squared error loss function. Since this loss function is
applied to find the proposed estimator, the mean squared error (MSE) of the estimators
obtained from 100 replicated data sets is calculated in both scenarios to evaluate the
performance of the proposed Bayesian estimator compared to alternative estimators.
The MSE of an estimator of βj , e.g. β̂j , is calculated as follows:

MSE(β̂j) = 1
100

100∑
k=1

(β̂kj − βtrue
j )2, (4.6)

where β̂kj is the estimate of βj in the kth replication. Another criterion, relative efficiency
(RE), is defined by setting the proposed Bayesian estimator (BBIRE) as a benchmark and
is computed as

RE(β̂j) = MSE(β̂j)
MSE(β̂j(BBIRE))

. (4.7)

4.4. Simulation Results
This subsection presents the results of the simulation study. In each scenario, 10, 000

samples are generated using the Metropolis-Hastings algorithm, with the first 1, 000 sam-
ples discarded as burn-in to reduce the influence of initial values. The simulation study is
implemented in the R programming language, utilizing the betareg [9] and tmvmnorm
[24] packages. It is worth noting that convergence of the Markov chain was assessed using
three different initial values in both scenarios, and no convergence issues were detected.

Results of Scenario A. In this scenario, the correlation parameter ρ is set to 0 and 0.5,
corresponding to no and weak inter-correlation among the covariates, respectively. The
proposed Bayesian estimator is compared with the beta Bayesian unrestricted estimator
(BBUNE) and the Beta maximum likelihood estimator (BMLE). Tables 1 and 2 present
the estimates, standard deviations (SD), MSE, and RE of each coefficient in the beta
regression model, based on 100 replications and varying values of the precision parameter.
The results indicate that the proposed Bayesian estimator consistently outperforms the
other estimators in terms of SD, MSE, and RE. Furthermore, as the sample size increases,
a general decrease in SD, MSE, and often RE is observed, while the superiority of the
proposed estimator remains evident.

Results of Scenario B. In this scenario, high inter-correlation among the covariates is
introduced by setting ρ to 0.90 and 0.95. The proposed Bayesian estimator is compared
with the Beta Ridge Estimator (BRE) and the Beta Bayesian Unrestricted Estimator
(BBUNE). To determine the ridge parameter for BRE, several estimators from the litera-
ture were considered and the one that produced the lowest MSE in the designed experiment
was selected. Let E be the matrix of eigenvectors of X⊤ĈX, λ = (λ1, . . . , λp)⊤ the cor-
responding eigenvalues, and α = (α1, . . . , αp)⊤ = Eβ̂BMLE. The chosen ridge parameter
estimator is then given by:

k̂ = λmax

γα2
max

where α2
max = maxj(α2

j ) and λmax = maxj(λj).
Estimates, standard deviations (SD), MSE and RE of each coefficient in the beta re-

gression model, based on 100 replications, are reported in Table 3 for γ = 5 and Table 4
for γ = 10. The results clearly show that the BBIRE yields significantly lower MSE and
SD for all coefficients compared to both BRE and BBUNE. As expected, increasing the
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sample size leads to reductions in SD, MSE, and RE for each coefficient. These results
suggest that incorporating linear inequality restrictions into the Bayesian model can en-
hance the accuracy of parameter estimates, even in the presence of strong multicollinearity
among the covariates.

5. Application
The application of the proposed methodology is demonstrated through an empirical

study based on Turkey’s well-being index for 2015, as documented by Aktas (year). This
index comprises several dimensions, including housing, employment, income and wealth,
health, education, environmental quality, safety, civic engagement, and access to public
and social services. The life satisfaction index, which serves as the response variable,
ranges from 0 to 1, with values closer to one indicating a higher quality of life. The data
set was retrieved from the official website of the Turkish Statistical Institute.

Of the 41 available indicators, we focus on nine specific indicators, according to the
selection made by [1], to serve as covariates in the model. These are: number of rooms per
person (X1), percentage of households declaring to not meet basic needs (X2), satisfaction
rate with public health services(X3), average point of necessary placement scores of the
system for the transition to secondary education from basic education (X4), satisfaction
rate with public education services (X5), percentage of population receiving waste services
(X6), satisfaction rate with public safety services (X7), access rate of the population to
the sewerage and pipe system (X8), and finally, we consider the level of happiness as a
response variable. To begin with, the degree of multicollinearity among the covariates
is examined. Table 5 presents the correlation matrix of the selected variables, revealing
strong correlations among several covariates. Consequently, we compute and compare four
estimators: the BBIRE, BBUNE, BMLE, and BRE.

Inequality restrictions on regression coefficients are imposed based on findings from
previous studies [1, 3], and are specified as follows:

β2 ≤ 0, β3 ≥ 0, β5 ≥ 0, β6 ≤ 0. (5.1)
In line with the simulation settings in Section 4, the Metropolis-Hastings algorithm de-
scribed in Section 3 is used to generate 10, 000 samples, the first 1, 000 discarded as burn-in
to mitigate the influence of initial values. The hyperparameters for the prior and proposal
distributions are specified in Section 4. For the ridge parameter in the BRE, following the
approach in [1], the ridge penalty is defined as:

k̂ = λmin

γα2
min

in which α2
min = min

1≤j≤p
(α2

j ) and λmin = min
1≤j≤p

(λj). To evaluate the performance of the
proposed Bayesian restricted estimator, a bootstrap case resampling method is employed.
From the complete data set of 81 observations, bootstrap samples of size 30 are drawn with
100 replications. For each bootstrap sample, the estimators, their standard deviations, and
relative efficiencies are calculated. The final estimates and standard deviations are derived
as the sample means and sample standard deviations in the 100 bootstrap replications.
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Table 5. Correlation matrix of covariates of real data set.

X1 X2 X3 X4 X5 X6 X7 X8

X1 1.000 -0.822 0.572 0.877 0.416 0.154 0.480 0.197
X2 1.000 -0.585 -0.759 -0.372 -0.182 -0.399 -0.248
X3 1.000 0.497 0.839 0.039 0.843 0.110
X4 1.000 0.312 0.174 0.414 0.241
X5 1.000 -0.173 0.891 -0.112
X6 1.000 -0.225 0.931
X7 1.000 -0.159
X8 1.000

Summary statistics for all parameters are presented in Table 6. The results indicate
that the BBIRE exhibits the lowest standard deviation among all estimators. To further
evaluate the performance of the proposed Bayesian estimator, Table 7 presents the total
simulated relative efficiency (TSRE), which is computed using the following formula:

TSRE(β̂) =
∑8

j=0 MSE(β̂j)∑8
j=0 MSE(β̂j(BBIRE))

(5.2)

Since the values of TSRE for all traditional estimators are larger than one, it indicates
that BBIRE outperforms the other estimators.

Table 6. Bootstrapped estimates and standard deviation (SD) of model param-
eters for real data set.

BMLE BRE BBUNE BBIRE

Estimates SD Estimates SD Estimates SD Estimates SD
intercept 2.7208 2.2456 2.1614 1.9728 2.7598 2.2714 2.9719 1.8160

X1 -0.0413 0.6825 0.0258 0.6206 -0.0404 0.6885 -0.0545 0.6248
X2 -2.0861 1.2015 -1.7173 1.1993 -2.1067 1.2161 -2.0456 0.8096
X3 1.7496 1.9315 1.4798 1.5576 1.7415 1.9315 2.1923 1.1235
X4 -0.6216 0.4777 -0.5611 0.4502 -0.6290 0.4809 -0.6051 0.4668
X5 0.9944 1.6243 0.7943 1.3594 1.0076 1.6168 1.6395 0.7606
X6 -0.8395 1.0613 -0.6617 0.8476 -0.8456 1.0706 -1.2225 0.7236
X7 -1.2312 2.3902 -0.7414 1.9481 -1.2393 2.4084 -2.4460 1.7759
X8 0.3845 1.2416 0.2677 1.0157 0.3878 1.2487 0.6641 0.9028

Table 7. TSRE of estimators for real data set.

BMLE BRE BBUNE
TSRE 1.8657 1.4719 1.8813

6. Conclusion
This paper has addressed the problem of Bayesian estimation of parameters, which are

restricted by some linear inequality restrictions in Beta regression models. Beta regres-
sion models with logistic link functions do not satisfy the conditions of the estimation
parameter method mentioned by [17]. Thus, a new method for estimating restricted pa-
rameters in the Beta regression model has been presented and is also feasible for any other
members of GLM. The simulation results illustrated that the proposed method provides
a parameter estimation that outperforms well-known estimators even if the design matrix
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is ill-conditioned. The real data application also shows the practicality of the proposed
method in estimating the parameters.
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