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Abstract: The object of the present research is to study the δ -Lorentzian Trans-
Sasakian manifolds addmitting the η-Einstein Solitons and gradient Einstein soliton.
It is shown that a symmetric second order covariant tensor in a δ -Lorentzian Trans
Sasakian manifold is a constant multiple of metric tensor. Also an example of η-
Einstein soliton in 3-dimensional δ -Lorentzian Trans-Sasakian manifold is provided
in the region where δ -Lorentzian Trans-Sasakian manifold expanding.

1. Introduction

Study of differentiable manifolds with Lorentzian metric is a natural and interesting topic in differential geometry. In
[1], T. Ikawa and M. Erdogan studied Lorentzian Sasakian manifold. Lorentzian Kenmotsu manifold was introduced
by Mihai et al. [2]. Also Lorentzian para contact manifolds were introduced by K. Matsumoto [3]. Trans Lorentzian
para Sasakian manifolds have been used by H. Gill and K. K. Dube [4]. In [5] A. Yıldız et al. studied Lorentzian
α-Sasakian manifold and Lorentzian β -Kenmotsu manifold studied by Funda et al. in [6]. After that in 2011 S. S
Pujar and V. J. Khairnar [7] have initiated the study of Lorentzian Trans-Sasakian manifolds and studied the some
basic results with some of its properties. Earlier to this, S. S. Pujar [8] has initiated the study of δ -Lorentzian α

Sasakian manifolds and δ -Lorentzian β Kenmotsu manifolds . In [9] U. C. De also studied properties of curvatures
in Lorentzian Trans-Sasakian manifolds.
The study of manifolds with indefinite metrics is of interest from the standpoint of physics and relativity. In 1969,
Takahashi [10] has introduced the notion of almost contact metric manifolds equipped with pseudo Riemannian
metric. These indefinite almost contact metric manifolds and indefinite Sasakian manifolds are known as (ε)-almost
contact metric manifolds. The concept of (ε)-Sasakian manifolds was initiated by Bejancu and Duggal [11]. U. C.
De and A. Sarkar [12] studied the notion of (ε)-Kenmotsu manifolds. S.S. Shukla and D. D. Singh [13] extended
the study to (ε)-Trans-Sasakian manifolds with indefinite metric. Siddiqi et al. [14] also studied some properties of
Indefinite trans-Sasakian manifolds which is closely related to this topic. The semi Riemannian manifolds has the
index 1 and the structure vector field ξ is always a time like. This motivated the Thripathi et al. [15] to introduce
(ε)-almost para contact structure where the vector filed ξ is space like or time like according as (ε) = 1 or (ε) =−1.
When M has a Lorentzian metric g, that is, a symmetric non degenerate (0,2) tensor field of index 1, then M is called
a Lorentzian manifold. Since the Lorentzian metric is of index 1, Lorentzian manifold M has not only spacelike
vector fields but also timelike and lightlike vector fields. This difference with the Riemannian case gives interesting
properties on the Lorentzian manifold. A differentiable manifold M has a Lorentzian metric if and only if M has a 1-
dimensional distribution such that g is negative defined on it. Hence odd dimensional manifold is able to have a
Lorentzian metric. Inspired by the above results in 2014, S. M Bhati [16] studied the notion of δ -Lorentzian trans-
Sasakian manifolds.

In 1982, R. Hamilton [17] introduced that the Ricci solitons move under the Ricci flow simply by diffeomorphisms
of the initial metric that is they are stationary points of the Ricci flow is given by

∂g
∂ t

=−2Ric(g). (1.1)
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Definition 1.1. A Ricci soliton (g,V,λ ) on a Riemannian manifold is defined by

LV g+2S+2λ = 0, (1.2)

where S is the Ricci tensor, LV is the Lie derivative along the vector field V on M and λ is a real scalar. Ricci
soliton is said to be shrinking, steady or expanding according as λ < 0,λ = 0 and λ > 0, respectively.
If the vector field V is the gradient of a potential function -ψ , where ψ is some smooth function ψ : M→ R, then g
is called a gradient Ricci soliton and equation (1.2) assumes the form

∇∇ψ = S+λg. (1.3)

It is well known that the quantity a(g,ψ) := R+
∣∣∇ψ2

∣∣−ψ must be constant on M and it is often called the
auxiliary constant. When ψ is constant the gradient Ricci soliton is simply an Einstein manifold. Thus Ricci
solitons are natural extensions of Einstein metrics, an Einstein manifold with constant potential function is called
a trivial gradient Ricci soliton. Gradient Ricci solitons play an important role in Hamiltonian Ricci flow as they
correspond to self-similar solutions, and often arise as singularity models. They are also related to smooth metric
measure spaces, since equation (1.3) is equivalent to ∞-Bakry-Emery Ricci tensor Ricψ = 0. In physics, a smooth
metric space (M,g,eψ ,dvol) with Ricψ = λg is called quasi-Einstein manifold. Therefore it is important to study
geometry and topology of gradient Ricci solitons and their classifications.
In general one cannot expect potential function ψ to grow or decay linearly along all directions at infinity, because
of the product property: the product of any two gradient steady Ricci solitons is also a gradient steady Ricci soliton.
Consider for example (R,g,ψ), where g is the standard Euclidean metric, ψ(x1,x2) = x1. ψ is constant along x2
direction, so without additional conditions, ψ may not have linear growth at infinity.
On the other hand, the roots of contact geometry lie in differential equations as in 1872 Sophus Lie introduced the
notion of contact transformation as a geometric tool to study systems of differential equations. This subject has
manifold connections with the other fields of pure mathematics, and substantial applications in applied areas such as
mechanics, optics, phase space of dynamical system, thermodynamics and control theory.
In 2016, G. Catino and L. Mazzieri introduced the notion of Einstein solitons [18], which generate self-similar
solutions to Einstein flow

∂g
∂ t

=−2
(

S− scal
2

g
)
. (1.4)

The interest in studying this equation from different points of view arises from concrete physical problems. On the
other hand, gradient vector fields play a central role in Morse-Smale theory. In what follows, after characterizing
the manifold of constant scalar curvature via the existence of η-Einstein solitons, we focus on the case when the
potential vector field ξ is of gradient type i.e., ξ = grad( f ), for f a nonconstant smooth function on M, and give
the Laplacian equation satisfied by f . Under certain assumptions, the existence of an η-Einstein soliton implies that
the manifold is quasi-Einstein. Remark that quasi-Einstein manifolds arose during the study of exact solutions of
Einstein field equations.

In 1925, H. Levy [19] obtained the necessary and sufficient conditions for the existence of such tensors. Later, R.
Sharma [20] initiated the study of Ricci solitons in contact Riemannian geometry. After that, Tripathi [21], Nagaraja
et al. [22] and others like C. S. Bagewadi et al. ([23], [24]) extensively studied Ricci soliton in almost (ε)-contact
metric manifolds. In 2009, J. T. Cho and M. Kimura [25] introduced the notion of η-Ricci solitons and gave a
classification of real hypersurfaces in non-flat complex space forms admitting η-Ricci solitons. Later η-Ricci
solitons in (ε)-almost paracontact metric manifolds have been studied by A. M. Blaga et al. [26]. Recently, A. M.
Blaga and various others authors also have been studied η-Ricci solitons in manifolds with different structures (see
[27], [28], [29]), recently K. Venu et al. [30] study the η-Ricci solitns in Trans-Sasakian manifold. It is natural
and interesting to study η-Einstein soliton in δ -Lorentzian tTrans-Sasakian manifolds not as real hypersurfaces
of complex space forms but a special contact structures. In this paper we derive the condition for a 3 dimensional
δ -Lorentzian Trans-Sasakian manifold as an η-Einstein soliton and derive expression for the scalar curvature.
Moreover, in the last section studied the gradient Ricci soliton for a 3 dimensional δ -Lorentzian Trans-Sasakian
manifolds.

2. Preliminaries

Let M be an δ -almost contact metric manifold equipped with δ -almost contact metric structure (φ ,ξ ,η ,g,δ )
consisting of a (1,1) tensor field φ , a vector field ξ , a 1-form η and an indefinite metric g such that

φ
2 = X +η(X)ξ , η(ξ ) =−1, η ◦φ = 0, φξ = 0, (2.1)

g(φX ,φY ) = g(X ,Y )+δη(X)η(Y ), η(X) = δg(X ,ξ ), g(ξ ,ξ ) =−δ , (2.2)
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for all X ,Y ∈ M, where δ is δ 2 = 1 so that δ = ±1. The above structure (φ ,ξ ,η ,g,δ ) on M is called the δ

Lorentzian structure on M. If δ = 1 and this is usual Lorentzian structure on M, the vector field ξ is the time like,
that is M contains a time like vector field. In [31], Tanno classified connected almost contact metric manifolds
whose automorphism groups possess the maximum dimension. For such a manifold, the sectional curvature of plane
sections containing ξ is a constant, say c. He proved that they could be divided into three classes: (i)-homogeneous
normal contact Riemannian manifolds with c > 0, (ii)-global Riemannian products of a line or a circle with a Kahler
manifold of constant holomorphic sectional curvature if c = 0 and (iii)-a warped product space R× f Cn if c < 0. It
is known that the manifolds of class (i) are characterized by admitting a Sasakian structure. The manifolds of class
(ii) are characterized by a tensorial relation admitting a cosymplectic structure. Kenmotsu [31] characterized the
differential geometric properties of the manifolds of class (iii) which are nowadays called Kenmotsu manifolds[31].

In [32], Gray and Harvella introduced the classification of almost Hermitian manifolds, there appears a class W4 of
Hermitian manifolds which are closely related to the conformal Kaehler manifolds. The class C6⊕C5 [33] coincides
with the class of Trans-Sasakian structure of type (α,β ). In fact, the local nature of the two sub classes, namely C6
and C5 of Trans-Sasakian structures are characterized completely.
An almost contact metric structure on M is called a Trans-Sasakian (see [34], [35]) if (M×R,J,G) belongs to the
class W4. If we set

J
(

X , f
d
dt

)
=

(
φ(X)− f ξ ,η(X)

d
dt

)
,

then J is the almost product structure on M×R, that is J2 = I, where X is any vector fields on M, f smooth functions
on M×R and d

dt is the basis vector field of R and G is the product metric on M×R. This may be expressed by the
condition

(∇X φ)Y = α(g(X ,Y )ξ −η(Y )X)+β (g(φX ,Y )ξ −η(Y )φX) (2.3)

for any vector fields X and Y on M, ∇ denotes the Levi-Civita connection with respect to g, α and β are smooth
functions on M. The existence of condition (2.3) is ensure by the above discussion.
With the above literature we now define the δ -Lorentzian Trans-Sasakian manifolds M [16] as follows:

Definition 2.1. A δ -Lorentzian manifold M with structure (φ ,ξ ,η ,g,δ ) is said to be δ -Lorentzian Trans-Sasakian
manifold of type (α,β ) if it satisfies the condition

(∇X φ)Y = α(g(X ,Y )ξ −δη(Y )X)+β (g(φX ,Y )ξ −δη(Y )φX) (2.4)

for any vector fields X and Y on M.

If δ = 1, then the δ -Lorentzian Trans Sasakian manifold is the usual Lorentzian trans Sasakian manifold of type
(α,β ) [16]. δ -Lorentzian Trans Sasakian manifold of type (0,0), (0,β ) (α,0) are the Lorentzian cosymplectic,
Lorentzian β -Kenmotsu and Lorentzian α-Sasakian manifolds respectively. In particular if α = 1, β = 0 and α = 0,
β = 1, the δ -Lorentzian Trans Sasakian manifolds reduces to δ -Lorentzian Sasakian and δ -Lorentzian Kenmotsu
manifolds, respectively.
Form (2.4), we have

∇X ξ = δ {−αφ(X)−β (X +η(X)ξ} , (2.5)

and
(∇X η)Y = αg(φX ,Y )+β [g(X ,Y )+δη(X)η(Y )]. (2.6)

In a δ -Lorentzian Trans Sasakian manifold M, we have the following relations:

R(X ,Y )ξ = (α2 +β
2)[η(Y )X−η(X)Y ]+2αβ [η(Y )φX−η(X)φY ] (2.7)

+δ [(Y α)φX− (Xα)φY +(Y β )φ 2X− (Xβ )φ 2Y ]

S(X ,ξ ) = [((n−1)(α2 +β
2)− (ξ β )]η(X)+δ ((φX)α)+(n−2)δ (Xβ ), (2.8)

Qξ = δ (n−1)(α2 +β
2)− (ξ β ))ξ +δφ(gradα)−δ (n−2)(gradβ ), (2.9)

where R is curvature tensor, while Q is the Ricci operator given by S(X ,Y ) = g(QX ,Y ).
Further in an δ -Lorentzian Trans-Sasakian manifold , we have

δφ(gradα) = δ (n−2)(gradβ ), (2.10)

and
2αβ −δ (ξ α) = 0. (2.11)
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Using (2.7) and (2.10), for constants α and β , we have

R(ξ ,X)Y = (α2 +β
2)[δg(X ,Y )ξ −η(Y )X ], (2.12)

R(X ,Y )ξ = (α2 +β
2)[η(Y )X−η(X)Y ], (2.13)

η(R(X ,Y )Z) = δ (α2 +β
2)[g(Y,Z)η(X)−g(X ,Z)η(Y )], (2.14)

S(X ,ξ ) = [((n−1)(α2 +β
2)−δ (ξ β )]η(X), (2.15)

Qξ = [(n−1)(α2 +β
2)− (ξ β )]ξ . (2.16)

An important consequence of (2.5) is that ξ is a geodesic vector field.

∇ξ ξ = 0. (2.17)

For arbitrary vector field X , we have that
dη(ξ ,X) = 0. (2.18)

The ξ -sectional curvature Kξ of M is the sectional curvature of the plane spanned by ξ and a unit vector field X .
From (2.13), we have

Kξ = g(R(ξ ,X),ξ ,X) = (α2 +β
2)−δ (ξ β ). (2.19)

It follows from (2.19) that ξ -sectional curvature does not depend on X .

3. η-Einstein solitons on (M,φ ,ξ ,η ,g,δ )

In the study of the η-Einstein soliton equation we will consider certain assumptions, one essential condition being
∇ξ = Iξ (M)+η⊗ξ which naturally arises in different geometry of δ -Lorentzian Trans-Sasakian manifolds.
An important geometrical object in studying Ricci solitons is a symmetric (0,2)- tensor field which is parallel with
respect to the Levi-Civita connection.
Fix h a symmetric tensor field of (0,2)-type which we suppose to be parallel with respect to the Levi-Civita
connection ∇ that is ∇h = 0. Applying the Ricci commutation identity [36]

∇
2h(X ,Y ;Z,W )−∇

2h(X ,Y ;W,Z) = 0, (3.1)

we obtain the relation
h(R(X ,Y )Z,W )+h(Z,R(X ,Y )W ) = 0. (3.2)

Replacing Z =W = ξ in (3.2) and using (2.7) and also use the symmetricness of h, we have

2(α2 +β
2)[η(Y )h(X ,ξ )−η(X)h(Y,ξ )]+2δ [(Y α)h(φX ,ξ )− (Xα)h(φY,ξ )] (3.3)

+2δ [(Y β )h(φ 2X ,ξ )− (Xβ )h(φ 2Y,ξ )]+4αβ [η(Y )h(φX ,ξ )−η(X)h(φY,ξ )] = 0.

Putting X = ξ in (3.3) and by virtue of (2.1), we obtain

−2[(δξ α−2αβ ]h(φY,ξ )+2[(α2 +β
2)−δ (ξ β )][η(Y )h(ξ ,ξ )−h(Y,ξ )] = 0. (3.4)

By using (2.11) in (3.4), we have

[(α2 +β
2)−δ (ξ β )][η(Y )h(ξ ,ξ )−h(Y,ξ )] = 0. (3.5)

Suppose (α2 +β 2)−δ (ξ β ) 6= 0, it results

h(Y,ξ ) = η(Y )h(ξ ,ξ ). (3.6)

Now, we can call a regular δ -Lorentzian Trans-Sasakian manifold with (α2 +β 2)−δ (ξ β ) 6= 0, where regularity,
means the non-vanishing of the Ricci curvature with respect to the generator of δ -Lorentzian Trans-Sasakian
manifolds.
Differentiating (3.6) covariantly with respect to X , we have

(∇X h)(Y,ξ )+h(∇XY,ξ )+h(Y,∇X ξ ) = [δg(∇XY,ξ )+δg(Y,∇X ξ )]h(ξ ,ξ ) (3.7)

+η(Y )[(∇X h)(Y,ξ )+2h((∇X ξ ,ξ )].

By using the parallelism ∇h = 0, η(∇X ξ ) = 0 and by the virtue of (3.6) in (3.7), we get

h(Y,∇X ξ ) = δg(Y,∇X ξ )h(ξ ,ξ ).
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Now using (2.5) in the above equation, we get

−αh(Y,φX)+βδh(Y,X) =−αg(Y,φX)h(ξ ,ξ )+βδg(Y,X)h(ξ ,ξ ). (3.8)

Replacing X by φX in (3.8) and after simplification, we get

h(X ,Y ) = δg(X ,Y )h(ξ ,ξ ), (3.9)

which together with the standard fact that the parallelism of h implies that h(ξ ,ξ ) is a constant, via (3.6). Now by
considering the above equations, we can give the conclusion:

Theorem 3.1. Let (M,φ ,ξ ,η ,g,δ ) be an δ -Lorentzian Trans Sasakian manifold with non-vanishing ξ -sectional
curvature and endowed with a tensor field h ∈ Γ(T 0

2 (M)) which is symmetric and φ -skew-symmetric. If h is parallel
with respect to ∇ then it is a constant multiple of the metric tensor g.

Definition 3.2. Let (M,φ ,ξ ,η ,g,δ ) be an δ -almost contact metric manifold. Consider the equation

Lξ g+2S+(2λ − scal)g+2µη⊗η = 0, (3.10)

where Lξ is the Lie derivative operator along the vector field ξ , S is the Ricci curvature tensor field of the metric g
and λ and µ are real constants. For µ 6= 0, the data (g,ξ ,λ ,µ) will be called η-Einstein soliton.

Remark 3.3. If the scalar curvature scal of the manifold is constant, then the η-Einstein soliton (g,ξ ,λ , scal
2 ,µ)

reduces to an η-Ricci soliton and, moreover, if µ = 0, to a Ricci soliton (g,ξ ,λ , scal
2 ). Therefore, the two concepts

of η-Einstein soliton [18] and η-Ricci soliton are distinct on manifolds of non-constant scalar curvature.

Writing Lξ g in terms of the Levi-Civita connection ∇, we obtain:

2S(X ,Y ) =−g(∇X ξ ,Y )−g(X ,∇X ξ )− (2λ − scal)g(X ,Y )−2µη(X)η(Y ), (3.11)

for any X ,Y ∈ χ(M).

Definition 3.4. The data (g,ξ ,λ ,µ) which satisfies the equation (3.10) is said to be η- Einstein soliton on M and
it is called shrinking, steady or expanding according as λ < 0, λ = 0 or λ > 0 respectively [25].

Now, from (2.5) , the equation (3.10) becomes:

S(X ,Y ) =−
(

λ − scal
2

+βδ

)
g(X ,Y )+(βδ −µ)η(X)η(Y ). (3.12)

The above equations yields

S(X ,ξ ) =−
(

λ − scal
2

+µ

)
η(X) (3.13)

QX =−
(

λ − scal
2

+βδ

)
X +(βδ −µ)ξ (3.14)

Qξ =−
(

λ − scal
2

+µ

)
ξ (3.15)

r =
2

2+(2λ +1)n
(−(n−1)βδ −µ), (3.16)

where r is the scalar curvature. Of the two natural situations regrading the vector field V : V ∈ Span{ξ} and V⊥ξ ,
we investigate only the case V = ξ .
Our interest is in the expression for Lξ g+2S+2µη⊗η . A direct computation gives

Lξ g(X ,Y ) = 2βδ [g(X ,Y )+η(X)η(Y )]. (3.17)

In a 3-dimensional δ -Lorentzian Trans-Sasakian manifold the Riemannian curvature tensor is given by

R(X ,Y )Z = g(Y,Z)QX−g(X ,Z)QY +S(Y,Z)X−S(X ,Z)Y (3.18)
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− r
2
[g(Y,Z)X−g(X ,Z)Y ].

Putting Z = ξ in (3.18) and using (2.7) and (2.8) for 3-dimensional δ -Lorentzian Trans-Sasakian manifold, we get

(α2 +β
2)[η(Y )X−η(X)Y ]+2αβ [η(Y )φX−η(X)φY ] (3.19)

+δ [(Y α)φX− (Xα)φY ]+δ [(Y β )φ 2X− (Xβ )φ 2Y ]

= [(α2 +β
2)− (ξ β )][η(Y )X−η(X)Y ]

+δη(Y )QX−δη(X)QY −δ [((φY )α)X +(Y β )X ]

+δ [((φX)α)Y +(Xβ )Y ].

Again, putting Y = ξ in the (3.19) and using (2.1) and (2.11), we obtain

QX =
[ r

2
+(ξ β )− (α2 +β

2)
]

X +
[ r

2
+(ξ β )−3(α2 +β

2)
]

η(X)ξ . (3.20)

From (3.20), we have
S(X ,Y ) =

[ r
2
+(ξ β )− (α2 +β

2)
]

g(X ,Y ) (3.21)

+
[ r

2
+(ξ β )−3(α2 +β

2)
]

δη(X)η(Y ).

Equation (3.21) shows that a 3-dimensional δ -Lorentzian Trans-Sasakian manifold is η-Einstein.
Next, we consider the equation

h(X ,Y ) = (Lξ g)(X ,Y )+2S(X ,Y )+2µη(X)η(Y ). (3.22)

By Using (3.17) and (3.21) in (3.22), we have

h(X ,Y ) =
[
r−4(α2 +β

2)+2βδ
]

g(X ,Y ) (3.23)

+
[
8(α2 +β

2)−2βδ − r
]

δη(X)η(Y )+2µη(X)η(Y ).

Putting X = Y = ξ in (2.3), we get
h(ξ ,ξ ) = 2[2δ (α2 +β

2)−2µ]. (3.24)

Now, (3.9) becomes
h(X ,Y ) = 2[2δ (α2 +β

2)−2µ]δg(X ,Y ). (3.25)

From (3.22) and (3.25), it follows that g is an η-Ricci soliton. Therefore, we can state as:

Theorem 3.5. Let (M,φ ,ξ ,η ,g,δ ) be a 3-dimensional δ -Lorentzian Trans-Sasakian manifold, then
(
g,ξ ,λ , scal

2 µ
)

yields an η-Einstein soliton on M.

Let V be point-wise collinear with ξ . i.e., V = bξ , where b is a function on the 3-dimensional δ -Lorentzian
Trans-Sasakian manifold. Then

g(∇X bξ ,Y )+g(∇Y bξ ,X)+2S(X ,Y )+(2λ − scal)g(X ,Y )+2µη(X)η(Y ) = 0

or
bg((∇X ξ ,Y )+(Xb)η(Y )+bg(∇Y ξ ,X)+(Y b)η(X)

+2S(X ,Y )+(2λ − scal)g(X ,Y )+2µη(X)η(Y ) = 0.

Using (2.5), we obtain

bg(−δαφX−βδ (X +η(X)ξ ,Y )+(Xb)η(Y )+bg(−δαφY −βδ (Y +η(Y )ξ ,X)

+(Y b)η(X)+2S(X ,Y )+(2λ − scal)g(X ,Y )+2µη(X)η(Y ) = 0.

which yields
−2bβδg(X ,Y )−2bβδη(X)η(Y )+(Xb)η(Y ) (3.26)

+(Y b)η(X)+2S(X ,Y )+(2λ − scal)g(X ,Y )+2µη(X)η(Y ) = 0.

Replacing Y by ξ in (3.26), we obtain

(Xb)+(ξ b)η(X)+2[2(α2 +β
2)− (ξ β )+λ − scal

2
+µ−2bβδ ]η(X). (3.27)
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Again putting X = ξ in (3.27), we obtain

ξ b =−2(α2 +β
2)+(ξ β )−λ − scal

2
−µ +2bβδ .

Plugging this in (3.27), we get

(Xb)+2[2(α2 +β
2)− (ξ β )+λ − scal

2
+µ−2bβδ ]η(X) = 0,

or

db =−
{

λ − scal
2

+µ− (ξ β )+2(α2 +β
2)−2bβδ

}
η . (3.28)

Applying d on (3.28), we get
{

λ − scal
2 +µ− (ξ β )+2(α2 +β 2)−2bβδ

}
dη . Since dη 6= 0 we have

λ − scal
2

+µ− (ξ β )+2(α2 +β
2)−2bβδ = 0. (3.29)

Equation(3.29) in (3.28) yields b as a constant. Therefore from (3.26), it follows that

S(X ,Y ) =−
(

λ − scal
2

+2bβδ

)
g(X ,Y )+(2bβδ −µ)η(X)η(Y ),

which implies that M is of constant scalar curvature for constant 2bβδ . This leads to the following:

Theorem 3.6. If in a 3-dimensional δ -Lorentzian Trans-Sasakian manifold the metric g is an η-Einstein soliton
and V is positive collinear with ξ , then V is a constant multiple of ξ and g is of constant scalar curvature provided
bβδ is a constant.

Taking X = Y = ξ in (3.9) and (3.21) and comparing, we get

λ =
scal

2
−2(α2 +β

2)− (ξ β )+µ−2bβδ =−2Kξ +
scal

2
−µ. (3.30)

From (3.16) and (3.30), we obtain

r = scal +6(α2 +β
2)−3(ξ β )−2βδ +2µ. (3.31)

Since λ is a constant, it follows from (3.30) that Kξ is a constant.

Theorem 3.7. Let (g,ξ ,µ) be an η-Einstein soliton in (M,φ ,ξ ,η ,g,δ ) a 3-dimensional δ -Lorentzian Trans-
Sasakian manifold. Then the scalar λ − scal

2 +µ =−2Kξ , r = 6Kξ +2µ−3(ξ β )−2bβδ + scal.

Remark 3.8. For µ = 0, (3.30) reduces to λ =−2Kξ +
scal

2 , so Einstein soliton in a 3-dimensional δ -Lorentzian
Trans-Sasakian manifold is shrinking.

Example 3.9. Consider the three dimensional manifold M =
{
(x,y,z) ∈ R3|z 6= 0

}
, where (x,y,z) are the cartesian

coordinates in R3 and let the vector fields be given as follows:

e1 =
ex

z2
∂

∂x
, e2 =

ey

z2
∂

∂y
, e3 =

−(δ )
2

∂

∂ z
,

where e1,e2,e3 are linearly independent at each point of M. Let g be the Riemannain metric defined by

g(e1,e1) = g(e2,e2) = g(e3,e3) =−δ , g(e1,e3) = g(e2,e3) = g(e1,e2) = 0,

where δ 2 = 1 so that δ =±1.
Let η be the 1-form defined by η(X) = δg(X ,ξ ) for any vector field X on M and φ be the (1,1) tensor field defined
by

φ(e1) = e2, φ(e2) =−e1, φ(e3) = 0.

Then by using the linearity of φ and g, we have φ 2X = X +η(X)ξ , with ξ = e3.
Further g(φX ,φY ) = g(X ,Y )+δη(X)η(Y ) for any vector fields X and Y on M. Hence for e3 = ξ , the structure
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defines an (δ )-almost contact structure in R3.
Let ∇ be the Levi-Civita connection with respect to the metric g, then we have

2g(∇XY,Z) = Xg(Y,Z)+Y g(Z,X)−Zg(X ,Y )−g(X , [Y,Z])

−g(Y, [X ,Z])+g(Z, [X ,Y ]),

which is know as Koszul’s formula.

∇e1e3 =−
(δ )

z
e1, ∇e2e3 =−

(δ )

z
e2, ∇e1e2 = 0,

using the above relation, for any vector X on M, we have ∇X ξ = δ [−αφX−β (X +η(X)ξ )], where α = 1
z and

β =− 1
z . Hence (φ ,ξ ,η ,g) structure defines the δ -Lorentzian Trans-Sasakian structure in R3.

Here ∇ be the Levi-Civita connection with respect to the metric g, then using Koszul’s formula we have

[e1,e2] = 0, [e1,e3] =−
(δ )

z
e1, [e2,e3] =−

(δ )

z
e2.

Since g(e1,e2) = 0. Thus we have

∇e1e3 =−
(δ )

z
e1 + e2, ∇e1e2 = 0

∇e2e1 = 0, ∇e2e2 =−
(δ )

z
e2, ∇e2e3 =−

(δ )

z
e2− e1

∇e3e1 = 0, ∇e3e2 = 0, ∇e3 e3 =−
(δ )

z
e1 + e2.

The manifold M satisfies (2.5) with α = 1
z and β = − 1

z . Hence M is an δ -Lorentzian Trans-Sasakian manifold.
Then the non-vanishing components of the curvature tensor fields are computed as follows:

R(e1,e3)e3 =
(δ )

z2 e1, R(e3,e1)e3 =−
(δ )

z2 e1,

R(e2,e3)e3 =
(δ )

z2 e1, R(e3,e2)e3 =−
(δ )

z2 e1.

From the above expression of the curvature tensor we can also obtain Ricci tensor

S(e1,e1) = S(e2,e2) = S(e3,e3) =
(δ 2)

z2

since g(e1,e3) = g(e1,e2) = 0.
Therefore, we have

S(ei,ei) =
(δ )

z2 g(ei,ei),

and the scalar curvature scal = 3 (δ 2)
z2 for i = 1,2,3 , and α = 1

z , β =− 1
z . Hence M is also an Einstein manifold. In

this case, from (3.11), computed (ei,ei) as follows:

2[g(ei,ei)−η(ei)η(ei)]+2S(ei,ei)+(2λ − scal)g(ei,ei)+2µη(ei)η(ei) = 0

for all i ∈ {1,2,3}, and we have

2(1−δi3)+2
δ

z2 +(2λ − δ

z2 )+2µδi3 = 0

for all i ∈ {1,2,3}. Therefore λ = (δ )2

2z2 −1 and µ =− (δ )2

2z2 + 1
2 , the data (g,ξ ,λ , scal

2 ,µ) is an η-Einstein soliton on
(M,φ ,ξ ,η ,g).
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4. Gradient Einstein Ricci Solitons in 3-dimensional δ -Lorentzian Trans-Sasakian manifold

If the vector field V is the gradient of a potential function -ψ then g is called a gradient Einstein Ricci soliton [37]
and ( 1.2) assumes the form

∇∇ψ = S+
(

λ − scal
2

)
g. (4.1)

This reduces to

∇Y Dψ = QY +

(
λ − scal

2

)
Y, (4.2)

where D denotes the gradient operator of g. From (4.2) it follows

R(X ,Y )Dψ = (∇̄X Q)Y − (∇̄Y Q)X . (4.3)

Differentiating (3.20) we get

(∇W Q)X =
dr(W )

2
(X−η(X)ξ ))− (

r
2
−3(α2 +β

2))(α(g(φW,X) (4.4)

+βδg(W,X)−δβη(X)η(W ))+η(X)∇W ξ .

In (4.4) replacing W = ξ , we obtain

(∇ξ Q)X =
dr(ξ )

2
(X−η(X)ξ )). (4.5)

Then we have
g(∇ξ Q)X− (∇̄X Q)(ξ ,ξ ) (4.6)

= g(
dr(ξ )

2
(X−η(X)ξ ,ξ )) =

dr(ξ )
2

(g(X ,ξ )−η(X))) = 0.

Using (4.6) and (4.5), we obtain
g(R(ξ ,X)Dψ,ξ ) = 0. (4.7)

From (2.12)
g(R̄(ξ ,Y )Dψ,ξ ) = (α2 +β

2)(g(Y,Dψ)−η(Y )η(Dψ)).

Using (4.7), we get
(α2 +β

2)(g(Y,Dψ)−η(Y )η(Dψ)) = 0

(α2 +β
2)(g(Y,Dψ)−η(Y )g(Dψ,ξ )) = 0,

or
(g(Y,Dψ)−g(Y,ξ )g(Dψ,ξ )) = 0,

which implies
Dψ = (ξ ψ)ξ , since α

2 +β
2 6=−δ (ξ β ). (4.8)

Using (4.8) and (4.4)

S(X ,Y )+
(

λ − scal
2

)
g(X ,Y ) = g(∇Y Dψ,X) = g(∇Y (ξ ψ)ξ ,X)

= (ξ ψ)g(∇̄Y ξ ,X)+Y (ξ ψ)η(X)

= (ξ ψ)g(−δαφY −δβY −δβη(Y )ξ ,X)+Y (ξ ψ)η(X)

S(X ,Y )+
(

λ − scal
2

)
g(X ,Y ) =−δα(ξ ψ)g(φY,X)−δβ (ξ ψ)g(Y,X) (4.9)

−δβ (ξ ψ)η(Y )η(X)+Y (ξ ψ)η(X).

Putting X = ξ in (4.9) and using (2.15) we get

S̄(Y,ξ )+
(

λ − scal
2

)
η(Y ) = Y (ξ ψ) = [λ +2δβ +2(α2 +β

2−δ (ξ β ))]η(Y ). (4.10)
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Interchanging X and Y in (4.9), we get

S(X ,Y )+
(

λ − scal
2

)
g(X ,Y ) =−δα(ξ ψ)g(Y,φX)−δβ (ξ ψ)g(X ,Y ) (4.11)

−δβ (ξ ψ)η(Y )η(X)+X(ξ ψ)η(Y ).

Adding (4.9) and (4.11) we get

2S(X ,Y )+(2λ − scal)g(X ,Y ) =−2δβ (ξ ψ)g(X ,Y )+Y (ξ ψ)η(X) (4.12)

−2δβ (ξ ψ)η(X)η(Y )+X(ξ ψ)η(Y ).

Using (4.10) in (4.12) we have

S(X ,Y )+
(

λ − scal
2

)
g(X ,Y ) =−δβ (ξ ψ)[g(X ,Y )−η(X)η(Y )] (4.13)

+[

(
λ − scal

2

)
+δβ +2(α2 +β

2−δ (ξ β ))]η(X)η(Y ).

Then using (4.2) we have
∇Y Dψ =−δβ (ξ ψ)(Y −η(Y )ξ ) (4.14)

+[

(
λ − scal

2

)
+δβ +2(α2 +β

2−δ (ξ β ))]η(Y )ξ .

Using (4.14) we calculate
R(X ,Y )Dψ = ∇X ∇Y Dψ−∇Y ∇X Dψ−∇[X ,Y ]Dψ

=−δβX(ξ ψ)Y +δβY (ξ ψ)X (4.15)

−δβY (ξ ψ)η(X)ξ +δβX(ξ ψ)η(Y )ξ

+[

(
λ − scal

2

)
+δβ +2(α2 +β

2)−δ (ξ β )](∇X η)(Y )ξ − (∇Y η)(X)ξ

+[

(
λ − scal

2

)
+δβ +2(α2 +β

2−δ (ξ β ))]((∇X ξ )η(Y )ξ − (∇Y ξ )η(X)).

Taking inner product with ξ in (4.15), we get

0 = g((X ,Y )Dψ,ξ ) = 2δα[

(
λ − scal

2

)
+δβ +2(α2 +β

2−δ (ξ β ))]g(φY,X). (4.16)

Thus we have 2δα[
(
λ − scal

2

)
+δβ +2(α2 +β 2−δ (ξ β ))] = 0.

Now we consider the following cases:
Case (i) δα = 0, or
Case (ii) [

(
λ − scal

2

)
+δβ +2(α2 +β 2−δ (ξ β ))] = 0,

Case (iii) α = 0 and [
(
λ − scal

2

)
δβ +2(α2 +β 2−δ (ξ β ))] = 0.

Case (i) If α = 0, the manifold reduces to a δ -Lorentzian β -Kenmotsu manifold.
Case (ii) Let [

(
λ − scal

2

)
+δβ +2(α2+β 2−δ (ξ β ))] = 0. If we use this in (4.10) we get Y (ξ ψ) =−δβ (ξ ψ)η(Y ).

Substitute this value in (4.12) we obtain

S(X ,Y )+
(

λ − scal
2

)
g(X ,Y ) =−δβ (ξ ψ)g(X ,Y )−2δβη(X)η(Y ). (4.17)

Now, contracting (4.17), we get

r+3
(

λ − scal
2

)
=−3δβ (ξ ψ)−2δβ , (4.18)

which implies

(ξ ψ) =
r

−3δβ
+

(2λ − scal)
−2δβ

+
2
−3

. (4.19)
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If r = constant, then (ξ ψ) = constant = k(say). Therefore from (4.8) we have Dψ = (ξ ψ)ξ = kξ . Thus we can
write this equation as

g(Dψ,X) = kη(X), (4.20)

which means that dψ(X) = kη(X). Applying d to this, we get kdη = 0. Since dη 6= 0, we have k = 0. Hence we
get Dψ = 0. This means that ψ = constant. Therefore equation (4.1) reduces to

S(X ,Y ) = 2(α2 +β
2−δ (ξ β ))g(X ,Y ),

that is M is an Einstein manifold.
Case (iii) Using α = 0 and [

(
λ − scal

2

)
+δβ +2(α2+β 2−δ (ξ β ))]= 0. in (4.10) we obtain Y (ξ ψ)=−δβ (ξ ψ)η(Y ).

Now as in Case (ii) we conclude that the manifold is an Einstein manifold.
Thus we have the following :

Theorem 4.1. If a 3-dimensional δ -Lorentzian Trans Sasakian manifold with constant scalar curvature admits
gradient Einstein soliton, then the manifold is either a δ -Lorentzian-Kenmotsu manifold or an Einstein manifold
provided α,β = constant .

In [38] it was proved that if a 3-dimensional compact connected Trans-Sasakian manifold is of constant curvature,
then it is either α-Sasakian or β -Kenmotsu. Since for a 3-dimensional Riemannian manifold constant curvature and
Einstein manifold are equivalent, therefore from the Theorem 3 in [38] we state the following:

Corollary 4.2. If a compact 3-dimensional δ -Lorentzian Trans-Sasakian manifold with constant scalar curvature
admits Ricci soliton, then the manifold is either δ -Lorentzian α-Sasakian or δ -Lorentzian β -Kenmotsu.

Also in [38], authors proved that a 3-dimensional connected Trans-Sasakian manifold is locally φ -symmetric if and
only if the scalar curvature is constant provided α and β are constants. Hence from Theorem 3 in [38] we obtain the
following:

Corollary 4.3. If a locally φ -symmetric 3-dimensional connected δ -Lorentzian Trans-Sasakian manifold its ad-
mits gradient Einstein soliton, then manifold is either δ -Lorentzian β -Kenmotsu or Einstein manifold provided
α,β = constant.
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