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Abstract: The article considers linear codes over Hurwitz integers. The codes are
considered with respect to a new Hurwitz metric. This metric is more suitable for
(QAM)−type constellations than the Hamming Metric and the Lee metric. Also, one
error correcting perfect codes with respect to the Hurwitz metric are defined. The
decoding algorithm of these codes is obtained. Moreover, a simple comparison in
respect to the average energy for the transmitted signal and the bandwidth occupancy
is given.

1. Introduction and Preliminaries

Recently, many researchers in coding theory have investigated some special codes over different fields or rings.
Some of these studies are summarized in the following: Güzeltepe defined the Hurwitz metric and obtain some
codes over hurwitz integers [1]. Abualrub and S. iap studied constacyclic codes over F2 + uF2 in [2]. In [3],
cyclic DNA codes over F2[u]/(u2− 1) are obtained. In [5], Yildiz and Karadeniz defined self-dual codes over
F2 +uF2 + vF2 +uvF2. Yildiz and Karadeniz studied cyclic codes over F2 +uF2 + vF2 +uvF2 in [6]. Cyclic codes
over some finite quaternion integer rings were presented by Özen and Güzeltepe in [7]. Abualrub and S. iap studied
cyclic codes over the rings Z2 +uZ2 and Z2 +uZ2 +u2Z2 and they found a set of generators for these codes in [4].
On the other hand, it is shown that Hamming and Lee distances have been revealed to be inappropriate metrics to
deal with quadrature amplitude modulation (QAM) signal sets and other constellations, [8]. Many authors have
studied on codes over different fields and rings to solve this problem up to now. One of the first example was given
by Huber in [13]. Huber constructed some constellations by using Gaussian integers. Also, Huber defined the
Mannheim metric for linear codes over the constellations. Although, Huber’s constellations is of minimal energy,
unfortunately, the Mannheim metric is not a true metric that it is proved in [15]. Inspired by Huber’s works, T. P.
da Nobrega Neto et al. constructed linear codes over some quadratic fields, defined linear codes over Ap[ρ] and
compared these codes with codes over Gaussian integers Z[i] in terms of bandwidth occupancy and average power
in [12].
Later, C. Martinez et al. obtained perfect codes for metrics induced by circulant graphs in [15]. Moreover, they
proved that the Mannheim metric is not a true metric in [15]. In [16–20], works on codes over Lipschitz or Hurwitz
integers were given.
The present paper is organized as follows. In this section, we give basic definitions and introduce a new Hurwitz
weight and a new Hurwitz distance over Hurwitz integers. In Section 2, we construct a new class of perfect codes
which can correct errors of Hurwitz weight one and give a decoding algorithm of these codes. In Section 3, we
present a simple comparison in terms of bandwidth occupancy, the rate and average power.

In what follows, we consider the following:

Definition 1. [9] The Hamilton Quaternion Algebra over the Set of the Real numbers (R), denoted by H(R), is the
associative unital algebra given by the following representation:
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i)H(R) is the free R module over the symbols 1, ê1, ê2, ê3, that is, H(R) = {a0+a1ê1+ a2ê2+a3ê3 : a0,a1,a2,a3 ∈
R};
ii)1 is the multiplicative unit;
iii) ê2

1 = ê2
2 = ê2

3 =−1;
iv) ê1ê2 =−ê2ê1 = ê3, ê3ê1 =−ê1ê3 = ê2, ê2ê3 =−ê3ê2 = ê1.

The set of Lipschitz integers H(Z), which is defined by H(Z) = {a0 +a1ê1+ a2ê2 +a3ê3 : a0,a1,a2,a3 ∈ Z}, is a
subset of H(R), where Z denotes the set of all integers. If q = a0 +a1ê1 +a2ê2 +a3ê3 is a Lipschizt integer then,
its conjugate quaternion is q = a0− (a1ê1 +a2ê2 +a3ê3). The norm of q is N(q) = qq = a2

0 +a2
1 +a2

2 +a2
3. The

units of H(Z) are ±1,±ê1,±ê2,±ê3.

Definition 2. [10] The set of all Hurwitz integers is

H =
{

a0 +a1ê1 +a2ê2 +a3ê3 ∈ H(R) : a0,a1,a2,a3 ∈ Z or a0,a1,a2,a3 ∈ Z+ 1
2

}
= H (Z)∪H

(
Z+ 1

2

)
.

It can be checked that H is closed under quaternion multiplication and addition, so that it forms a subring of the
ring of all quaternions.

Definition 3. If the norm of a Lipschitz integer q is a prime integer, then it is called a prime Lipschitz integer.

Definition 4. Let π be a prime Lipschitz integer in H(Z). If there exist δ ,q1, q2 ∈H such that q1−q2 = πδ , then
q1 and q2 are right congruent modulo π and it is denoted by q1 ≡r q2 ( mod π).

Hence, we can consider the quotient ring of the Hurwitz integers modulo this equivalence relation, which we denote
as

Hπ = {q ( mod π) | q ∈H } .

This set coincides with the quotient ring of the Hurwitz integers over the left ideal generated by π , which we denote
as 〈π〉. The commutative property of multiplication does not hold over Hπ since the product of two Lipschitz
integers are not commutative in general. Note that if π is a prime Lipschitz integer then, the ring Hπ has no zero
divisors. To see this, let q1q2 ≡ 0 (mod π), q1,q2 ∈Hπ , and without loss of generality N(q1) < N(q2). In this
case, N(q1)N(q2) ≡ 0 mod N(π) and therefore we get N(q1) = 1, N(q2) = N(π). This contradicts the fact that
N(q2)< N(π).
In the following definition, we introduce a new Hurwitz weight and a new Hurwitz metric.

Definition 5. Let π be a prime Lipschitz integer, γ = a0 +a1ê1 +a2ê2 +a3ê3 +a4w ∈Hπ and let

A = |a0|+ |a1|+ |a2|+ |a3|+a4a4,

B =
∣∣∣a′0∣∣∣+ ∣∣∣a′1∣∣∣+ ∣∣∣a′2∣∣∣+ ∣∣∣a′3∣∣∣+a

′
4a′4,

where a0 + a1ê1 + a2ê2 + a3ê3 + a4w = a
′
0 + a

′
1ê1 + a

′
2ê2 + a

′
3ê3 + a

′
4w and some a0,a1,a2,a3, a

′
0,a

′
1,a

′
2,a3 ∈ Z,

a4,a
′
4 ∈ {±1,±ê1,±ê2,±ê3}. Here, the symbol |·| denotes the absolute value.

Then, we define the Hurwitz weight of γ = a0 +a1ê1 +a2ê2 +a3ê3 +a4w as

Whur(γ) =

{
A, A≤ B
B, B < A

Here and thereafter, w will denote 1
2 (1+ ê1 + ê2 + ê3)

Also, we define the Hurwitz distance dhur between α and β as

dhur(α,β ) =Whur(γ),

where γ = α−β (mod π).

It is possible to show that dhur(α,β ) is a metric. We only show that the triangle inequality holds since the other
conditions are straightforward. For this, let α , β , and γ be any three elements of Hπ . We have
i) dhur(α,β )=Whur(δ1)= |a0|+ |a1|+ |a2|+ |a3|+ |a4|, where α−β = δ1 = a0+a1ê1+a2ê2+a3ê3+a4w (mod π)
is an element of Hπ , and |a0|+ |a1|+ |a2|+ |a3|+ |a4| is minimum.

ii) dhur(α,γ)=Whur(δ2)= |b0|+ |b1|+ |b2|+ |b3|+ |b4|, where α−γ = δ2 = b0+b1ê1+b2ê2+b3ê3+b4w (mod π)
is an element of Hπ , and |b0|+ |b1|+ |b2|+ |b3|+ |b4| is minimum.
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iii) dhur(γ,β ) =Whur(δ3) = |c0|+ |c1|+ |c2|+ |c3|+ |c4|, where γ−β = δ3 = c0+c1ê1+c2ê2+c3ê3+c4w (mod π)
is an element of Hπ , and |c0|+ |c1|+ |c2|+ |c3|+ |c4| is minimum.
Thus, α−β = δ2+δ3 ( mod π). However, Whur (δ2 +δ3)≥Whur (δ1) since Whur(δ1)= |a0|+|a1|+|a2|+|a3|+|a4|
is minimum. Therefore,

dhur(α,β )≤ dhur(α,γ)+dhur(γ,β ).

Note that the Hurwitz weight Whur is not the Hurwitz weight wH defined in [1]. To see this, the Hurwitz weight of
the element q = w = 1

2 −
ê1
2 −

ê2
2 −

ê3
2 is Whur = 1 and the Hurwitz weight wH of the same element is wH(q) = 2.

In the following section, we construct one error correcting perfect codes with respect to this new metric. In this
aspect, this present paper has an important advantage according to the paper given in [1]. Also, the dimension
of these perfect code is not only n− k = 1 but also n− k = t. In this aspect, this present paper has an important
advantage according to the papers given in [17, 19, 20].

2. One Hurwitz Error Correcting Perfect Codes over Hπ

In this section, we obtain perfect codes correcting errors of the Hurwitz weight one over Hπ . Recall that, the size of
Hπ is equal to p2, where N(π) = p. Also, a Hurwitz error of weight one takes on one of the twenty four values
±1,±ê1,±ê2,±ê3,±w,±w,±ê1w,±ê2w,±ê3w,±ê1w,±ê2w,±ê3w at the position l, 0 ≤ l ≤ n, for the length n.
The number of error vectors of the Hurwitz weight one including the vector of all zeros over Hπ is 24n+1, where
n denotes the length.
Let π be a prime in H(Z) and let N(π) = p≥ 5 be an odd prime in Z. Then, there does naturally exist a partition of
Hπ as follows:

Hπ = {0}∪G1∪G2∪·· ·∪G
(p2−1)

/
24
.

Here,

|G1|= |G2|= · · ·=
∣∣∣∣G(p2−1)

/
24

∣∣∣∣= 24

and tGi1 6= Gi2 for all i1 6= i2, 1≤ i1, i2 ≤
(

p2−1
)/

24 and t ∈A . Here and thereafter A will denote the set

{±1,±ê1,±ê2,±ê3,±w,±w,±ê1w,±ê2w,±ê3w,±ê1w,±ê2w,±ê3w} .

For example, let π = 2+ ê1 + ê2 + ê3. Then, we get

G1 = {±1,±ê1,±ê2,±ê3,±w,±w,±ê1w,±ê2w,±ê3w,±ê1w,±ê2w,±ê3w}

and
G2 = {±(1± ê1) ,±(1± ê2) ,±(1± ê3) ,±(ê1± ê2) ,±(ê1± ê3) ,±(ê2± e3)} .

Hence, it is obtained that

H2+ê1+ê2+ê3 = {0}∪G1∪G2

and ∣∣H2+ê1+ê2+ê3

∣∣= |G1|+ |G2|+1 = 49.

Theorem 1. Let C be a code of length n = (p2)n−k−1
24 and let p = ππ ≥ 5, where π ∈ H(Z) is a prime Lipschitz

integer and k denotes the dimension of the code. Assume that a partition of Hπ is Hπ = {0}∪G1∪G2∪·· ·∪G p2−1
24

.

Then, the code C defined by the parity check matrix

H(n−k)×n = (H∗0 | H∗1 | H∗2 | H∗3 | H∗4 | H∗5 |) ,

where

H∗0 =


g1

i 0 · · · 0
0 g1

i · · · 0
...

...
. . .

...
0 0 · · · g1

i

 , H∗1 =



g1
i 0 0 0 0 · · · 0

G j g1
i 0 0 0 · · · 0

0 G j g1
i 0 0 · · · 0

0 0 G j g1
i 0 · · · 0

0 0 0 G j g1
i

...
...

...
...

... g1
i

0 0 0 0 · · · 0 G j


,
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H∗2 =



g1
i 0 0 0 0 · · · 0

0 g1
i 0 0 0 · · · 0

G j 0 g1
i 0 0 · · · 0

0 G j 0
. . . 0 · · · 0

0 0 0 G j
...

...
...

...
... g1

i
0 0 0 0 · · · 0 G j

· · ·

g1
i

0
0
0
...
0

G j


,

H∗3 =



g1
i g1

i g1
i g1

i g1
i · · · g1

i
G j1 G j1 G j1 G j1 G j1 · · · G j1
G j2 0 0 0 0 · · · 0

0 G j2 0
. . . 0 · · · 0

0 0 0 0
...

...
...

...
... 0

0 0 0 0 · · · 0 G j2

· · ·

g1
i

G j1
G j2
G j3

...
G jn−k−1

0


,

H∗4 =



g1
i g1

i g1
i g1

i
0 G j1 G j1 G j1

G j1 0 G j2 G j2

G j2 G j2 · · ·
... · · ·

...
G j3 G j3 G jn−k−2

...
... 0 G jn−k−1

G jn−k−1 G jn−k−1 G jn−k−1 0


, H∗5 =


g1

i
G j1

...
G jn−k



is one Hurwitz error correcting perfect code over Hπ , except n− k = 1 and p = 5. Here, g1
i ,g

2
i , · · · ,g24

i ∈ Gi,
1≤ i≤ 24, and Hπ = ∪

j
G j and G j1 ∩G j2 = /0 for all j1 6= j2, 1≤ j1, j2 ≤

(
p2−1

)/
24.

Proof. By the sphere-packing, we get

(p2)k(24n+1) = p2k(24
(p2)n−k−1

24
+1) = (p2)n,

where p = N(π)≥ 5.
On the other hand, assume that we have the partition of Hπ as Hπ = {0} ∪G1 ∪G2 ∪ ·· · ∪G

(p2−1)
/

24
. By

multiplying all error vectors of the Hurwitz weight 1 by the parity check matrix H, the syndromes are distinct
altogether due to the fact that tG j1 6= G j2 for all j1 6= j2, 1≤ j1, j2 ≤

(
p2−1

)/
24 and t ∈A . Let n− k = 1 and

p = 5. Then, the dimension k of the code C becomes 0 but it is not feasible. This completes the proof.

Let us assume that an error of the Hurwitz weight 1 occurs in location l. Decoding is straightforward. Take the
received vector r = c+ e and compute the syndrome S of r as S = (rHT )T . The syndrome S is equal to the product
of θ and the column l of the parity check matrix H, where θ ∈A . The location of the error is l, and the value of
the error is θ ∈A .

Example 1. Let π = 2+ ê1+ ê2+ ê3. If we select n−k = 1, then in general the parity check matrix H1×n is obtained
as follows:

H1×n =
[
g1

i
]
=
[

g1
1, g1

2, · · · , g1
(p2−1)

/
24

]
. (1)

In this case, the parity check matrix H is chosen as

H1×2 =
[

1, ê1 + ê2
]
.

Here,
G1 = {±1,±ê1,±ê2,±ê3,±w,±w,±ê1w,±ê2w,±ê3w,±ê1w,±ê2w,±ê3w} ,

G2 = {±(1± ê1) ,±(1± ê2) ,±(1± ê3) ,±(ê1± ê2) ,±(ê1± ê3) ,±(ê2± e3)}
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and g1
1 = 1, g1

2 = ê1 + ê2. The code C defined by the above parity check matrix H is one Hurwitz error correction
perfect code. For the decoding, for example, take the codeword c = (−ê1− ê2,1), e = (w,0), and r = c+ e =
(ê3,1) = (−ê1− ê2 +w,1) (mod 2+ ê1 + ê2 + ê3). Then, the syndrome S of r is equal to

S = rHT = w = ê1 + ê2 + ê3 (mod 2+ ê1 + ê2 + ê3).

Hence, we see that the error occurs in location 1 since w = w.g1
1 = w and the value of the error is w since

w = θg1
1 = θ .1 = θ .

Example 2. Let π = 2+ ê1. If we take n− k = 2, then in general the parity check matrix H2×n is obtained as
follows:

H2×n =

[
g1

i 0 g1
i

0 g1
i G j

]
,

where 1≤ i≤ 24, 1≤ j ≤
(

p2−1
)/

24. So, we get

H2+ê1 = {0}∪G1.

Hence, the parity check matrix H is chosen as

H2×26 =

[
g1

1 0 g1
1 g1

1 · · · g1
1

0 g1
1 g1

1 g2
1 · · · g24

1

]

=

[
1 0 1 1 1 · · · 1
0 1 1 g2

1 g3
1 · · · g24

1

]
,

where
G1 = A = {±1,±ê1,±ê2,±ê3,±w,±w,±ê1w,±ê2w,±ê3w,±ê1w,±ê2w,±ê3w} .

Let us assume that

g2
1 =−1,g3

1 = ê1,g4
1 =−ê1,g5

1 = ê2,g6
1 =−ê2,g7

1 = ê3,g8
1 =−ê3,g9

1 = w,g10
1 =−w,g11

1 = w̄,
g12

1 =−w̄, · · · ,g24
1 =−ê3w̄.

Then the parity check matrix H becomes as follows:

H2×26 =

[
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 · · · 1
0 1 1 −1 ê1 −ê1 ê2 −ê2 ê3 −ê3 w −w w −w ê1w · · · −ê3w

]
.

Let the codeword c

c =
(

1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 · · · 0
)

and let the error vector e

e =
(

0 0 0 0 0 0 0 0 0 0 ê3w 0 0 0 0 · · · 0
)
.

Then the syndrome of the received vector r = c+ e is computed as follows:

S =
(
rHT )T

=

(
ê3w
ê3

)
=

(
4− ê1w
ê1−w

)
(mod 2+ ê1) .

It is shown that the error occurs in the 11th component since the syndrome S is equal to the product ê3w and the
11th column of the parity check matrix H, that is,

S = ê3w
(

1
w

)
.

The value of the error is computed as ê3w. Hence, the codeword is obtained by c = r− e.
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3. Comparison Between Codes over Hπ , Codes over Z[ρ] and Codes over Z[i]

In this section, we give a comparison between codes over H , codes over Ap[ρ] and codes over Z[i] in terms of
average energy, the code rate and bandwidth occupancy. Note that codes over Z[ρ] and codes over Z[i] were
presented in [12, 13], respectively. We first give a comparison between the average energy of codes over over Hπ

and the average energy of codes over Ap[ρ]. Let π = 2+ ê1 + ê2 + ê3 and let α = 5+3ρ . We show that the average
energy for the transmitted signal, considering constellations with the same cardinality, is smaller in the case of Hπ

than in the case of Ap[ρ], see Table I.
Note that the average energy is calculated as:

E =
1
M

M−1

∑
s=0

N (αs),

where N (αs) is in signal space and it has a magnitude (distance from the origin) and M denotes the cardinality of
constellation.

Table I: Comparison between codes over Hπ and Ap[ρ].

Alphabet Base ring Average energy
GF(49) H 1.47
GF(49) Ap[ρ] 7.22

We second give a comparison between the average energy of codes over over Hπ and the average energy of
codes over Z[i]α . Let π = 2+ ê1 and let α = 4+ i3. We show that the average energy for the transmitted signal,
considering constellations with the same cardinality, is the smaller in the case of Hπ than in the case of Z[i]α , see
Table II.

Table II: Comparison between codes over Hπ and Z[i]α .

Alphabet Base ring Average energy
GF(25) H 0.96
GF(25) Z[i]α 4.16

Bandwidth is one of the most important parameter of analog/digital communication systems. Various modulation and
coding techniques have developed to provide bandwidth efficiency up to now. It is known from the communication
theory, if we increase the codewords numbers (with the same dimension), we get higher channel capacity required
bandwidth [21].
We now compare the rate and bandwidth occupancy of the codes over Hπ with the codes over Ap[ρ], Z[i]α , when
the alphabets considered have the same cardinality. The codes over Ap[ρ] presented in [12] and the OMEC codes

presented in [13] can be generalized to the lengths n = p2−1
6 and n = p2−1

4 , respectively. Let p≡ 1 (mod 12). Then

we have p ≡ 1 (mod 6) and p ≡ 1 (mod 4). In this case, a code C1 over Hπ has length n1 =
p2−1

24 , a code C2

over Ap[ρ] has length n2 =
p2−1

6 and a code C3 over Z[i]α has length n3 =
p2−1

4 . Hence, if the dimension k1,k2 and
k3 of the codes C1,C2 and C3 equal to k, then the rate R1 of C1 is greater than the rate R2 of C2 and the rate R3 of
C3 since R1 =

k1
n1

= 24k
p2−1 , R2 =

k2
n2

= 6k
p2−1 and R3 =

k3
n3

= 4k
p2−1 . For example, let p = 13 and k = 1. Then we get

R1 =
1
7 , R2 =

1
28 and R3 =

1
42 . It is shown that the bandwidth occupancy of the code C1is better than the bandwidth

occupancy of the code C2 and the bandwidth occupancy of the code C3.

4. Conclusion

In this paper, we define a new Hurwitz metric and construct linear codes over Hπ with respect to this metric.We
show that the average energy for the transmitted signal is smaller in the case of H than in the case of Z[ρ] and Z[i].
Moreover, the bandwidth occupancy of codes over H is better than the bandwidth occupancy of codes over Z[ρ]
and Z[i].
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