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This study aims to classify cognitive workload levels from EEG signals. EEG signals from 48 
subjects under resting and task cognitive load conditions were analyzed. Noise and 
artifacts were removed by applying band-pass and notch filtering methods in the 1-50 Hz 
band on the EEG data. Then, the EEG data were segmented with the windowing technique 
in 256 and 512 sample sizes, and a total of 309 features based on time, frequency, and 
complexity were extracted. Using the extracted feature set, logistic regression (LR), 
support vector machines (SVM), k-nearest neighbor (k-NN), random forest (RF), XGBoost 
machine learning (ML) algorithms and deep neural networks (DNN), one-dimensional 
convolutional neural networks (1D-CNN) and long short-term memory (LSTM) deep 
learning (DL) methods were applied for multi-class classification. In the experimental 
results, the highest success was obtained in the XGBoost model with a 99.4% accuracy rate 
and 0.990 Cohen’s kappa value, and in DL methods, a 98.75% accuracy rate and 0.981 
Kappa value in the LSTM model. This study reveals that integrating multidimensional 
features obtained from EEG signals with both ML algorithms and DL models provides high 
accuracy in cognitive workload classification. 

  

MAKİNE ÖĞRENMESİ VE DERİN ÖĞRENME İLE ÇOK BOYUTLU ÖZELLİKLER 
KULLANILARAK EEG SİNYALLERİNDEN KOGNİTİF İŞ YÜKÜNÜN 

SINIFLANDIRILMASI 

Anahtar Kelimeler Öz 
EEG, 
Kognitif İş Yükü, 
Makine Öğrenmesi, 
Derin Öğrenme, 
Özellik Çıkarımı, 
Biyomedikal. 

Bu çalışmada EEG sinyallerinden kognitif iş yükü seviyelerinin sınıflandırılması 
amaçlanmıştır. 48 deneğe ait dinlenme ve görev kognitif yük koşullarındaki EEG sinyalleri 
analiz edilmiştir. EEG verileri üzerinde 1-50 Hz bandında bant geçiren ve çentik filtreleme 
yöntemleri uygulanarak gürültü ve artefaktlar temizlenmiştir. Daha sonra, EEG verileri 256 
ve 512 örnek boyutlarında pencereleme tekniğiyle segmente edilerek zaman, frekans ve 
karmaşıklık temelli toplam 309 öznitelik çıkarılmıştır. Elde edilen öznitelik seti 
kullanılarak, çok sınıflı sınıflandırma işlemi için lojistik regresyon, destek vektör 
makineleri, k-en yakın komşu, rastgele orman, XGBoost makine öğrenmesi algoritmaları 
ile derin sinir ağları (DNN), tek boyutlu konvolüsyonel sinir ağları (1D-CNN) ve uzun kısa 
süreli bellek (LSTM) gibi derin öğrenme yöntemleri uygulanmıştır. Deneysel sonuçlarda en 
yüksek başarı, 99.4% doğruluk oranı ve 0,990 kohen kappa değeri ile XGBoost modelinde, 
derin öğrenme yöntemlerinde ise 98.75% doğruluk oranı ve 0,981 kappa değeri ile LSTM 
modelinde elde edilmiştir. Bu çalışma, EEG sinyallerinden elde edilen çok boyutlu 
özelliklerin hem makine öğrenmesi algoritmaları hem de derin öğrenme modelleriyle 
entegrasyonunun kognitif iş yükü sınıflandırmasında yüksek doğruluk sağladığını ortaya 
koymaktadır. 
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Highlights 

• Cognitive workload levels were classified by extracting features based on time, frequency, and 
complexity from EEG signals. 

• Among the machine learning methods, the XGBoost algorithm, 99.4% showed the highest classification 
performance. In deep learning methods, the LSTM model, 98.75% accuracy modeled time-dependent 
relationships in EEG signals and exhibited high performance. 

• Channel-based fractal analysis results revealed that EEG signal complexity increased significantly in the 
frontal and temporal regions as cognitive load increased. 

Graphical Abstract 

  
Figure. EEG electrode placement and multidimensional neural responses in rest and cognitive tasks 

Purpose and Scope  

The purpose of this study is to provide effective classification of cognitive workload levels from EEG signals. EEG-
based analyses can provide significant benefits for improving performance, especially in occupations requiring 
attention and concentration, and in daily life by accurately determining people's cognitive load levels. 
Design/methodology/approach  

The research was conducted on EEG recordings obtained from the STEW dataset. EEG data were first cleaned 
with band-pass and notch filtering methods, then analyzed by dividing into small sections with the windowing 
method. Time, frequency and complexity features were extracted for each window. Machine learning methods 
and deep learning techniques were used for classification. 
Findings  

In the analyses performed, the best classification results were obtained with the XGBoost algorithm from 
machine learning methods with an accuracy rate of 99.4%. From deep learning methods, the LSTM model 
showed high performance with an accuracy rate of 98.75%. In addition, in channel-based analyses, it was 
determined that the complexity of EEG signals in the frontal and temporal regions increased significantly as 
cognitive load increased. 
Originality  

The originality of this study is that it classifies cognitive load levels with high accuracy using a multidimensional 
and comprehensive feature set from EEG data. Thanks to detailed channel-based examinations, it is shown which 
brain regions are more active under load. In this respect, a different analysis in the field of cognitive load 
assessment is presented with the combined evaluation of machine learning and deep learning methods. 
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1. Introduction 
 
Cognitive load refers to the balance between an individual's capacity to process information and the cognitive 
demands they encounter. It is very important in various fields such as education, health, and technology (Sweller, 
1988; Sweller et al., 2019). When this balance is disrupted, an individual's decision-making ability, attentional 
process, and information processing skills can be negatively affected. Long-term intense cognitive load can 
manifest as cognitive fatigue, leading to decreased performance, increased probability of making errors, and loss 
of motivation (Taddeini et al., 2025).  
 
Last decades, information exposure is increasing day by day, and this significantly affects people's mental activities 
(Wang, 2024). As the complexity of decision-making processes increases, how the human mind works under 
cognitive load and how mental fatigue occurs as a result of this becomes increasingly important (Mundlos et al., 
2024). Especially, increasing technology use has a significant effect on cognitive load and mental fatigue. Long 
periods spent in front of a smartphone, tablet, or computer shorten the attention span of individuals and lead to 
the rapid depletion of mental resources. Increased screen exposure increases cognitive load due to constantly 
divided attention and digital multitasking habits, which can make mental fatigue chronic in the long term 
(Amalakanti et al., 2024; Sheng, 2025; Skowronek et al., 2023). In addition, excessive use of digital devices disrupts 
sleep patterns, disrupts brain resting processes, and prevents cognitive functions such as attention, memory, and 
arithmetic ability from working efficiently (Holding et al., 2021). In this context, correct and healthy screen use 
strategies are of great importance for human health in terms of managing cognitive load and mental fatigue. 
 
Cognitive fatigue is a condition associated with physical and cognitive performance disorders that occur as a result 
of long-term cognitive strain (Weiler et al., 2025). It can lead to serious consequences in both individual and 
professional contexts. For example, long-term cognitive deterioration can reduce employee productivity, make 
learning processes difficult, and negatively affect daily decision-making processes (Chen et al., 2016; Kunasegaran 
et al., 2023; Mizuno et al., 2011). Moreover, when cognitive fatigue is examined at neurophysiological and 
psychological levels, it is also important with its energy consumption in the brain, decrease in cortical activity, and 
negative effects on working memory (Lorist et al., 2005).  
 
This study aims to classify cognitive workload levels with high accuracy using comprehensive and diverse features 
obtained from EEG signals. In this context, unlike previous studies, time, frequency, and complexity-based multi-
dimensional analyses (Shannon entropy, Higuchi fractal dimension, Hjorth parameters, Hurst coefficient) were 
performed on EEG data. In addition, the temporal changes of EEG signals and their differences according to brain 
regions were determined in detail. Thus, it shows which parts of the brain regions are more active under high 
cognitive load. This approach makes a significant contribution to the accurate and reliable measurement of 
cognitive workload. 
 
2. Literature Survey 
 
Electroencephalography (EEG), offers the opportunity to evaluate cognitive load by detecting brain activity 
associated with cognitive tasks and analyzing EEG signals according to frequency bands (Park and Chung, 2020; 
Zafar et al., 2017). EEG, is a non-invasive technique and is a physiological signal measurement method used to 
analyze significant changes in brain waves. EEG signals are divided into alpha, beta, gamma and theta frequency 
bands, each associated with different cognitive processes. Delta waves are generally associated with deep sleep 
and are less pronounced in awake states. However, increased delta activity can be seen depending on the 
individual's psychological state. This manifests itself as an inappropriate state of arousal and decreased attention 
(Howells et al., 2018). Alpha waves are associated with relaxed, awake states and are most pronounced in the 
occipital region of the brain (Ono et al., 2023). Beta waves are associated with active thinking, problem solving and 
motor control (Borra et al., 2023). They are unsuccessful in inhibiting the response under high cognitive demand 
tasks (Taddeini et al., 2025). Gamma waves are associated with higher-level cognitive functions, including 
perception and consciousness (Archila-Meléndez et al., 2020). For example, gamma band power is effective in 
distinguishing single-task and multi-task scenarios and achieves high classification accuracy in detecting cognitive 
workload (Korkmaz et al., 2024).  
 
Studies show that cognitive fatigue negatively affects cognitive functions and impairs decision-making processes. 
In aviation, cognitive fatigue can cause deterioration of performance and reactions to unpredictable events. It can 
be evaluated that this situation weakens cognitive functions and affects decision-making mechanisms (Hamann 
and Carstengerdes, 2023). So, in recent years, machine learning (ML) algorithms with artificial intelligence-
supported analyses have made a significant difference in measuring cognitive fatigue and cognitive load and have 
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offered innovative approaches. With technological developments, various methods have been developed in this 
context to detect cognitive fatigue. In studies, how ML and deep learning (DL) techniques are integrated with EEG 
data, methods for automatically estimating cognitive workload and cognitive fatigue are examined with different 
algorithms and analyses. 
 
Using EEG signals, individuals' cognitive workload levels can be classified as low, medium, and high. Lim et al. 
(2018) performed cognitive load classification with EEG signals to measure the cognitive load of people during 
multitasking. Akman (2021) performed classification with Katz and Higuchi's fractal dimension algorithms, 
feature extraction, support vector machines (SVM), k-nearest neighbor (k-NN), and quadratic discriminant 
analysis (QDA) methods. In a study conducted using EEG signals and DL algorithms, cognitive fatigue of 
construction workers was determined with an accuracy rate of 88.85% (Wang et al., 2023). In addition, studies on 
cognitive fatigue detection with ML using fMRI data have achieved an accuracy rate of 73% (Zadeh et al., 2020). 
Kamrud et al. (2021) developed cross-participant EEG models to show that cognitive load can serve as a consistent 
physiological marker across different individuals and tasks. Zhou et al. (2022) discussed how EEG data are used 
in cognitive load estimation systems through preprocessing, feature extraction, and classification steps.  
 
Examining studies on the relationship between EEG-based functional connectivity metrics and cognitive load, 
Safari et al. (2024) have investigated cognitive fatigue using hierarchical feature selection and support vector-
based connectivity metrics. Gupta et al. (2021) have employed DL methods to classify cognitive load through brain 
connectivity analysis in EEG data.  Li et al. (2023) developed EEG-based fatigue detection systems with a brain 
cognitive dynamic recognition network and showed how different brain regions are related to cognitive load. In 
studies on cognitive fatigue detection, Zeng et al. (2021) addressed the difficulties of estimating cognitive fatigue 
in different individuals using an EEG-based transfer learning method. Li et al. (2024) developed a new method for 
the assessment of cognitive overload using EEG signals. Karmakar et al. (2024) aimed to increase user experience 
by performing real-time cognitive load detection with EEG signals. Shafiei et al. (2024) combined EEG and eye-
tracking data with the XGBoost model to estimate cognitive load in surgical tasks. Zhou et al. (2025) improved 
cognitive load detection in air traffic control operators by using an EEG-based hybrid DL model. Khan et al. (2024) 
performed cognitive load analysis using functional infrared spectroscopy data instead of EEG and stated that DL 
models showed superior performance. Among the studies examining EEG spectral analysis in cognitive load 
measurement, Chikhi et al. (2022) stated that frontal theta bands are a sensitive marker for cognitive load 
estimation. (Roy et al., 2019) examined the application of DL models in EEG and emphasized such as CNN and RNN 
provide successful results for EEG analysis. But they explained there are some problems, such as reproducibility. 
So, cognitive load and cognitive fatigue negatively affect both cognitive and physical performance. 
 
3. Material and Method 
 
In this study, the simultaneous task EEG workload (STEW) dataset containing EEG signals collected under 
cognitive workload was used. The dataset included EEG recordings of 48 participants at rest and under high 
cognitive load conditions. A study was carried out on 45 people due to the lack of data of three of the participants. 
The participants were conducted on university students who did not have a neurological or psychiatric disorder 
and had not participated in the EEG study before. The study was conducted with the approval of the Ethics 
Committee of Nanyang Technological University (IRB-2014-04-026). EEG signals were obtained with the Emotiv 
EPOC device consisting of 14 electrodes (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4). The sampling 
frequency is 128 Hz, and the resolution is 16 bits. Participants were subjected to 2 separate EEG analyses: resting 
and multitasking test. It performed a multi-task test using the SIMKAP module of the Vienna Test System. In the 
study, EEG data were collected in a three-minute resting state and an eighteen-minute visual matching and 
auditory arithmetic test. In the resting state, the first and last 15 seconds were omitted, and a total of 2.5 minutes 
of clean EEG data was obtained for analysis. In the multitasking test, the first parts were not used due to slow-
paced temporary processes, and the last 2.5 minutes of the EEG recording were recorded for evaluation. At the 
end of each segment, participants rated their cognitive load level on a scale of 1 to 9 (Lim et al., 2018). Accordingly, 
scores 1 to 3 were classified as "low load", scores 4 to 6 as "medium load", and scores 7 to 9 as "high load" 
categories. Figure 1 shows the layout of the Emotiv EPOC 14-electrode system. 
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Figure 1. Emotiv EPOC 14 Electrode Placement 

 

A flowchart for an overview of the analysis used in this study is given in Figure 2. The process started with the 
acquisition of the raw EEG signal. After filtering and segmentation, features were extracted from the time, 
frequency, and complexity domains. These features were then combined into a hybrid feature vector and used to 
train machine learning and deep learning models for multi-class classification. The classification results were 
finally evaluated using performance metrics such as accuracy, F1 score, and Cohen's Kappa. 

 
Figure 2. Workflow of the EEG-based cognitive workload classification 

 
3.1. Data Preprocessing 
 
In this study, first, filtration and artifact removal procedures were performed on EEG signals in the STEW data set, 
respectively. In order to select the relevant frequency, range from EEG signals, the Butterworth bandpass filtering 
method was used. The filtering process reduces noise and artifacts at undesirable low (<1 Hz) and high (>50 Hz) 
frequencies in the EEG signal, preserving the 1–50 Hz frequency band required for analysis. All neuro-
physiologically significant EEG frequency bands were made available as delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 
Hz), beta (13-30 Hz), and gamma (30-50 Hz). Thus, the quality of EEG data and the accuracy of the analysis have 
been increased. In addition, the notch filtering method was used to eliminate 50 Hz network interference caused 
by the electrical network during EEG recordings. In the pre-processing phase of EEG signals, 512 and 256-
dimensional windowing procedures were performed. Then, the feature extraction process was started for each 
window. In this way, the data set was enriched by combining the features obtained with different window sizes 
and it was ensured that the features in EEG signals at different time resolutions were included in the analysis. 
Thus, it is aimed to increase the model performance in the separation of EEG signals between states. 
 
3.2. Feature Extraction 
 
EEG signals reflect the temporal and frequency characteristics of electrical activity in the brain. The attributes 
extracted from these signals provide information about numerous parameters such as the individual's cognitive 
state, attention level, mental load, and relaxation level. In this context, after the pre-processing steps for the 
collected EEG signals, feature extraction processes were applied sequentially. After the signals were separated into 
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fixed-length windows for analysis, the attributes of each window were extracted. It is aimed to use these attributes 
as parameters with high distinctiveness in analyzing mental states. In this context, time domain properties, 
frequency domain properties, Shannon entropy, Hjorth parameters, Hurst exponential coefficients and Higuchi 
Fractal Dimension (HFD) analysis were applied respectively. 
 
3.2.1. Time Domain Properties 
 
Mean, variance, root mean square (RMS), and zero-crossing rate (ZCR) calculations were made in the study as time 
domain features. With the average, the calculation of the center value of the signal for each channel is made. 
Variance also shows the measure of variability in signal amplitude. With Equations (1) and (2), the mean and 
variance calculations are determined, respectively. Both of these calculations are considered basic identifiers for 
classification algorithms. Here, too, it was used to determine the basic statistical distribution of EEG signals. The 
root mean square (RMS) is calculated by taking the square root of the mean of the squares of the signal. It is 
obtained by Equation (3). It reflects the energy of the signal. It is especially effective in the analysis of active brain 
activities in EEG signals. High RMS values indicate that the amplitude of the signal is high and therefore more 
neural activity is present. A low RMS, on the other hand, indicates a more sluggish signal and is usually associated 
with a resting state. Therefore, while the RMS value is expected to increase during the task, this value may decrease 
at rest. Finally, the Zero-Crossing Rate (ZCR) was calculated. ZCR indicates the oscillation level of the signal. This 
is determined by calculating how many times the signal crosses the zero axis. It provides noise and frequency 
information. The ZCR value is determined by Equation (4). This value gives an idea of the density of the high-
frequency components in the signal. The higher the ZCR, the faster, the more active signal; a lower ZCR reflects a 
slower and stationary state. This trait tends to increase during tasks that require particular attention. The 
expression 1 in the ZCR formula is 1 when there is a zero transition, and 0 in the opposite cases.(Stancin et al., 
2021; Subasi, 2007). 
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3.2.2. Frequency Domain Characteristics 
 
EEG signals can be analyzed by separating them into different frequency bands. Each band represents a specific 
cognitive state. The delta band is associated with deep sleep and unconscious processes. The Theta band shows an 
increase in meditation and low attention states. The alpha band usually occurs during moments of rest with the 
eyes closed and represents a relaxed but alert state. On the other hand, the beta band rises during alertness, focus, 
and cognitive tasks. During the mission, an increase in beta power and a decrease in alpha and theta powers are 
expected. With Equation (5) the calculated power values for each band obtained by frequency analysis can be 
determined. Here, 𝑋(𝑓) is the Fourier transform of the signal, and is the lower and upper bounds of the respective 
frequency 𝑓1𝑓2. 
 

𝑃𝑏𝑎𝑛𝑑 =  ∑ |𝑋 (𝑓)|2

𝑓2

𝑓= 𝑓1

    (5) 

 
3.2.3. Entropy-Based and Complexity-Based Features 
 
The basic Shannon entropy was used in the study. Shannon entropy is a parameter that measures the irregularity 
and randomness of the signal. It measures the amount of information contained in the signal. High entropy 
indicates a more chaotic and complex signal, while low entropy indicates a more orderly and predictable structure. 
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Entropy is expected to increase as the brain performs more intensive cognitive operations during mental tasks. 
On the other hand, entropy remains at lower levels during moments of rest. The equation is calculated by (6). Here 
𝑝𝑖  are the probabilities obtained from the amplitude histogram of the signal. 
 

𝐻 =  − ∑ 𝑝𝑖  log2(𝑝𝑖)

𝑁

𝑖=1

       (6) 

 
Hjorth parameters consist of three components: Activity, Mobility and Complexity, which measure the variability 
and complexity of the EEG signal over time. Activity represents the variance of the signal and reflects the signal 
strength, similar to RMS. Mobility shows how fast the signal is changing; This value corresponds to the frequency 
information and may increase in situations that require attention. Complexity, on the other hand, is the ratio of the 
second derivative of the signal to the first derivative; The higher this ratio, the more complex the structure of the 
signal. Complexity usually increases under cognitive load. The calculations for the Hjorth parameters are 
presented in Equation (7). 
 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑉𝑎𝑟 (𝑥(𝑡)) 
 

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 =  √
𝑉𝑎𝑟 (𝑥′(𝑡))

𝑉𝑎𝑟 (𝑥(𝑡))
 (7) 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 (𝑥′(𝑡))

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 (𝑥(𝑡))
  

The Hurst exponential coefficient reveals long-term correlations by measuring the long-range dependency of the 
signal. The equation is calculated by (8). Here, the length of the time series is expressed by N, the interval of 
cumulative deviations is expressed by R, and the standard deviation of the time series is denoted by S. The HFD 
size is a criterion that determines the geometric complexity of the signal. A higher fractal size indicates that the 
signal has a more complex structure and contains more cognitive activity. The lower fractal dimension, on the 
other hand, reflects more static and regular brain activity. It usually takes values between 1.0 and 2.0 and is 
expected to increase during the task. Here, 𝐿(𝑘)k is the length of the signal obtained by sampling in length. In 
Equations (8) and (9), the calculation of the hurst exponential coefficient and the calculation of the HFD are given, 
respectively. 
 

𝐻 =
log(𝑅/𝑆)

log(𝑁)
     (8) 

𝐻𝐹𝐷 = lim
𝑘→0

 
log 𝐿 (𝑘)

log (
1

𝑘
)

                                                         (9) 

 
3.3. Classification Analysis 
 
This study constructs a hybrid feature structure by combining various features extracted from the EEG signals. 
Specifically, time-domain features (mean, variance, RMS, ZCR), frequency-domain features (delta, theta, alpha, 
beta, gamma), and complexity-related metrics (Shannon entropy, Hjorth parameters, Hurst exponent, and Higuchi 
fractal dimension) are combined to construct a comprehensive feature vector. Here, it is aimed to capture both the 
statistical features, spectral characteristics, and nonlinear dynamics of the EEG signals. The obtained hybrid 
feature vector contained 309 features. It was uniformly used as the input for all ML and DL models. 
 
In this study, ML algorithms and DL models were applied to evaluate the performance of time, frequency and 
entropy-based hybrid features extracted from EEG data in classifying cognitive workload levels (Low, Medium, 
High). The models were tested on a multi-class structure and compared with various performance metrics. Logistic 
Regression (LR) was applied with a multinomial structure. The model evaluated cognitive workload levels with 
metrics such as ROC-AUC, accuracy and complexity matrix. Random Forest (RF), a community learning algorithm 
consisting of 100 trees, was used. The model has a strong structure against overfitting, and it also provides the 
opportunity to examine the importance levels of the features. XGBoost, this powerful algorithm based on Boosting, 
has been used to maximize the separation between classes. k-NN was applied with a value of k=5 and the 
classification of data points according to their close neighbors was carried out. SVM are operated on multi-class 
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structure with RBF core function. To reduce the effect of the class imbalance problem observed in the dataset, 
balancing strategies were applied to the models. In this context, the class_weight='balanced' parameter was 
enabled. This method automatically determined weights according to the frequency of the classes and ensured 
that minority classes were represented adequately in the training process. In this way, the weighting approach 
provided balance while also reducing the risk of overfitting. In addition, for the DL models, stratified sampling was 
used during data splitting to maintain the class ratios between the training and test sets. 
 
The Deep Neural Network (DNN) uses a network structure that contains two hidden layers with 128 and 64 
neurons following the input layer and arranged by Dropout (0.3). The output layer is configured with softmax 
activation for three classes. The model was trained over 50 epochs and validation accuracy was monitored. One-
Dimensional Convolutional Neural Network (1D-CNN), was used to capture the temporal patterns of the EEG 
feature matrix. First, a Conv1D layer with 32 filters was applied, followed by MaxPooling1D. This was followed by 
a second Conv1D with 64 filters and a re-pooling layer. The network is flattened and connected to a fully connected 
layer with 64 neurons and finally to the softmax output layer. The model has been trained over 50 epochs. In Long 
Short-Term Memory (LSTM), EEG attributes were reshaped as one-time step sequences and a two-layer LSTM 
network was implemented. The first LSTM layer was configured with 64 units with the parameter 
return_sequences=True; followed by the addition of a second layer of LSTM with 32 units. Dropout (0.3) is applied 
between the two layers, and the last output layer is configured with softmax function. The model is trained over 
50 epochs. The detailed architectures of the implemented DL models, including layer configurations, activation 
functions, epochs, and dropout rates, are summarized in Table 1. 
 

Table 1. DL architectures used for EEG-based cognitive workload classification 

MODEL ARCHITECTURE ACTIVATION EPOCH DROPOUT 

DNN 
Dense(128) → Dropout(0.3) → Dense(64) → 
Dropout(0.3) → Dense(3) 

ReLU / Softmax 50 0.3 

1D-CNN 
Conv1D(32) → MaxPool → Conv1D(64) → Flatten 
→ Dense(64) → Dense(3) 

ReLU / Softmax 50 0.3 

LSTM 
LSTM(64) → Dropout(0.3) → LSTM(32) → 
Dense(3) 

Tanh / Softmax 50 0.3 

 
3.4. Performance Criteria 
 
In this study, multiple performance measures were used to evaluate cognitive workload classification models. 
These criteria determine model success not only in terms of overall accuracy. At the same time, it was selected to 
take into account the power of discrimination, general disequilibrium situations and random prediction 
probabilities for each class.  
Accuracy is the ratio of the number of samples that the model correctly guesses in all classes to the total number 
of samples. It is often used as a key performance indicator, but it can be misleading in an unbalanced class 
distribution. Precision is the ratio of true positive predictions for each class to the total sample estimated to belong 
to that class. It is especially preferred in cases where false positives are significant. Sensitivity is the ratio of true 
positive predictions for each class to all of the actual samples of that class. It stands out especially in cases where 
missed samples are important. The F1-Score is the harmonic mean of the Precision and Recall values. It offers a 
balanced assessment, especially in data sets where there is a class imbalance. In this study, macro mean (equal 
weighted average of all classes) was used. The ROC-AUC measures how well the model can discriminate between 
classes. Since there is more than one class, the macro average ROC-AUC value was calculated. With Cohen's Kappa, 
it is a coefficient of consistency that excludes random agreement between the actual labels and the model 
predictions. Improves reliability in data sets with class imbalance. As the coefficient κ approaches 1, it expresses 
high consistency, and as it approaches 0, it expresses luck-based results. All of these metrics were calculated using 
the Python programming language, through functions in the scikit-learn and TensorFlow/Keras libraries. 
 
4. Experimental Results 
 
In this section, the performance of multidimensional features obtained from EEG signals in the classification of 
cognitive workload levels is analyzed. In this context, performance comparisons were made by applying both ML 
algorithms and DL approaches in the study. For each model, evaluation was carried out with metrics such as 
accuracy, recall, specificity, F1-score and Cohen's Kappa, and the most successful methods were determined. In 
addition, temporal EEG signals were analyzed on a channel basis and the differences between task and rest states 
were visualized. These signal patterns obtained after filtration processes are important in terms of showing the 
effect of cognitive load especially in the frontal, temporal and occipital regions. In this context, the effect of 
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cognitive workload increase on EEG signals is presented with Figure 3 for a subject who was subjected to testing. 
Here, time series comparisons of task and rest conditions were made over filtered EEG data. For this purpose, F7, 
F8, T7, T8, P8 and O2 channels representing frontal, temporal, parietal and occipital regions were examined. 

 
Figure 3. Effect of cognitive workload on EEG signals in channel-based on time analysis 

 
In the time series graphs obtained after the filtering process, amplitude increases of around 300–400 μV ± were 
observed in the F7 and T7 channels under the duty condition. This indicates that increased cognitive effort and 
attention are concentrated in the frontal and left temporal regions.  The O2 channel produced more erratic and 
high-amplitude signals during the task. This indicates an increase in visual information processing activity in the 
right occipital cortex. Increases in amplitude were also observed in the P8 and F8 channels, but these changes 
remained moderate. In the resting state, the signals in all channels exhibited a more regular, low-amplitude and 
stable structure. Then, Frequency analysis, HFD and Shannon Entropy were calculated for each channel. HFD and 
entropy were evaluated in terms of reflecting the structural complexity of the signal and information content 
changes. The calculation of HFD and Shannon entropy analysis of task and rest for the EEG channel on a channel 
basis is shown in Figure 4.  

  

Figure 4. Distribution of average HFD and Entropy values in channels under resting and task conditions (ID: 2). 
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In the study, a multi-analysis approach was adopted using ML and DL methods. In this study, it was aimed to 
classify cognitive workload levels by applying ML and DL based classification algorithms on EEG signals collected 
under rest and multitasking conditions. Signals obtained after feature extraction of data; accuracy, precision, recall 
and F1-score. In this context, cognitive workload classification was performed on a data set consisting of 13,230 
samples using 309 attributes obtained from EEG data. When the class distribution is examined; An uneven 
distribution of approximately 6174, 3381 and 3675 specimens was observed, including Low, Medium and High. 
Table 2 presents the performance results of ML and DL algorithms.  
 

Table 2. Performance results of ML and DL algorithms 

MODEL ACCURACY PRECISION RECALL F1-SCORE COHEN'S KAPPA 

LR 0.597 0.572 0.556 0.55 0.362 

RF 0.985 0.983 0.98 0.981 0.976 

XGBoost 0.994 0.993 0.992 0.992 0.99 

k-NN 0.836 0.832 0.819 0.824 0.741 

SVM 0.486 0.7 0.36 0.271 0.046 

DNN 0.9796 0.9747 0.9748 0.9746 0.968 

CNN 0.9501 0.9485 0.9458 0.9471 0.922 

LSTM 0.9875 0.9848 0.9845 0.9847 0.981 

 

In the classification made with ML methods, RF and XGBoost stand out as the most successful algorithms. The LR 
model was applied in a multi-class structure and the overall accuracy of the results obtained was around 59%. In 
the classification report, a clear distinction was made between the low and high classes, but the recall value 
remained low in the medium class. The ROC-AUC score indicates a moderate performance of 73.8%. The RF model, 
consisting of 100 trees, has achieved a very successful distinction between the classes in the dataset. While the 
accuracy rate obtained was observed as 98.5%, the ROC-AUC score was close to 100%. In the complexity matrix, 
there is almost no margin of error between classes; This indicates the high generalization ability of the model. The 
XGBoost algorithm has shown high performance, similar to RF; the accuracy was recorded as 99.4% and the ROC-
AUC was 100%. In the classification report, high precision, recall and F1-score values were obtained in all classes. 
The accuracy of the results obtained with the k-NN model (k=5) was determined as approximately 83.6%. In the 
performance of the model, it was observed that the confusion between classes was more pronounced; The ROC-
AUC value was around 93.8%. The SVM model with RBF core has underperformed compared to other methods. 
While the overall accuracy was found to be 48.6%, there was serious confusion, especially between the Low and 
Medium classes. The ROC-AUC score was below the desired level with 67.2%. Figure 5 shows the accuracy 
performance results of different models. Comparative analysis provides insights into how each model performs in 
terms of accuracy. 
 

 
Figure 5. Models’ accuracy performance results 
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(a) 

 
(b) 

 
(c) 

Figure 6. Training and validation performances (a) DNN model: Accuracy and loss curves indicate stable convergence after 
epoch 30 with minimal overfitting (b) CNN model: While training accuracy continues to increase, validation loss shows signs 

of overfitting after epoch 30 (c) LSTM model: High training and validation accuracy with stable loss values throughout 
training 

 

In DL methods, the performances of DNN, CNN and LSTM methods were evaluated, respectively. In the DNN model, 
which was carried out using a multi-layer artificial neural network, the training process was continued for 50 
epochs and the model gave successful results with an accuracy rate of 98.3%. In the classification report, high 
precision, recall and F1-score values were obtained in all classes. The ROC-AUC value is 99.88%, supporting the 
overall performance of the model. He focused on capturing local patterns in EEG data with the One-Dimensional 
Convolutional Neural Network (1D-CNN). The accuracy obtained in this model is 94.2%, and the ROC-AUC is 
99.19%. In the classification report, although high achievement was shown in all grades, some minor confusion 
was observed. In order to model the time series structure well, the LSTM network was used, and the accuracy rate 
of this model was determined as 98.53%. In the complexity matrix, the model has achieved an almost perfect 
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distinction; The ROC-AUC was at 99.89%. LSTM has performed in parallel with the CNN and DNN models in 
capturing dependencies over time. The training and accuracy loss graphs obtained for DNN, CNN, and LSTM are 
presented with Figure 6. 
 

5. Result and Discussion 
 
In this study, cognitive workload levels that occur during rest and multitasking were attempted to be classified 
using EEG data. For this purpose, both ML and DL models were tested and compared to see which one gave more 
successful results. Since there was an imbalance between classes in the data set, this directly affected the model's 
success. As a result of the tests, the XGBoost model showed the highest success (99.4% accuracy, 0.992 F1 score, 
0.990 Kappa). RF and LSTM models were also quite successful. While RF reached 98.5% accuracy and 0.976 Kappa, 
the LSTM model attracted attention on the DL side with 98.75% accuracy and 0.981 Kappa. This shows their 
suitability for models such as LSTM, especially for time-varying EEG data. 
 
Although the CNN model falls slightly behind DNN and LSTM (with over 95% accuracy and 0.922 Kappa), it can 
still be considered a strong alternative. It was noticed that it was a bit confused, especially between low and high 
workload classes, and showed a slight tendency to over-fit. This model could perform even better with more data 
or some adjustments. The DNN model, on the other hand, gave consistent results in the training and validation 
processes. It provided a balanced approach to EEG data with 97.96% accuracy and 0.968 Kappa value. The k-NN 
algorithm gave lower but still acceptable results compared to the others (83.6% accuracy, 0.741 Kappa). This is 
most likely due to the k value not being well-tuned and the poor distance calculations in high-dimensional data. 
Simpler ML models, such as SVM and LR, performed lower than expected. While SVM made almost random 
predictions with 48.6% accuracy, the LR model had difficulty distinguishing classes, especially at medium load, 
with 59.7% accuracy. Overall, the XGBoost and LSTM models were the most successful in distinguishing cognitive 
workload levels. The main factors affecting the model's success include data imbalance, the types of features used, 
and the ability of the model to process time-varying data. 
 
In this study conducted with the STEW dataset, EEG-based workload classification was tested under multi-channel 
and different conditions. Both ML and DL models were systematically tested in this study. In addition, methods 
such as channel-based fractal analysis and feature extraction by dividing into time windows were also used. 
According to channel-based Higuchi fractal analysis, the complexity of the signal increased during the task in some 
EEG channels. Time-varying EEG signals were divided into segments, which contributed to the more effective 
operation of time-sensitive models, especially LSTM. Several different analyses and perspectives may come to the 
fore in terms of future studies. In this context, end-to-end DL models that work with raw EEG data and process the 
signal directly instead of feature engineering can be tried. In addition, it can be understood more clearly which 
EEG channels or features the models are based on with methods such as SHAP or LIME. Transfer learning 
approaches can be applied to provide generalization across different task types or individuals. Such models can be 
integrated into real-time applications (e.g., driving simulations, training systems) and made more functional. In 
addition to EEG data, multiple systems that will work with physiological signals such as heart rate and skin 
conductance also have a strong potential for future research. In conclusion, the combined use of ML and DL 
methods has yielded quite successful results in cognitive workload classifications using EEG. This approach 
provides a strong option in terms of both accuracy and model diversity, creating a rich foundation for future 
studies. 
 
Conflict of Interest 
 
No conflict of interest was declared by the author.  
 
References 
 
Akman Aydın, E., 2021. EEG Sinyalleri Kullanılarak Zihinsel İş Yükü Seviyelerinin Sınıflandırılması. Politeknik Dergisi 24, 681–

689. https://doi.org/10.2339/politeknik.794655 
Amalakanti, S., Mulpuri, R.P., Avula, V.C.R., Reddy, A., Jillella, J.P., 2024. Impact of smartphone use on cognitive functions: A 

PRISMA-guided systematic review. Medicine India 0, 1–8. https://doi.org/10.25259/medindia_33_2023 
Archila-Meléndez, M.E., Valente, G., Gommer, E.D., Correia, J.M., ten Oever, S., Peters, J.C., Reithler, J., Hendriks, M.P.H., Cornejo 

Ochoa, W., Schijns, O.E.M.G., Dings, J.T.A., Hilkman, D.M.W., Rouhl, R.P.W., Jansma, B.M., van Kranen-Mastenbroek, V.H.J.M., 
Roberts, M.J., 2020. Combining Gamma With Alpha and Beta Power Modulation for Enhanced Cortical Mapping in 
Patients With Focal Epilepsy. Front Hum Neurosci 14. https://doi.org/10.3389/fnhum.2020.555054 

Borra, D., Fantozzi, S., Bisi, M.C., Magosso, E., 2023. Modulations of Cortical Power and Connectivity in Alpha and Beta Bands 
during the Preparation of Reaching Movements. Sensors 23. https://doi.org/10.3390/s23073530 



KOCA 10.21923/jesd.1669626 

 

478 
 
 

Chen, Z., Xu, Xianfa, Zhang, J., Liu, Y., Xu, Xianggang, Li, L., Wang, W., Xu, H., Jiang, W., Wang, Y., 2016. Application of LC-MS-based 
global metabolomic profiling methods to human mental fatigue. Anal Chem 88, 11293–11296. 
https://doi.org/10.1021/acs.analchem.6b03421 

Chikhi, S., Matton, N., Blanchet, S., 2022. EEG power spectral measures of cognitive workload: A meta-analysis. 
Psychophysiology. https://doi.org/10.1111/psyp.14009 

Gupta, A., Siddhad, G., Pandey, V., Roy, P.P., Kim, B.G., 2021. Subject-specific cognitive workload classification using eeg-based 
functional connectivity and deep learning. Sensors 21. https://doi.org/10.3390/s21206710 

Hamann, A., Carstengerdes, N., 2023. Assessing the development of mental fatigue during simulated flights with concurrent 
EEG-fNIRS measurement. Sci Rep 13. https://doi.org/10.1038/s41598-023-31264-w 

Holding, B.C., Ingre, M., Petrovic, P., Sundelin, T., Axelsson, J., 2021. Quantifying Cognitive Impairment After Sleep Deprivation 
at Different Times of Day: A Proof of Concept Using Ultra-Short Smartphone-Based Tests. Front Behav Neurosci 15. 
https://doi.org/10.3389/fnbeh.2021.666146 

Howells, F.M., Temmingh, H.S., Hsieh, J.H., Van Dijen, A. V., Baldwin, D.S., Stein, D.J., 2018. Electroencephalographic delta/alpha 
frequency activity differentiates psychotic disorders: A study of schizophrenia, bipolar disorder and methamphetamine-
induced psychotic disorder. Transl Psychiatry. https://doi.org/10.1038/s41398-018-0105-y 

Kamrud, A., Borghetti, B., Kabban, C.S., Miller, M., 2021. Generalized deep learning eeg models for cross-participant and cross-
task detection of the vigilance decrement in sustained attention tasks. Sensors 21. https://doi.org/10.3390/s21165617 

Karmakar, S., Kamilya, S., Koley, C., Pal, T., 2024. A Deep Learning Technique for Real Time Detection of Cognitive Load using 
Optimal Number of EEG Electrodes. IEEE Trans Instrum Meas. https://doi.org/10.1109/TIM.2024.3509604 

Khan, M.A., Asadi, H., Zhang, L., Qazani, M.R.C., Oladazimi, S., Loo, C.K., Lim, C.P., Nahavandi, S., 2024. Application of artificial 
intelligence in cognitive load analysis using functional near-infrared spectroscopy: A systematic review. Expert Syst Appl. 
https://doi.org/10.1016/j.eswa.2024.123717 

Korkmaz, O.E., Korkmaz, S.G., Aydemir, O., 2024. Detection of multitask mental workload using gamma band power features. 
Neural Comput Appl 36, 10915–10926. https://doi.org/10.1007/s00521-024-09627-9 

Kunasegaran, K., Ismail, A.M.H., Ramasamy, S., Gnanou, J.V., Caszo, B.A., Chen, P.L., 2023. Understanding mental fatigue and its 
detection: a comparative analysis of assessments and tools. PeerJ 11. https://doi.org/10.7717/peerj.15744 

Li, P., Zhang, Y., Liu, S., Lin, L., Zhang, H., Tang, T., Gao, D., 2023. An EEG-based Brain Cognitive Dynamic Recognition Network 
for representations of brain fatigue. Appl Soft Comput 146. https://doi.org/10.1016/j.asoc.2023.110613 

Li, Z., Tong, L., Zeng, Y., Gao, Y., Gong, D., Yang, K., Hu, Y., Yan, B., 2024. A novel method of cognitive overload assessment based 
on a fusion feature selection using EEG signals. J Neural Eng 21, 066047. https://doi.org/10.1088/1741-2552/ad9cc0 

Lim, W.L., Sourina, O., Wang, L.P., 2018. STEW: Simultaneous task EEG workload data set. IEEE Transactions on Neural Systems 
and Rehabilitation Engineering 26, 2106–2114. https://doi.org/10.1109/TNSRE.2018.2872924 

Lorist, M.M., Boksem, M.A.S., Ridderinkhof, K.R., 2005. Impaired cognitive control and reduced cingulate activity during mental 
fatigue. Cognitive Brain Research 24, 199–205. https://doi.org/10.1016/j.cogbrainres.2005.01.018 

Mizuno, K., Tanaka, M., Yamaguti, K., Kajimoto, O., Kuratsune, H., Watanabe, Y., 2011. Mental fatigue caused by prolonged 
cognitive load associated with sympathetic hyperactivity. Behavioral and Brain Functions 7. 
https://doi.org/10.1186/1744-9081-7-17 

Mundlos, P., Wulf, T., Mueller, F.A., 2024. Perceived task complexity in strategic decision situations: the role of cognitive 
integration and cognitive load. European Business Review. https://doi.org/10.1108/EBR-08-2024-0253 

Ono, H., Sonoda, M., Sakakura, K., Kitazawa, Y., Mitsuhashi, T., Firestone, E., Jeong, J.W., Luat, A.F., Marupudi, N.I., Sood, S., Asano, 
E., 2023. Dynamic cortical and tractography atlases of proactive and reactive alpha and high-gamma activities. Brain 
Commun 5. https://doi.org/10.1093/braincomms/fcad111 

Park, Y., Chung, W., 2020. A Novel EEG Correlation Coefficient Feature Extraction Approach Based on Demixing EEG Channel 
Pairs for Cognitive Task Classification. IEEE Access 8, 87422–87433. https://doi.org/10.1109/ACCESS.2020.2993318 

Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T.H., Faubert, J., 2019. Deep learning-based electroencephalography 
analysis: A systematic review. J Neural Eng. https://doi.org/10.1088/1741-2552/ab260c 

Safari, M.R., Shalbaf, R., Bagherzadeh, S., Shalbaf, A., 2024. Classification of mental workload using brain connectivity and 
machine learning on electroencephalogram data. Sci Rep 14. https://doi.org/10.1038/s41598-024-59652-w 

Shafiei, S.B., Shadpour, S., Mohler, J.L., 2024. An Integrated Electroencephalography and Eye-Tracking Analysis Using eXtreme 
Gradient Boosting for Mental Workload Evaluation in Surgery. Hum Factors. 
https://doi.org/10.1177/00187208241285513 

Sheng, Q., 2025. Understanding the biomechanics of smartphone addiction: The physical and cognitive impacts of prolonged 
device use on college students. Molecular & Cellular Biomechanics 22, 650. https://doi.org/10.62617/mcb650 

Skowronek, J., Seifert, A., Lindberg, S., 2023. The mere presence of a smartphone reduces basal attentional performance. Sci 
Rep 13. https://doi.org/10.1038/s41598-023-36256-4 

Stancin, I., Cifrek, M., Jovic, A., 2021. A review of eeg signal features and their application in driver drowsiness detection systems. 
Sensors. https://doi.org/10.3390/s21113786 

Subasi, A., 2007. EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 32, 
1084–1093. https://doi.org/10.1016/j.eswa.2006.02.005 

Sweller, J., 1988. Cognitive Load During Problem Solving: Effects on Learning. Cogn Sci 12, 257–285. 
https://doi.org/10.1207/s15516709cog1202_4 

Sweller, J., van Merriënboer, J.J.G., Paas, F., 2019. Cognitive Architecture and Instructional Design: 20 Years Later. Educ Psychol 
Rev. https://doi.org/10.1007/s10648-019-09465-5 



KOCA 10.21923/jesd.1669626 

 

479 
 
 

Taddeini, F., Avvenuti, G., Vergani, A.A., Carpaneto, J., Setti, F., Bergamo, D., Fiorini, L., Pietrini, P., Ricciardi, E., Bernardi, G., 
Mazzoni, A., 2025. Extended Cognitive Load Induces Fast Neural Responses Leading to Commission Errors. eNeuro 12. 
https://doi.org/10.1523/ENEURO.0354-24.2024 

Wang, J., 2024. Research on the Speed of Information Transmission and User Cognition in the New Media Era. Communications 
in Humanities Research 40, 204–210. https://doi.org/10.54254/2753-7064/40/20242397 

Wang, Y., Huang, Y., Gu, B., Cao, S., Fang, D., 2023. Identifying mental fatigue of construction workers using EEG and deep 
learning. Autom Constr 151. https://doi.org/10.1016/j.autcon.2023.104887 

Weiler, H., Russell, S., Spielmann, J., Englert, C., 2025. Mental Fatigue: Is It Real? Journal of Applied Sport and Exercise 
Psychology 32, 14–26. https://doi.org/10.1026/2941-7597/a000033 

Zadeh, M.Z., Babu, A.R., Lim, J.B., Kyrarini, M., Wylie, G., Makedon, F., 2020. Towards cognitive fatigue detection from functional 
magnetic resonance imaging data, in: Proceedings of the 13th ACM International Conference on PErvasive Technologies 
Related to Assistive Environments, PETRA ’20. Association for Computing Machinery, New York, NY, USA. 
https://doi.org/10.1145/3389189.3397648 

Zafar, R., Dass, S.C., Malik, A.S., 2017. Electroencephalogram-based decoding cognitive states using convolutional neural 
network and likelihood ratio based score fusion. PLoS One 12. https://doi.org/10.1371/journal.pone.0178410 

Zeng, H., Li, X., Borghini, G., Zhao, Y., Aricò, P., Di Flumeri, G., Sciaraffa, N., Zakaria, W., Kong, W., Babiloni, F., 2021. An eeg-based 
transfer learning method for cross-subject fatigue mental state prediction. Sensors 21. 
https://doi.org/10.3390/s21072369 

Zhou, Y., Huang, S., Xu, Z., Wang, P., Wu, X., Zhang, D., 2022. Cognitive Workload Recognition Using EEG Signals and Machine 
Learning: A Review. IEEE Trans Cogn Dev Syst. https://doi.org/10.1109/TCDS.2021.3090217 

Zhou, Y., Jiang, J., Wang, L., Liang, S., Liu, H., 2025. Enhanced Cognitive Load Detection in Air Traffic Control Operators Using 
EEG and a Hybrid Deep Learning Approach. IEEE Access. https://doi.org/10.1109/ACCESS.2025.3530091 

  

 
 
 


