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Abstract This study investigates how large language models (LLMs) can serve as dynamic agents in game-based
interactions by comparing two prototypes of a color-guessing game. One model (Cohere Command) oper-
ates on a zero-shot prompt-based mechanism, while the other (FLAN-T5) is fine-tuned on a semantically
structured dataset. A total of 20 participants were divided into two experimental groups to evaluate the
models' ability to generate semantically coherent yes/no questions, maintain flow, and perform accurate
predictions. Quantitative data, including session durations, number of interactions, and AI outputs, were
analyzed, along with a post-game user experience survey grounded in Flow Theory. Results show that
while both systems achieved task completion, the fine-tuned FLAN-T5 model significantly outperformed
the other models in terms of semantic clarity, user engagement, and perceived fluency. The findings
highlight the potential of LLM-based DDA systems in creating meaningful, adaptive player experiences
and underscore the importance of semantic alignment and interaction transparency in game-based AI
design.
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Introduction
When a game's difficulty level does not match the player's skill level, the experience becomes tedious or

overly challenging. To achieve this balance, Dynamic Difficulty Adjustment (DDA) systems aim to make the
game flow more motivating and sustainable. Traditional DDA approaches are usually based on numerical
data such as the player's success rate and score. However, these methods do not adequately consider a
player's decision-making style, contextual strategies, and in-game interaction patterns.

Integrating big language models (LLMs) into game systems provides a new dimension to the concept
of LDA. Such models enable the development of AI units that are not only data-driven but also able to
read context, analyze previous interactions, and make strategic decisions (Brown et al., 2020; Radford et al.,
2019). Thanks to the flexible nature of the language, AI can offer player-specific difficulty levels and enable
more human-like decisions. Game scenarios with short yes/no answers provide a suitable ground to test
the contextual analysis power of language models. This kind of experimental setup allows us to observe
how AI performs at different difficulty levels while rethinking the role of these systems in game design.

However, in the existing literature, the use of LLMs in the context of dynamic difficulty tuning has been
addressed in a limited number of studies; in particular, the effects of different LLM architectures on in-
game strategic decision making, semantic output quality, and flow experience have not been systematically
compared. Aiming to fill this gap, this paper empirically compares two different LLM architectures (zero-shot
and fine-tuned) in a game-based interaction setting and presents a multi-layered evaluation of semantic
directiveness, flexibility, and user experience metrics.

Purpose of the Study

This study investigates how artificial intelligence using large language models (LLMs) contributes to
adjusting the difficulty level of games according to the player. For this purpose, a question-answer-based
guessing game between two artificial intelligences was designed, and their performances were compared
at different difficulty levels: easy, medium, and hard.

Research Question and Hypotheses

Research Question: Can large language models optimize dynamic difficulty adjustment in digital games
with humanlike strategic decision-making?

Hypothesis 1 (H1): AI-assisted dynamic difficulty adjustment (DDA) systems can be optimized using large
language models (LLM).

Sub-Hypotheses:

• H1a: LLM-based prediction strategies enable AI systems to dynamically adjust in-game difficulty levels
in real time.

• H1b: LLM-supported AI systems can make strategic decisions at different difficulty levels (easy, medium,
hard).

• H1c: LLM-based AI predictions show lower response times and higher decision flexibility than traditional
machine learning algorithms.

• H1d: The output entropy of LLMs increases the accuracy and adaptability of AI-based prediction strate-
gies.
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• H1e: LLM-based DDA systems provide more consistency in game flow and player interaction than tradi-
tional methods.

Hypothesis 0 (H0): LLM-based AI systems do not provide significant improvements in terms of dynamic
difficulty adjustment.

Variables

Independent Variables:

• Natural Language Processing (NLP) Model: Language processing capacity that drives AI's prediction
strategies.

• Difficulty Level (Easy, Medium, Hard): The complexity level of the AI prediction strategies.

• Prediction Time: The prediction time taken by the AI algorithm.

• Success Rate: The rate at which the AI correctly assumes the hidden color.

Dependent Variable:

• Prediction Strategy Success: The proportion of correct predictions based on the language model used by
AI in dynamic difficulty adjustment strategies.

Scope and Limitations

This research used an AI-assisted color prediction game to evaluate the performance of large language
models (LLMs) in dynamic difficulty adjustment (DDA) systems. After playing the game, the participants
completed a user experience survey with questions generated by two different artificial intelligence models
(Cohere AI and FLAN-T5) at different difficulty levels. Thus, a multi-layered evaluation was performed in line
with the system data and user opinions.

However, the study has certain limitations.

Within the scope of the research, only two LLM architectures were examined; models from other
platforms, such as OpenAI, IBM, and Azure, were not included in the study. The Cohere model was used
as a routing-based model from abrasion, while the FLAN-T5 model was fine-tuned and implemented on
the Hugging Face platform with a custom dataset. However, different model versions, advanced training
configurations, or alternative task protocols offered by Hugging Face were excluded from the scope of this
study. In the implemented models, the AIs were not allowed to learn the difficulty levels independently; the
difficulty settings were determined according to predefined rules.

Data analysis was limited to key performance indicators such as accuracy rate, number of questions, and
playing time; however, no advanced methods such as long-term learning processes, time series analysis,
multiple user interactions, or in-game social dynamics, were used. Interactions were text-based, with no
visual or auditory supportive components.

Ethically, no personal data were collected in the study; all sessions were conducted based on participant
consent and volunteerism. The research was conducted with the approval of Doğuş University Scientific
Research and Publication Ethics Committee (Date: 28.05.2025, No: 82320). When similar systems are planned
to be tested with real player data in the future, basic ethical principles, such as data privacy, user consent,
algorithmic transparency, and system auditability, must be rigorously observed.

Acta Infologica, 9 (1), 183–207   185



Designing a Large Language Model-Based AI System for Dynamic Difficulty Adjustment in Digital Games   Aşkın, 2025

Methodological Justification and Design Rationale

Although the number of participants in this study (n = 20) seemed limited, the experimental design was
deliberately divided into two independent groups (n₁ = 10, n₂ = 10). This partitioning eliminates factors
that threaten the internal validity of comparing AI systems, such as the learning effect, ranking effect, and
surrogate learning. The experimental design ensured that all participants interacted with only one model,
preventing cross-contamination and allowing for a more precise effect size measurement.

Furthermore, another prominent aspect of this study is the multi-layered data collection and analysis
strategy. Different layers of data were collected and analyzed, including game session data, user experi-
ence surveys, Shannon Entropy analyses, and independent sample t-tests for statistical significance. This
increased the study's contextual depth and validity despite the quantitative sample's limitations.

Another study strength is that the game prototypes are reproducible through open-source platforms. This
ensures the experiment's replicability and provides a scalable frame of reference for future work. Therefore,
the study goes beyond a pretest and presents a transparent model in terms of experimental design and
offers added value for practice.

This methodological justification section provides defensible arguments that emphasize the empirical
nature of the study, data depth, and analyzability despite superficial criticisms about the number of partic-
ipants. On the other hand, only two major language models (Cohere Command and FLAN-T5) were compared
in this study; other models, such as OpenAI GPT, Claude, and Gemini, were excluded. This choice was
made deliberately to ensure methodological control of the study and to perform an in-depth comparison.
The selected models represent different production approaches: Cohere Command offers a prompt-based
architecture, while the FLAN-T5 model has a fine-tuned architecture with a specialized dataset. Thanks
to this structure, we can directly compare the advantages and limitations of different language model-
based dynamic difficulty tuning methods. In similar studies, the number of models is usually limited, and
factors such as methodological consistency, parametric control, and technical resource requirements are
considered in comparative analyses. In future research, comparisons involving more language models can
be performed to increase generalizability and analyze different architectures’ production behavior more
comprehensively.

Theoretical Framework
This study's theoretical basis is the Flow Theory developed by Csikszentmihalyi (1990). Flow is a special

state of consciousness in which the individual fully focuses their attention on the activity loses the percep-
tion of time, and experiences high motivation during the activity (Keller & Bless, 2008). In order to sustain
this experience in game design, an ideal balance between the player's skill level and the game's difficulty
is recommended.

Sweetser and Wyeth (2005) highlighted three key elements that support the flow state: clear goals,
immediate feedback, and skill-appropriate challenges (Cowley et al., 2008). These elements strengthen
the player’s sense of control and emotional connection to the game, thus satisfying the experience. Chen
(2007) took these principles to an algorithmic level and developed the concept of "Dynamic Difficulty
Adjustment" (DDA). DDA systems aim to maintain the continuity of the flow state by changing the game
difficulty in real time according to the player's performance.
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Difficulty setting and balancing cognitive load are critical for sustaining the Flow experience. This is where
Sweller’s (1988) Cognitive Load Theory comes into play. Systems that allow the player to make meaningful
decisions within the game without interrupting their attention with excessive stimuli increase the quality
of learning and experience.

Ryan and Deci's (2000) proposed the self-determination theory, which provides an important structure
that supports the flow in a motivational framework. According to this theory, intrinsic motivation increases
when individuals’ basic psychological needs, such as competence, autonomy, and relationship building, are
satisfied. Dynamic challenge systems sustain this motivation to the extent that they provide the player with
a sense of competence.

Unlike classical rule-based LLM frameworks, artificial intelligence systems based on big language models
(LLM) not only generate responses to player inputs and have the capacity to develop semantic contextual
guidance, meaningful question generation, and prediction strategies (To & Brusilovsky, 2021).

In this study, we compare two different big language models, prompt-based (Cohere AI) and fine-tuned
(FLAN-T5), and evaluate their impact on semantic production quality, guidance capacity, and flow experience.
The findings revealed significant differences in technical accuracy and experiential parameters, such as
player perception, time perception, and cognitive continuity. In this respect, this study proposes a multi-
layered rethinking of how dynamic difficulty adjustment systems can be made semantically guided and
personalized at the individual interaction level through LLM-based production behaviors in the context of
flow theory.

Literature
This section provides a literature review on Dynamic Difficulty Adjustment (DDA) systems, structured

around several key themes: their application in games, their impact on player experience, integration with
artificial intelligence (AI) and machine learning (ML), personalization strategies, and their use in education
and rehabilitation. In addition, this review highlights a significant gap in studies that integrate Large
Language Models (LLMs) with DDA systems. This review aims to establish a foundational understanding of
DDA’s technical and experiential dimensions by outlining these domains.

DDA refers to techniques that dynamically adjust game difficulty in response to the player's performance,
skill level, or emotional state. This adaptive approach is often employed to support player motivation and
facilitate flow experiences. Early studies, such as Gilleade et al. (2004), examined how adaptive difficulty
could sustain players in a flow state, while Kowlessar (2020) demonstrated that optimal difficulty settings
enhance player engagement. However, some findings suggest that relying solely on performance metrics
is insufficient; psychological states must also be considered to avoid unintended player frustration. The
application of AI and ML techniques has significantly advanced the design of DDA systems. For instance,
Garcia-Ruiz et al. (2023) introduced a deep learning-based system that increased player satisfaction by
adjusting difficulty based on skill progression. Roohi et al. (2021) combined Deep Reinforcement Learning
(DRL) with Monte Carlo Tree Search (MCTS) to create an adaptive system that performs well at higher
difficulty levels. Similarly, Yannakakis and Togelius (2018) and Lopes and Bidarra (2011) emphasized the
central role of adaptive AI in dynamic gameplay experiences. Fisher and Kulshreshth (2024) contributed to
this discussion by demonstrating that performance- and emotion-based DDA strategies produce varying
outcomes across player profiles. In addition to performance optimization, DDA systems have been employed
in motivational and cognitive frameworks. For example, Colwell et al. (2018) demonstrated that adaptive
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difficulty calibrated using the ARCS motivational model improved trust and engagement. Smulter and
Porsbjer (2019) examined how cognitive workload affects players under dynamically changing difficulty,
suggesting that task complexity and attentional demand should be central parameters in adaptive systems.
The growing interest in personalization has led to emerging studies using large language models (LLMs)
in DDA. However, work on integrating LLMs with DDA remains limited, revealing a crucial research gap. In
applied contexts, DDA has also shown potential in educational and therapeutic settings. Wu, Chen, and
Chen (2017) demonstrated that an adaptive e-learning system based on dynamic scaffolding significantly
enhanced student learning performance by aligning difficulty levels with individual progression. Cameirão
et al. (2009) highlighted the use of the Rehabilitation Gaming System (RGS) as an example of how adaptive
game-based environments can support cognitive and motor recovery in clinical neurorehabilitation. From
a technical standpoint, Zheng (2024) reported that the integration of deep reinforcement learning into DDA
systems enhanced the adaptability and precision of difficulty scaling, enabling more strategic and skill-
responsive level design. These insights reinforce the role of DDA in structuring challenges in a way that
aligns with individual player trajectories. In conclusion, the literature collectively demonstrates the effec-
tiveness of DDA systems in terms of enhancing gameplay, motivation, and learning. However, integrating
LLM-based AI systems into DDA remains an underexplored area. Although personalization through AI-driven
adaptation has been considered in recent work, existing research still lacks comprehensive, comparative,
and experimentally validated frameworks that assess how different LLM architectures influence dynamic
difficulty adjustment across gameplay variables. In particular, little is known about the strategic decision-
making capacity, semantic output quality, and flow facilitation of LLMs under different difficulty tiers. This
study addresses this critical gap by experimentally comparing a zero-shot prompting-based model (Cohere
Command) with a fine-tuned LLM (FLAN-T5) in a controlled, game-based interaction context. By examining
semantic richness, adaptability, and user engagement metrics, the research aims to provide a multilayered
evaluation of how LLM-driven DDA systems can be optimized for more intelligent and humanlike gameplay
experiences.

Methodology
Experimental Structure and Setup

This study used an experimental method to examine the behavior, semantic, and experiential perfor-
mance of large language models (LLMs) in game-based interactions. Within the scope of the research, two
different game prototypes were developed, and the plar in their minds through yes/no questions. The first
of these prototypes is based on the zero-shot prompting technique with the Cohere AI model, while the
second one is fine-tuned and customized on the FLAN-T5 architecture on the Hugging Face platform. Both
games were structured with three different difficulty levels (easy, medium, and hard), and the participants’
responses to the semantic prompts were evaluated. Participants were divided into two groups. Each group
experienced only the game prototype directed by an artificial intelligence model. In this way, internal validity
issues that may be observed in comparative experiments, such as learning and ranking effects, were avoided
(n₁ = 10, Cohere; n₂ = 10, FLAN-T5).

Accessibility, architectural diversity, and the feasibility of fine-tuning were considered in the model
selection. The FLAN-T5 model stands out due to its open-source nature, easy trainability on the Hugging
Face platform, and semantic generation success in the literature. The Cohere Command model, on the other
hand, is known for its zero-shot performance based on routing and provides a suitable counterexample
for comparative testing in terms of natural language generation without the need for fine-tuning. The fact
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that both models represent different production approaches provides a meaningful framework for the
experimental comparison of their production behavior and the analysis of their impact on dynamic difficulty
management (Figure 1).

Figure 1
Experimental Workflow of AI-Supported Game Prototype Development and Evaluation

Technical Implementation and Game Prototypes

The Cohere AI-based game version is based on the Command model, accessed via a ready-made API,
and driven only by system prompts. The model was expected to generate short questions focusing on color
properties that could only be answered with yes or no answers. At the three difficulty levels, production
variance and semantic complexity gradually increased. The FLAN-T5 model was fine-tuned on a custom
dataset comprising more than 600 color-based question-answer pairs. This process was run on Google Colab
Pro in the Hugging Face environment using the Transformers and Seq2SeqTrainer classes (Vaswani et al.,
2017). The model was optimized for strategic question generation by considering factors such as semantic
context, psychological connotation, and color categories (Goodfellow, Bengio, & Courville, 2016).

Both games were presented to the user through a Gradio-based interface, and all sessions were recorded
throughout the production process. In the color prediction process, the system had the user predict a fixed
target color; thus, the artificial intelligence was directed to make meaningful inferences based only on user
responses.

The training dataset used in the fine-tuning process of the FLAN-T5 model was created using a large
language model (ChatGPT) that supported text generation according to the semantic rules created by the
researcher. The dataset contains over 600 yes/no questions in total, each labeled with a target color, diffi-
culty level (easy, medium, hard), and semantic category (e.g., nature, temperature, symbolism). For example,
the question "Is this color often linked with temperature in nature?" is in the category "temperature" under
the color "burgundy" and the difficulty level "Easy". In the production process, multi-layered conceptual
areas, such as the hot-cold perception of colors, the frequency of their occurrence in nature, cultural
connotations, and emotional effects, were considered. The researcher manually reviewed the generated
data samples, and the reliability of the training set was ensured by removing content containing semantic
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inconsistencies or physical meaning errors. The full dataset is presented in the appendix of this article
(Figure 2).

Figure 2
Comparative Flowchart of Two LLM-Based Color Guessing Games

Data Collection, Survey, and Analysis Process

Interaction data were saved in CSV format during all game sessions. These data includes session IDs,
question texts asked by the AI, user responses, remaining color probabilities, and prediction times.

At the end of the game, each participant was administered a Likert-type user experience questionnaire
designed in accordance with Flow Theory. The questionnaire aimed to measure experiential elements such
as AI question clarity, content repetition rate, prediction success, time perception, and overall immersion.

The collected data were analyzed using Python. The following libraries were used in this analysis: pandas,
seaborn, scipy, and collections (Harris et al., 2020; Virtanen et al., 2020). The key metrics computed include
the semantic repetition rate, number of out-of-context productions, session duration, and entropy. The
performance comparison between models was performed using independent samples t-tests.
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Entropy Analysis: Diversity in User Opinions

The user survey data were evaluated not only in terms of average scores but also in terms of the diversity
of responses. For this purpose, Shannon Entropy calculations were performed. The entropy is particularly
meaningful for assessing the subjective dimensions of the player experience. The more diverse user
responses to a metric, the more flexible and multilayered the interpretation of that experience metric.

The entropy value is calculated using the following formula:

𝐻(𝑋) = −∑
𝑛

𝑖=1
𝑝(𝑥𝑖) ⋅ 𝑙𝑜𝑔2𝑝(𝑥𝑖)

Here𝑝(𝑥𝑖)denotes the probability of each response category (Likert options 1-5) being observed. The
higher the entropy value, the more diverse the respondent responses are; the lower the entropy value, the
more homogeneous are their responses.

These calculations were performed using collections. Counter and math.log2 functions in Python (Harris
et al., 2020). Thus, user experience was evaluated not only in terms of score averages but also in terms of
differences, level of unpredictability, and variety of cognitive awareness.

Evaluation of Outlier Duration Values

When the interaction data of the Game 1 (Cohere AI) game prototype were analyzed, it was found that
there were some unusual (outlier) values, especially in session durations. For example, some sessions
exceeded 135,000 seconds (approximately 37 hours), which is not a realistic interaction duration in the
context of the experimental task. Upon further investigation, it became clear that such data were due to the
game being left open (idle state) without the users actively participating.

This is a common problem, particularly in web-based experimental studies. The participant can walk
away from the computer, tab to the background, or do something else without closing the game screen.
The game interface does not close during such passive situations; thus, the system continues to record the
session duration without interruption. In this context, in this study conducted on the Gradio interface, long-
opening the browser tab was recorded as game time; however, these values do not reflect the actual user
interaction.

To avoid this problem and ensure the validity of the data, interaction time alone was not used as an
evaluation criterion; instead, we focused on more reliable indicators, such as the number of questions,
production entropy, and user experience surveys. Furthermore, only active and consistent interaction
patterns were included in the statistical analysis, ignoring such outliers. This approach ensured that the
results accurately represented the interaction between the user and the AI.

Results
In the process of evaluating the game prototypes developed with two different large language models,

both in-game interaction data and survey results based on user tests were analyzed in multiple layers.
The playability performance of both games was measured using CSV-formatted game data obtained during
plates sessions conducted with real users; AI-generated questions, player responses, and processing times
were recorded in detail. These in-game data were systematically analyzed in terms of the AI model's
guidance, production consistency, and prediction strategy. Furthermore, cognitive, semantic, and flow
feedback on the game experience was collected through structured questionnaires that the participants
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answered after each game session. By evaluating the quantitative and qualitative data sources together, the
findings presented below were reached, and the performance characteristics of both models were presented
comparatively in the context of game interaction.

Game 1 (Cohere AI)

The interaction data of 10 individuals participating in the color guessing game were analyzed at three
different difficulty levels (easy, medium, hard) based on the total game time and the number of questions
generated. This analysis provides important findings on the productivity, semantic guidance capacity, and
response generation tempo of AI-supported interactions.

Table 1
Detailed Interaction Time and Question Count Across Difficulty Levels in Game 1 (Cohere AI)

EASY MEDIUM HARD TOTALParticipant
ID SEC Q COUNT SEC Q COUNT SEC Q COUNT SEC Q COUNT

1 1636.79 30 13802.49 158 420.72 22 15860.00 210

2 297.81 39 135772.98 112 1237.32 63 139982.11 214

3 628.17 21 32390.66 189 12321.56 79 45340.39 289

4 1177.12 20 19103.48 161 1243.99 34 21524.59 215

5 2590.70 39 10868.40 124 4336.61 61 17795.71 224

6 157.43 12 106001.85 220 2564.08 43 108723.36 275

7 4623.27 39 159620.68 310 2826.37 50 167070.32 399

8 1329.26 24 39339.04 212 4672.47 46 45340.77 282

9 1867.80 30 214292.23 199 21295.94 91 237455.97 320

10 815.26 21 147767.02 316 3675.33 28 152257.61 365

When the overall distribution is analyzed, it can be seen that the sessions at the medium difficulty level
lasted significantly longer (M = 1793 minutes, SD = 990). In contrast, the average duration at the easy level
was 38.7 minutes. The difficult level was positioned between the two levels with an average of 106.9 minutes.
These differences suggest that interactions with large language models are strongly influenced by technical
parameters and contextual stability (Table 1).

Table 2
Summary of Average Duration and Question Count by Difficulty Level (in Minutes)

Difficulty Level
Average Duration
(min)

Standard Deviation
(min)

Average Question
Count

Standard Deviation
(count)

Easy 38.69 24.18 29.6 9.2

Medium 1793.28 990.34 202.0 67.0

Hard 106.95 97.17 51.7 22.1

There was a similar disproportion in terms of the number of questions. An average of 29.6 questions
were produced in the easy mode; this number reached 202 in the medium mode. This dramatic difference
suggests that the system has entered a kind of "contextual stuck" state. At the intermediate level, the model
continued to generate questions without making any meaningful predictions, which caused the guiding
interactions to be replaced by aimless production. The basis of this situation is that the model cannot end
the game at any point and cannot make a prediction, such as "Is this color red?" to the user. The fact that

Acta Infologica, 9 (1), 183–207   192



Designing a Large Language Model-Based AI System for Dynamic Difficulty Adjustment in Digital Games   Aşkın, 2025

the standard deviation at this level reached 990 minutes supports the observation that in some sessions,
the model exhibited serious inconsistencies in both semantic and temporal terms. As a matter of fact, in
some examples, the model’s generating questions contrary to the rules of the game such as "Is this color
integrated with nature?" or "Does this color change according to the seasons?" caused the players to become
indecisive and prolonged the interaction time (Table 2).

Furthermore, hallucinatory (unreal, contextually irrelevant, or physically contradictory) content gener-
ation was observed in all participants throughout the interaction process. Although grammatically coherent,
the content did not provide meaningful guidance in terms of the game context; on the contrary, it interrupted
the flow of the game experience by increasing the users' cognitive load. Similarly, physically contradictory
questions such as "Is this color both warm and blue?" revealed that the model could not perform conceptual
fact-checking and only generated content based on statistical patterns. The prevalence of such production
indicates an overproduction and a serious lack of semantic control in the quality of production.

In hard mode, the number of questions was relatively limited (M = 51.7 questions, SD = 22.1), and the
generation time was shorter and more consistent (M = 106.9 minutes, SD = 97.2 minutes) (Table 2). This may
indicate that the AI is trying to execute production more carefully when faced with more complex prompts.
However, this positive trend does not eliminate the system’s tendency to fall again. For example, asking
three questions with the same meaning in succession, such as "Is this color warm?" "Is it one of the warm
tones?" and "Is it close to red?" clearly demonstrate the model's inability to use short-term context memory
effectively.

In order to stabilize the production process of the model, a short-term micro-context memory was
created, and the previous three questions were included in the prompt. However, this strategy was not
statistically effective because of the context window limitation. It was systematically recorded that similar
questions were repeated many times within the same session, meaningless jumps were made, and questions
irrelevant to the task were produced. This, coupled with the non-deterministic production behavior of
the model, led to a pattern in which uncontrolled variance was transformed into semantic distortion. In
particular, the generation of different and often non-directional responses to the same prompt, despite the
temperature parameter being fixed at 0.5, demonstrates the inherent inconsistency of the production. The
hallucinatory productions not only prevented the natural ending of the game but also caused the players
were unable to understand what the AI was aiming for.

These findings demonstrate that the production behaviors of LLM-based AI systems operate solely
based on linguistic patterns and have significant limitations in contextual task adaptation. When the model
operates without a specific contextual goal, it tends to engage in uncontrolled production, which directly
impacts user experience. In such cases, even if the amount of production is high, the content remains weak
in terms of guidance and semantic accuracy, and the semantic coherence of the system is sacrificed in favor
of productivity. Production "abundance" was often inversely proportional to production "quality".

Large language models appear vulnerable to exhibit directionless and uncontrolled behavior in free
production structures and game-like interaction environments. This behavior threatens not only the user
experience and the logical flow of the game. Therefore, in the in-game use of LLM systems, the outputs and
production process must be controlled and redesigned in a multi-layered manner. Otherwise, the players'
experience will be semantically unsatisfactory, technically inefficient, and repetitive.
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Game 1 Survey Evaluation

This study collected user experience data through a 5-point Likert-type questionnaire administered to
participants who interacted with an AI-powered color guessing game (n = 10) (Table 3).

Table 3
User Experience Survey Results for Game 1 (Cohere AI)

Question
Number of
Participants
(n)

Mean
(M)

Standard
Deviation
(SD)

Minimum
(Min)

1st
Quartile
(Q1)

Median
(Md)

3rd
Quartile
(Q3)

Maximum
(Max)

I immediately
understood the
questions asked by the
AI.

10 2.1 1.449 1.0 1.00 1.5 2.75 5.0

Similar questions were
repeated repeatedly.

10 4.4 1.264 1.0 4.25 5.0 5.00 5.0

The AI tried guessing the
color.

10 1.5 0.527 1.0 1.00 1.5 2.00 2.0

I lost track of time while
playing the game.

10 1.4 0.699 1.0 1.00 1.0 1.75 3.0

The game was very
engaging.

10 1.4 0.699 1.0 1.00 1.0 1.75 3.0

Participants’ responses were interpreted in terms of the system’s comprehensibility, content diversity,
predictive capacity, and experiential immersion, and the statistical data obtained were supported by quali-
tative content and subjected to analysis.

"The mean M = 2.10, standard deviation SD = 1.45, median Md = 1.5, minimum = 1, maximum = 5, first
quartile (Q1) = 1.00 and third quartile (Q3) = 2.75. This result indicates that a large proportion of the
participants had difficulty understanding the AI questions. However, the high standard deviation reveals
that there is significant variation in this perception among the participants. In this context, the fact that
some participants had difficulty understanding the questions directly can be attributed not only to the
semantic inadequacy of the AI but also to the naturalness of the form of questioning offered by the system,
i.e., its capacity to engage in human-like interaction. Rather than a technical failure, such a "problem of
comprehension" may be due to the artificial system producing a sufficiently humanoid form of language
that renders its artificiality invisible. This reflects the success of large language models (LLMs) in interactive
systems (Table 3).

The findings regarding the statement "Similar questions came over and over again." are M = 4.40, SD =
1.26, Md = 5.0, Min = 1, Max = 5, Q1 = 4.25, and Q3 = 5.00. The fact that 75% of the participants responded
positively to this item creates the impression that the questions posed by the system are not sufficiently
diversified in terms of content and fall into repetition at the perceptual level. The fact that 75% of the
participants chose the two most positive options (4 and 5) indicates that the questions posed by the
artificial intelligence have paternal similarities, and users can easily recognize this situation. This finding
indicates that the system must improve semantic depth and variation generation. However, it should be
noted that repetitive questions should not always be considered negative, as this may also be due to the fact
that the system intentionally posed similar questions in a controlled manner while generating predictive
hypotheses (Table 3).
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The mean of the participants' responses to the statement "Artificial intelligence tried to guess the color"
was found to be relatively low (M = 1.50, SD = 0.53, Md = 1.5, Min = 1, Max = 2, Q1 = 1.00, Q3 = 2.00). This value
indicates that most participants either did not notice the AI's prediction behavior or the system failed to
present this function clearly and distinctly enough. Thus, there is a serious lack of transparency in terms
of how the prediction process is reflected to the user. The player's ability to intuit how the system works,
from which information it makes predictions, and when it switches to generating a response is critical to
the credibility of the artificial agent with which they interact. Therefore, the prediction process should not
only be algorithmic but also be supported by clear and visible experiential feedback to the user.

Responses to the statements "I did not realize how time passed while playing the game." and "The game
was very immersive." were evaluated with equal scores as M = 1.40, SD = 0.70, Md = 1.0, Min = 1, Max = 3,
Q1 = 1.00, and Q3 = 1.75, respectively. These low averages indicate that users could not enter a flow state
while experiencing the game and were not sufficiently involved in the game in terms of attention and time
perception (Kaye, 2016). When evaluated within the framework of flow theory, the lack of cognitive intensity
revealed that the system was limited in immersing the user and creating a sense of continuity. In particular,
the low immersion and time perception parameters indicate that the game’s interactional dynamics or
esthetic experience is not at a level that satisfies the player.

It is also noteworthy that some participants subjectively perceived the experience as low, even though
they had played the game for a long time in terms of session data. This is also important in terms of the
disconnect between subjective user experience and objective playing time. Although the participants spent
time, this time did not turn into a meaningful experience, suggesting that the in-game tasks or the responses
received from the artificial intelligence did not have emotional or cognitive impact.

In conclusion, these statistical findings reveal that users perceive the game system as semantically repet-
itive, cognitively weak, and ambiguous. The main areas for improvement include increasing the semantic
diversity of the AI-generated content, clearly visualizing and intuitively communicating the prediction
process to the user, and designing experiential feedback mechanisms to make the interaction sustainable
and satisfying. Such improvements will increase not only the system’s technical capacity but also the value
it offers in terms of user experience.

Game 2 (FLAN-T5)

The user interaction times and productivity levels were analyzed separately for each difficulty level (easy,
medium, hard) of the AI-assisted color guessing game in Game 2. In this game version, a pretrained large
language model (LLM) was used for fine-tuning to provide users with a more controlled, meaningful, and
relevant question-answer flow. In this context, the dataset includes the total time (in seconds) and the
number of questions for 10 participants at easy, medium, and hard levels. The total number of question
interactions with the 10 participants ranged from 170 to 240 (Table 4).

According to the statistical analysis results, the average time spent at the easy level was only 1.0 minutes
(SD = 0.5), and 10.1 questions (SD = 1.7) were asked at this level. The low duration and limited number
of questions at this level indicate that the model attempts to reach the goal in a shorter time with less
information. At the same time, because the structure of the questions at this level was more direct and goal-
oriented, the repetition rate was low, and users generally found the questions understandable (Table 5).
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Table 4
Detailed Interaction Time and Question Count Across Difficulty Levels in Game 2 (FLAN-T5)

EASY MEDIUM HARD TOTALParticipant
ID SEC Q COUNT SEC Q COUNT SEC Q COUNT SEC Q COUNT

1 139.67 13 3634.08 116 489.24 41 4262.99 170

2 56.64 9 11251.97 152 477.20 47 11785.81 208

3 51.17 10 4052.21 22 338.27 35 4441.65 178

4 54.11 9 3954.56 168 290.98 41 4299.65 218

5 48.41 9 3026.96 136 277.91 31 3353.28 176

6 72.15 13 3387.60 150 202.96 28 3662.71 191

7 52.87 10 2836.00 133 314.31 32 3203.18 175

8 44.98 8 1407.68 89 271.18 31 1723.84 128

9 49.20 10 3786.60 187 224.25 30 4060.05 227

10 52.14 10 4111.97 176 454.31 54 4618.42 240

A significant jump was observed in the frequency of medium interactions. The average duration was 69.1
minutes (SD = 43.7), and the average number of questions posed was 132.9 (SD = 48.5). This high variance
suggests that the model achieved a certain stable text flow through fine-tuning; however, its productivity
remained flexible according to the players' responses. Participants reported that they encountered mean-
ingful and contextually coherent questions at the medium difficulty level and that the AI’s prediction process
became more visible at this level, where the sense of repetition was low. This indicates that the model
successfully generated differentiated questions while maintaining the semantic context (Table 4).

The hard level was completed in an average of 5.6 minutes (SD = 1.7) with an average of 37.0 questions
(SD = 8.5). At this level, according to the data reported by the participants, the model maintained focused
prediction behavior, but repetition was observed. These results indicate that the model may experience
semantic contraction in scenarios requiring more specificity at the difficult level; however, it is nevertheless
able to maintain its productivity (Table 5).

When the overall distribution is analyzed, the interaction times and the number of questions at the
intermediate level are observed to be significantly higher than at the other levels. This shows that the fine-
tuned LLM model provides a relevant, meaningful, and fluid game experience, especially at the medium
difficulty level. At this level, where players experienced a change in their time perception, a flow experience
was provided throughout the game. When evaluated within Mihaly Csikszentmihalyi's Flow Theory, the skill-
difficulty balance was established at an optimum level. Participants became more involved in the game
through clear goals and constant feedback and reported losing their perception of time.

In this context, the LLM-assisted version of Game 2 demonstrated both AI-controlled content generation
and high player engagement. In particular, intermediate-level data demonstrate that a system structured to
optimize productivity and interaction time functions successfully.
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Table 5
Summary of Average Duration and Question Count by Difficulty Level (in Minutes)

Difficulty Level Average Duration (min) Std. Deviation (min) Average Question Count Std. Deviation (count)

Easy 1.0 0.5 10.1 1.7

Medium 69.1 43.7 132.9 48.5

Hard 5.6 1.7 37.0 8.5

Model Performance and Training Findings

The training outputs obtained because of the model’s fine-tuning process demonstrate that the system
has successfully acquired goal-oriented production competence. The training loss and validation loss values
monitored during each training epoch demonstrate that the model improved steadily in terms of semantic
generalization and task fidelity.

As shown in Table 1, the training loss value, which was 3.50 at the beginning, decreased significantly
within only a few epochs, reaching 0.0317 at the end of the 10th epoch. Similarly, the validation loss, which
was 2.17 in the first phase, decreased to 0.0197 at the end of the training, indicating that the model moved
away from a rote structure and reached the ability to produce generalizable knowledge (Table 6).

In this process, the fact that the model does not show any signs of overfitting and that the training and
validation losses are close to each other indicates that the system has gained production power for training
data and wider probability sets. In addition, system information about the training process (sampling rate,
FLOPs value, etc.) is summarized in Table 2, and these values demonstrate the technical efficiency of the
process.

Table 6
Epoch-Based Training and Validation Loss of the Fine-Tuned FLAN-T5 Model

Epoch Training Loss Validation Loss

1 3.5011 2.1697

2 0.6172 0.2374

3 0.1344 0.0559

4 0.0639 0.0236

5 0.0417 0.0210

6 0.0329 0.0213

7 0.0338 0.0204

8 0.0275 0.0196

9 0.0316 0.0198

10 0.0317 0.0197

These results suggest that the contextual orientation goals described in the previous section were
directly reflected in the educational outcomes of the model. The model has achieved the capacity to provide
grammatically correct structures and semantically diverse and contextually coherent productions. This
defines the main technical achievement behind the more meaningful, less repetitive, and more strategic
question productions observed in the game flow (Table 7).

Acta Infologica, 9 (1), 183–207   197



Designing a Large Language Model-Based AI System for Dynamic Difficulty Adjustment in Digital Games   Aşkın, 2025

Table 7
Technical Summary of the FLAN-T5 Model Fine-Tuning Process

Metric Value

Total Training Time 10,485.35 seconds

Training Sample Rate 0.858 samples/second

Training Step Rate 0.215 steps/second

Total FLOPs (Floating Point Ops) 1.54 × 10¹⁶

Total Training Steps 2250

Game 2 Survey Evaluation

Following the game interactions, user experience data were collected through a structured questionnaire
with a 5-point Likert-type scale (n = 10).

Table 8
User Experience Survey Results for Game 2 (FLAN T-5)

Question
Number of
Participants
(n)

Mean
(M)

Standard
Deviation
(SD)

Minimum
(Min)

1st
Quartile
(Q1)

Median
(Md)

3rd
Quartile
(Q3)

Maximum
(Max)

I immediately
understood the
questions asked by the
AI.

10 2.7 1.1 1 2 2.5 3.8 4

Similar questions were
repeated repeatedly.

10 3.8 0.8 2 4 4 4 5

The AI tried guessing the
color.

10 3.4 0.8 2 3 3 4 5

I lost track of time while
playing the game.

10 3.5 0.7 2 3 4 4 4

The game was very
engaging.

10 3.5 0.7 2 3 4 4 4

The obtained data reveal the impact of artificial intelligence (AI) on user experience using quantitative
indicators and make the system’s strengths and areas open to improvement visible in a concrete way. "I
understood the questions asked by artificial intelligence (AI) immediately." Mean M = 2.7, standard deviation
SD = 1.1, median Md = 2.5, minimum = 1, maximum = 4, and n = 10. Although this value indicates that, in
general, the participants had partial difficulty in understanding the questions generated by the AI, this can
be interpreted as the result of an experience in which the artificiality was not felt and a language setup
that was quite close to human, rather than the failure of the system. In other words, the fact that some
participants could not fully understand the questions could also be attributed to the AI's questioning style
being quite realistic. Therefore, they felt that they were interacting with a real human being, not the artificial
system. This result indirectly indicates that the semantic production capacity of the system based on the
big language model (LLM) is strong (Table 8).

"Similar questions came repeatedly." The mean values for this statement were M = 3.8, SD = 0.8, Md = 4,
minimum = 2, and maximum = 5. The participants' high level of agreement with this item suggests that the
AI system cannot provide sufficient diversity in question production and follows an inquiry strategy based
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on certain patterns. While this finding reveals that the system can be further improved regarding contextual
richness, it also demonstrates that the model establishes a consistent and systematic question structure.
In this context, repetitive questions can be considered not a weakness of the system but a natural outcome
of the hypothesis-based prediction process (Table 8).

"Artificial Intelligence (AI) tried guessing the color." The calculated mean for this statement is M = 3.4, SD
= 0.8, Md = 3, minimum = 2, and maximum = 5. These data reveal that participants gave a mostly positive
evaluation; however, some individuals did not find the system’s prediction process sufficiently visible or
understandable. In this case, it is important for AI to ask questions and to be able to reflect the prediction
process and logic more clearly. In the context of cognitive guidance and process tracking experienced by
participants during the game, the transparency of the prediction systems was a factor that directly affected
the user experience (Table 8).

"I lost track of time while playing the game," and "The game was very immersive." The means of the
responses to the items were measured as M = 3.5, SD = 0.7, and Md = 4 for both items, respectively. The
minimum value = 2, and the maximum value = 4. These findings suggest that users developed high levels of
attention and interest while experiencing the game and experienced a partial shift in their time perception.

These results are significant when evaluated in the context of flow theory. The AI interaction offered by
the game supports cognitive continuity by generating a constant curiosity and desire to produce answers by
the user. This situation restricts the player's perception of time. The positive evaluation of the immersion
level of the game shows that the system offers a satisfying structure not only technically but also on an
esthetic and experiential level.

The survey results demonstrate that the LLM-based AI system has gained a meaningful and substantial
place in game experience. The participants’ answers to the questions demonstrate that the system is
successful in terms of naturalness in language production, continuity in interaction, and overall integrity
of the game. However, the system could be improved to offer more variety in question generation and to
express the prediction process more clearly, which would further enhance the user experience. This study
provides a pioneering example of how LLMs can play an active role in text generation, in-game interaction,
guidance, and meaning-making processes.

Entropy and User Experience Analyses

In this study, entropy is used to evaluate the production behavior of large language models (LLMs)
regarding diversity and decision-making consistency; in particular, Shannon Entropy is considered a basic
measure of information theory. Developed by Claude Shannon, it allows for calculating the average amount
of information carried by a message or system output and the level of uncertainty in this output (Shannon,
1948). The higher the entropy value, the more diverse and unpredictable the distribution; the lower the
entropy value, the more homogeneous and repetitive the user responses to the system outputs. In this
context, Shannon Entropy was used in the dynamic challenge management (DDA) process to evaluate the
semantic diversity and contextual richness of the content provided by artificial intelligence systems and
their impact on the player experience.
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Table 9
Comparison of Shannon Entropy Values for User Experience Criteria in Two AI-Supported Game Prototypes

Metric Game 1: Cohere Game 2: FLAN-T5

Question Clarity 1.846 1.846

Perceived Repetition 1.295 1.357

Prediction Clarity 0.971 1.685

Flow Experience 1.157 1.361

Engagement 1.157 1.361

The analysis findings based on Shannon entropy revealed that the two different AI-powered game proto-
types (Game 1 - Cohere, Game 2 - FLAN-T5) exhibited significant differences in user experience diversity. For
the "Question Clarity" criterion, equal entropy values (1.846) were obtained for both games. This indicates
that although the FLAN-T5 model had a higher average score, the distributional diversity was similar in both
models. On the "Perceived Repetition" criterion, the FLAN-T5 model demonstrated higher entropy (1.357
vs. 1.295), indicating that some users perceived the model as repetitive and diverse by others. The most
striking difference was observed in the "Prediction Clarity" metric, where the FLAN-T5 model produced a
more flexible and multi-layered experience than the Cohere model (0.971), with an entropy value as high as
1.685. Similarly, FLAN-T5 showed higher entropy values in the "Flow Experience" and "Engagement" criteria
(1.361 vs. 1.157). This suggests that the system offers experiences of different intensities to a broader user
profile, i.e., it creates a personalized level of engagement. These findings show that Shannon Entropy is
not only a statistical measure of dispersion but also a powerful analysis tool that quantitatively measures
diversity in player perception and differences in experiential impact (Table 9).

Comparative Evaluation of User Experience Metrics between Game 1 (Cohere AI) and Game
2 (FLAN-T5)

The user experience comparison between Game 1 (Cohere AI) and Game 2 (FLAN-T5) reveals how the two
systems differ in terms of player perception, interaction quality, and emotional connection. The proposed
FLAN-T5 model exhibits significant superiority in terms of all five user experience metrics. In particular,
the +2.1 point difference recorded in experiential measures such as time perception (flow experience) and
immersion shows that this model offers a more balanced and satisfying structure, technically and experi-
entially (Table 10).

The questions presented by FLAN-T5 were clearer (+0.6) and less repetitive (-0.6), thus reducing the
players’ cognitive load and increasing the sense of novelty in the interaction. One notable difference was
that users perceived the AI's prediction behavior more clearly (+1.9). This reflects the model’s success in not
only asking questions but also making the prediction strategy intuitive to the player (Table 10).

In particular, the high scores obtained in the flow experience and immersion scores indicate that the
FLAN-T5 model can effectively provide dynamic difficulty management (DDA) and allow the player to have
experience in accordance with the skill-difficulty balance. These findings confirm the potential of controlled,
diversified language output to improve production quality, interactional continuity, and player satisfaction.

This analysis supports the table and demonstrates that the relationship between output entropy and
user experience is multi-layered. There is a direct link between technical variety and meaningful, guided,
and satisfying gaming experiences.
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Table 10
Comparative Evaluation of User Experience Criteria Between Game 1 (Cohere AI) and Game 2 (FLAN-T5)

User Experience Metric
Game 1-Cohere AI
(n=10)

Game 2 - FLAN-T5
(n=10)

Difference (Δ) Interpretation

1. Question Clarity 2.1 2.7 +0.6 FLAN-T5 is more understandable

2. Perceived Repetition 4.4 3.8 −0.6
FLAN-T5 exhibited less
redundancy

3. Predictive Behavior
Clarity

1.5 3.4 +1.9
FLAN-T5 is significantly more
transparent than

4. Flow Experience
(Time Perception)

1.4 3.5 +2.1
FLAN-T5 facilitates more
substantial flow experience

5. Engagement 1.4 3.5 +2.1 FLAN-T5 is more engaging

Analysis of t-Test Results for Independent Samples

The results of the independent samples t-test demonstrate significant differences between the two AI-
powered game prototypes (Game 1-Cohere AI and Game 2 - FLAN-T5) in terms of user experience metrics.
In comparing five main user experience metrics, statistically significant differences were observed for four
metrics, while only one metric showed results on the borderline of significance.

In the first criterion, "The comprehensibility of the questions posed by the AI", the mean scores of the
user group belonging to the FLAN-T5 prototype were higher (M = 2.7), and this difference was significant at
the t(18) = 2.17, p = .043 level. This result suggests that the fine-tuned model produced clearer and more
comprehensible questions, thus supporting user cognition more effectively (Table 11).

The t-value for the criterion "perception of repetition of similar questions" is 5.19 and p < .001. This
difference indicates that FLAN-T5 can produce less repetitive, diversified semantic outputs. The contextual
production strategy of the model prevents users from experiencing cognitive fatigue due to repetitive
patterns.

Table 11
Independent Samples t-Test Results Comparing User Experience Metrics Between Game 1 and Game 2

User Experience Metric t-value p-value

I immediately understood the AI questions 2.17 .043

Similar questions were repeated 5.19 < .001

The AI attempts guessing the color −4.57 .0002

I lost track of time while playing the game. −5.33 < .001

The game was very engaging −5.33 < .001

The highest effect size was observed for "Visibility of the AI's prediction behavior" (t (18) = −4.57, p
= .0002). FLAN-T5 users observed the system's predictive behavior more clearly, suggesting that production
transparency positively affects the user experience. This finding emphasizes that not only performance but
also the understandability of the process is a critical parameter in DDA (Dynamic Difficulty Adjustment)
systems (Table 11).

Similarly, strong differences were observed for experiential measures such as "change in time perception"
and "immersion" (t(18) = −5.33, p < .001 for both). This suggests that the FLAN-T5 model created an intense
experience that enabled participants to maintain attentional focus and change their perception of time
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during the game. When considered in the context of Flow Theory, these findings confirm that FLAN-T5
supports the experience of "flow" by providing a skill-challenge balance (Kaye, 2016).

In summary, these statistical findings reveal that the retrained FLAN-T5 model outperforms not only
in terms of production quality but also in terms of cognitive and emotional parameters that shape user
experience. It is concluded that accuracy and multi-layered criteria, such as transparency, diversity, mean-
ingfulness, and experiential satisfaction, should be optimized simultaneously in the design of LDA systems.

Discussion
The comparative analysis of two different artificial intelligence-based game prototypes developed in this

research evaluates the contributions of systems based on large language models (LLM) in the context of
dynamic challenge management (DDA) on the axis of each hypothesis. The obtained data are discussed
below in line with the results of user experience surveys, entropy measurements, and independent sample
t-tests.

H1a: LLM-based prediction strategies enable AI systems to dynamically adjust in-game
difficulty levels in real-time.

This hypothesis is supported by the semantic guidance, time-balanced interaction, and high flow
scores of the FLAN-T5 model, especially at the medium difficulty level. The fact that participants reported
experiencing a shift in time perception (M = 3.5) and that the system could make meaningful transitions
in question generation indicates that dynamically structured difficulty adjustment was successful. In this
context, hypothesis H1a was confirmed.

H1b: LLM-supported AI systems can make strategic decisions at different difficulty levels.

The data for Game 2 showed that the model could change strategy at easy, medium, and hard difficulty
levels thanks to the consistency in production and clarity in prediction behavior. In particular, the high
productivity and low repetition rate observed at the medium difficulty level indicate that the system can
strategize based on the participants’ responses. Specific and goal-oriented production at difficult levels
also indicates strategic flexibility. Therefore, hypothesis H1 b was also supported.

H1c: LLM-based AI predictions have lower response times and higher decision-making
flexibility than traditional machine learning algorithms.

When the prediction process of both systems was analyzedT5 tended to reach the target with fewer
questions and was perceived more visibly as a "guessing agent" by the participants. In particular, while the
average score of the responses to the statement "AI tried to guess the color" was M = 1.5 in the Cohere model,
it was M = 3.4 in the FLAN-T5 model. This demonstrates that FLAN-T5 both produces semantically clearer
questions and makes more flexible decisions in the prediction process. These findings supp

H1d: The output entropy of LLMs increases the accuracy and adaptability of AI-based
prediction strategies.

The analysis results based on Shannon entropy demonstrate that the FLAN-T5 model has higher entropy
values in almost every criterion, and this diversity positively affects the game experience. Especially in the
"Prediction Clarity" criterion, the entropy value was calculated as 1.685 for FLAN-T5, whereas it was only 0.971
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for the Cohere model. This difference reveals that entropy is a determinant not only of technical diversity
but also experiential diversity. Accordingly, hypothesis H1d is confirmed.

H1e: LLM-based LDA systems provide higher consistency in game flow and player engage-
ment than traditional methods.

This hypothesis was supported by the high mean scores (M = 3.5 for both) and statistical significance
(t(18) = −5.33, p < .001) of the user group of the FLAN-T5 model on the measures of "flow" (perception
of time) and "engagement" (immersion). Flow experience was measured using indicators such as keeping
users' attention in the game and not realizing that time had passed. At the same time, engagement was
assessed through interaction continuity and attention intensity. These findings suggest that the FLAN-T5
model offers experiential consistency through its semantic production success and its more stable and
flowing interaction structure with the user. Thus, hypothesis H1e is empirically confirmed.

H0: LLM-based AI systems do not provide significant improvement in dynamic challenge
management.

Hypothesis H0 is rejected considering all findings. The survey data, t-test results, and entropy analysis
revealed that LLM-supported systems provide a more guided, varied, and user-centered experience.

The empirical analysis revealed that artificial intelligence systems based on large language models
(LLMs) can be effectively evaluated for dynamic difficulty adjustment (DDA) strategies in digital games. The
comparison of two different models, Cohere Command and FLAN-T5, provided an opportunity to compre-
hensively examine not only technical production differences but also key parameters that determine the
player experience, such as semantic cohesion, interaction quality, and flow continuity.

The primary user experience differences between the two prototypes are summarized in the table below.
The comparative data in the table present directly observable results in line with the findings detailed in
the discussion section (Table 1).

Table 12
Comparison of user experiences

Game 1 (Cohere AI) (n=10) Game 2 (FLAN-T5) (n=10)

Questions were less clear; participants had difficulty
understanding them.

The questions were clearer and easier to understand.

High sense of repetition; questions were very similar. Less repetition; questions were more varied.

The prediction behavior was unclear; most participants did not
notice it.

The prediction process was more visible; most participants
noticed it.

The game was not fluent; participants did not lose track of
time.

A flow experience occurred; participants lost track of time.

The game was less engaging; interaction felt limited.
The game was more engaging; it provided an attention-
grabbing experience.

The Cohere Command model is based on zero-shot prompting; thus, its production behavior is limited.
Entropy analyses show that this model offers low diversity, especially in terms of the visibility of prediction
behavior (Prediction Clarity Entropy: 0.971) and high question repetition (Perceived Repetition Entropy:
1.295). In addition, the Flow experience performed poorly (Flow Entropy: 1.157), indicating that the model’s
interaction with the players was limited and far from satisfying. In some sessions, it was observed that
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content that was disconnected from meaning, lacked contextual integrity, and was hallucinatory was gener-
ated; this negatively affected the players’ decision-making processes and increased their cognitive load. The
survey findings also support these results: Participants reported low clarity (M = 2.1), high repetition (M = 4.4),
and poor flow (M = 1.4). It appears that a high production volume does not guarantee content quality but
rather negatively affects the quality of interaction. In addition, users reported that they were often unable to
notice the AI's predictive behavior, indicating a lack of transparency in the interaction process (see Table 1,
row 3).

On the other hand, the FLAN-T5 model, customized by fine-tuning, produced more balanced, contextu-
alized, and guided questions. In particular, the entropy value obtained at the medium difficulty level (0.489)
indicates that the model produced meaningful, diverse, and semantically coherent questions. Participants
perceived the prediction process as more open (M = 3.4), experienced a shift in time perception (M = 3.5),
and found the game immersive (M = 3.5), suggesting that this model offered a stronger structure in terms of
experience. These data suggest that users rated FLAN-T5 as a more understandable, fluid, and interactive
system (see Table 1, rows 1 and 4).

Particularly noteworthy is that meaningful but not directly predictive questions in the FLAN-T5 game
prototype (e.g., "Does this color occur frequently in nature?") maintained player focus and prevented
hallucinatory content. By smoothing the transition between difficulty levels, such questions balanced the
player’s cognitive load and ensured a more controlled DDA process. This structure can be described as a
"difficulty buffer" in the literature.

Moreover, the more explicit and intuitive realization of the prediction behavior in the FLAN-T5 model
positively affected the game functioning and the strategic relationship that the player established with the
system. This suggests that DBDA systems should be designed not only at the algorithmic level but also in a
way compatible with player perception. On the other hand, in the Cohere Command model, the uncertainty
of the prediction process, the inability to feel the difficulty transitions, and the low flow experience reveal
that the system’s lack of transparency weakens the game experience.

As a result, LLM strategies make sense not only in terms of the amount of content production but also
in terms of semantic quality, contextual coherence, and player intuitiveness of the production process. In
this context, the following conditions must be satisfied for LLM-based systems to provide a successful LDA
experience:

1. Generate meaningful content with a balanced level of entropy.

2. Strategic management of contextual transitions

3. Balancing production processes with meaningful intermediate content

4. The prediction process is presented to the player clearly and intuitively.

Although the FLAN-T5 model met these conditions to a large extent and provided a more experientially
successful structure, the Cohere Command model failed to provide interaction integrity despite its produc-
tion volume. The research provides a powerful model of how LLM-based AI systems can be optimized in DDA
processes with technical accuracy, semantic routing, flow continuity, and controlled entropy management
centered on player experience (Table 12).

These findings are consistent with the theoretical framework of the study. Participants’ feedback, such as
shifts in time perception, concentration of attention, and feelings of productivity, fulfills the ideal experience
conditions described in Csikszentmihalyi’s (1990) Flow Theory (Cowley et al., 2008). In particular, the fact that
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the FLAN-T5 model posed meaningful and goal-oriented questions to the player supported the continuity of
the flow state by balancing difficulty levels with skill levels. However, when evaluated within the framework
of Sweller’s (1988) Cognitive Load Theory, repetitive, semantically incomplete, or hallucinatory productions
reduced the quality of experience and caused distraction in the Cohere model. Moreover, when evaluated
within Ryan and Deci’s (2000) Self-Determination Theory, the FLAN-T5 model reinforced intrinsic motivation
by offering players more autonomy, competence, and interaction. Overall, large language models can be
repositioned not only as producers of technical output but also as dynamic actors providing semantic
guidance, experience management, and flow continuity. However, besides these strengths, some practical
limitations in integrating LLMs into game systems should also be considered. In particular, most LLMs work
with credit-based systems through API access, and each user interaction incurs a certain cost. This makes
economic sustainability difficult in highly interactive game scenarios and can be limiting, especially for
independent developers and research-oriented projects. Furthermore, the dependency of LLM systems on
technical components such as server response time, connection stability, and data security can lead to
problems such as delays or response inconsistencies in real-time gameplay. For these reasons, the large-
scale integration of LLM-based systems into games requires optimization of not only model performance
but also economic accessibility and technical compatibility.

Conclusions and Recommendations
By comparing the game-based production performance of the zero-shot prompting Cohere Command

model and the semantically fine-tuned FLAN-T5 model, this research demonstrates that large language
models (LLMs) should be evaluated not only in terms of output accuracy but also in terms of contextual
directiveness, semantic variety, and experiential impact. The findings demonstrate that the FLAN-T5 model,
in particular, makes the interaction more sustainable, flowing, and satisfying by generating more meaningful
and goal-oriented questions, reducing repetition, and making the prediction process more explicit and
intuitive to the player. Accordingly, it is suggested that artificial intelligence, especially in narrative-driven
or role-playing games (RPGs), should not be limited to text generation but should be integrated with high-
level cognitive processes such as meaning-making, contextual guidance, prediction strategy development,
and interaction continuity. Transparently perceivable prediction behavior of the AI by the player plays a
critical role in system reliability and quality of experience. When evaluated in the context of Flow theory,
production formats that provide flow, especially at medium difficulty levels, support high user engagement
by balancing the experience. In this framework, game systems should be developed with technical success
and structures that can immerse the user on cognitive and emotional levels. Future studies suggest that
scenarios should be developed enriched with sensory inputs such as voice commands, gesture recognition,
and emotional state analysis, where LLM-based artificial intelligence systems can be integrated with multi-
modal data inputs. Integrating such systems into in-game narrative structures and dialog systems will enable
more human, intuitive, and seamless interaction between AI and users. Furthermore, the design of visual
interfaces that can intuitively convey the decision logic of artificial intelligence to the player, mechanisms
that test player perception with gamified experimental scenarios, and adaptive system architectures that
manage the production process with semantic filters will deepen the research in this field at both technical
and experiential levels. In this context, this study fills an important theoretical and practical gap by opening
up the behavioral and experiential performance of different LLM architectures in game-based DDA scenarios,
which have not yet been systematically compared in the literature. The study strongly suggests that the
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role of AI in digital game design is not only as a generative tool, but also as an active and redefined design
component in the construction of meaning, guidance, and experience.
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