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Abstract: In 2022, a normality test based on the parametric seven-number summary was proposed. Its test statistic 

is the sum of squared standardized quantiles and was initially approximated by a chi-square distribution with 

seven degrees of freedom, without accounting for correlation among quantiles. Objective: To improve the test by 

incorporating these correlations. Two alternatives were proposed: (1) estimating the sampling distribution of the 

Q-statistic via bootstrap (QB), and (2) using a quadratic form with a correlation matrix of quantiles under normality

(QT). Methods: The three variants (Q, QB, QT) were compared with the Shapiro-Wilk W-test in terms of accuracy

(hit ratio) and statistical power. A total of 372 random samples were generated across 31 sample sizes from twelve

continuous distributions. Correct classifications were compared using Cochran’s Q test, and power was assessed

via repeated-measures ANOVA. Results: QB was significantly the most accurate and showed the highest average

power compared to Q and QT. Its accuracy was equivalent to that of the Shapiro–Wilk W-test, although the latter

outperformed all three Q variants in average power. Conclusions: QB is a suitable inferential extension of the seven-

number summary for testing normality.

Keywords: Testing normality, normal distribution, quadratic forms; bootstrap, generalized chi-square

distribution, inference statistics.

1. Introduction

Bowley [1] proposed the five-number summary to describe the distribution of a variable based on five

positional statistics: the minimum, the three quartiles, and the maximum. In 1910, he expanded this

summary to seven numbers by incorporating the first and last deciles, allowing for the definition of two

extreme deviation ranges. Very low values fall below the 10th percentile, while very high values exceed

the 90th percentile. The central tendency, or shoulder area, extends across the interquartile range,

spanning from the first to the third quartile. Low values lie between the 10th and 25th percentiles, while

high values fall between the 75th and 90th percentiles [2]. Thus, the seven-number summary provides

a structured description of the distribution and facilitates score interpretation using six class intervals:

[min, p10] very low scores, (p10, p25] low scores, (p25, p50] low-medium scores, (p50, p75] medium-high scores,

(p75, p90] high scores, and (p90, max] very high scores [3-4].

In recent years, Moral [5] proposed a method for testing whether a sample has been drawn from a

normal distribution using seven quantiles that are equispaced at two-thirds from the central point of a

standard normal distribution. This approach is an adaptation of the seven-number summary for

assessing normality. Since this summary is defined with respect to the normal distribution, it is referred

to as parametric. Previously, it had only been used for descriptive and indicative purposes in normality

assessment. However, Moral [5] proposed its application as an omnibus statistical test. Notably, in a

similar vein, Avdović and Jevremović [6] also suggested assessing normality by comparing empirical

and theoretical quantiles, though their approach is based on the entire set of n sample data rather than

on seven specific quantiles.
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In the proposal of the test based on the Parametric Seven-Number Summary (PSNS), a parametric 

approximation using the chi-square distribution with seven degrees of freedom was employed. This 

approximation assumes independence among the standardized quantiles under the assumption of 

normality, with their sum of squares serving as the test statistic (Q-statistic). Although this convenient 

approach simplifies the calculations and appears to perform well in practice [5], it does not hold up 

theoretically. 

The first objective of this study is to propose two variants of the test to assess the sampling distribution 

of the test statistic. In the first variant, the sampling distribution of the Q-statistic—along with the 

calculation of the p-value, type II error, and statistical power—is determined using the bootstrap 

procedure. This variant is denoted as QB, to distinguish it from the original proposal (Q). An R script 

was developed for this purpose [7]. See Appendices A (Q-statistic), B (bootstrap version of PSNS Q test), 

and C (statistical power of bootstrap version of PSNS Q test). 

Specifically, 10,000 resampled datasets of the same size as the original sample are generated by either 

(a) resampling with replacement from the observed data (nonparametric bootstrap) or (b) drawing 2,000 

random samples from a normal distribution where the location parameter is estimated by the sample 

mean and the scale parameter is estimated by the sample standard deviation with Bessel's correction 

(parametric bootstrap). The first approach produces the empirical bootstrap distribution, while the 

second generates the normative bootstrap distribution. The latter is used both to calculate the p-value 

(the proportion of values in the normative bootstrap distribution that exceeds the test statistic value in 

the original sample) and to determine the critical value (the 0.95th quantile of normative bootstrap 

distribution). This critical value is then used to compute statistical power via rejection rate in the 

empirical bootstrap distribution. 

A sample size of 2,000 was chosen for the normative bootstrap distribution, as it is considered 

sufficiently large for the estimation of p-values and critical values [8]. However, for the calculation of 

statistical power, the number of bootstrap samples was increased to 10,000. This modification allowed 

for a single simulation to be used, thus avoiding the need to define a rejection threshold (e.g., 5% or 50% 

rejection across 1,000 simulations) for classifying each simulation as a rejection when computing the 

rejection rate [9]. 

The second variant introduces a new statistic based on a quadratic form, where the symmetric matrix 

corresponds to the expected correlations between the seven quantiles under the null hypothesis of 

normality [10]. This statistic is denoted as QT, with the subscript T referring to the theoretical values 

under the null hypothesis of a standard normal distribution used in its computation. The p-value and 

statistical power of QT are obtained using the generalized chi-square distribution, implemented via the 

CompQuadForm package in R [11]. See Appendix D (quadratic form version of PSNS Q test). The 

original version of the Q Test can be found in Appendix E (chi-square approximation to PSNS Q test). 

The second objective of this study is to determine which of the proposed methods (Q, QB, and QT) 

demonstrates the best performance. To this end, the three variants of the normality test based on the 

PSNS, along with the Shapiro-Wilk W test [12], are compared in terms of accuracy (proportion of correct 

classifications or hit rate) and statistical power. The comparisons are conducted across 31 sample sizes 

(ranging from 50 to 1,500 in increments of 50, plus 2,000) and 12 distributions (one normal and 11 non-

normal). The W test is included using Royston’s standardization procedure [13], as it is regarded as the 

most powerful and accurate test for sample sizes ranging from 3 to 2,000 observations [14-15]. 

Specifically, the largest original sample size considered in this study was 2,000, which is unusually large 

for an empirical study in the social and health sciences. For larger samples sizes, the Shapiro-Francia W’ 

test [16] using Royston’s standardization procedure [17] could have been applied. 

This is a methodological study, in which the use of simulated data is considered the most appropriate. 

This type of data allows us to determine whether the null hypothesis of normality should be retained 

or rejected—something that is not possible with real scale-based data, where the distribution is assumed 

and ultimately unknown. However, since the purpose of the study is to apply the normality test to real-

world datasets, a third objective has been added: to demonstrate the practical effectiveness of the 

proposed test variants using R scripts applied to real-world data. 
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To achieve this, a personality measurement instrument was administered to a sample of 385 students 

who applied for admission to a psychology program at a public university in northeastern Mexico. The 

study assessed alexithymia, a trait characterized by difficulty in identifying and expressing feelings, as 

well as a cognitively externalized style disconnected from the internal experiential world of emotions, 

dreams, and fantasies. This personality trait is evaluated using the Toronto Alexithymia Scale (TAS-20) 

[18], which was validated in Mexico by Moral [19]. 

Alexithymia—measured on an interval scale such as the total TAS-20 score—is expected to follow a 

normal distribution, given that this personality trait is influenced by both environmental and biological 

factors [18]. It is hypothesized that TAS-20 total scores within the central range of the distribution reflect 

adaptive or functional expressions of the trait, whereas scores in the tails reflect maladaptive 

manifestations (right tail) and exceptional emotional competence and awareness (left tail). Specifically, 

individuals with alexithymic personality disorder are expected to score in the right tail of the 

distribution. Empirical evidence supports this model [20]. 

2. The Summary of the Seven Numbers to Evaluate Normality 

In the test based on the PSNS, the test statistic, symbolized by Q, is defined as the sum of the squares of 

the quantiles corresponding to the orders -2, -4/3, -3/4, 0, 2/3, 4/3, and 2 of a standard normal 

distribution. Before squaring and summing the seven sample quantiles, they are standardized [5]. 

Initially, the sample mean and standard deviation are used for standardization. Subsequently, they are 

re-standardized using the expected mean and standard deviation under the null hypothesis of a 

standard normal distribution. Since these variables are correlated, the sampling distribution of this 

quadratic form follows a generalized chi-square distribution [21]. However, Moral [5] suggested a 

simplified approach for calculating the p-value by approximating it with a chi-square distribution with 

seven degrees of freedom. 

It is worth noting that the 2nd, 8th, 25th, 50th, 75th, 92nd, and 98th percentiles of a standard normal 

distribution are approximately evenly spaced. When rounded to two decimal places, the second 

percentile corresponds to -2.05, the eighth to -1.34, the twenty-fifth to -0.67, the fiftieth to 0, the seventy-

fifth to 0.67, the ninety-second to 1.34, and the ninety-eighth to 2.05. Within this sequence, the quantiles 

are separated by a distance of 0.67 along the Z-score axis, except at the two extremes, where a slight 

discrepancy of 0.04 is observed (-1.34 - (-2.05) = 0.71 = 0.67 + 0.04 and 2.05 - 1.34 = 0.71 = 0.67 + 0.04). 

To achieve a more precise alignment with evenly spaced quantiles, the following orders must be used: 

0.0228, 0.0912, 0.2525, 0.5, 0.7475, 0.9088, and 0.9772. These yield the quantiles -2, -4/3, -2/3, 0, 2/3, 4/3, 

and 2, which are evenly spaced at two-thirds intervals within the range [-2, 2], centered at 0. These seven 

quantiles closely approximate the percentiles used in the seven-number summary, namely the 

minimum (0th percentile), 10th percentile, 25th percentile, 50th percentile, 75th percentile, 90th 

percentile, and maximum (100th percentile) of a standard normal distribution. Therefore, they are 

considered a summary of seven key values for a normal distribution [5], also referred to as the PSNS 

[22-23]. 

It should be noted that, since the normal distribution has infinite support over the interval (−∞, +∞), it 

does not inherently have a minimum or maximum. However, any finite sample x of size n drawn from 

a normal distribution will have a limited range of scores, bounded by the sample minimum and 

maximum, [min(x), max(x)]. Moreover, approximately 95.44% of the distribution lies within the interval 

[−2, 2]. For this reason, in the PSNS [5], the minimum is replaced by the 0.0228 quantile and the 

maximum by the 0.9772 quantile. 

In asymptotic sampling, the distribution of the quantiles of a distribution with finite moments follows 

a normal distribution [10]. If X is a random variable with a density function fX(x) and finite moments, 

the sample quantile of order p, denoted as qx(p), follows a normal distribution. Its arithmetic mean or 

expected value, denoted as μ[qx(p)], corresponds to the population quantile QX(p). The variance is given 

by the ratio of the product of the quantile order and its complement (numerator) to the product of the 

sample size and the square of the density function evaluated at the quantile (denominator). See Equation 

1. The standard deviation or standard error, denoted as σ[qx(p)], is the square root of this ratio (Equation 

2). 
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𝑥 = {𝑥𝑖}𝑖=1
𝑛 = {𝑥1, 𝑥2, … , 𝑥𝑛} ⊆ 𝑋 

𝑥(1) ≤ 𝑥(2) ≤ ⋯ ≤ 𝑥(𝑛) 

𝑞𝑥(𝑝) = 𝑥(𝑖) ~ 𝑁 (𝜇[𝑞𝑥(𝑝)] = 𝑄𝑋(𝑝), 𝜎
2[𝑞𝑥(𝑝)] =

𝑝 × (1 − 𝑝)

𝑛 × 𝑓𝑋
2[𝑄𝑋(𝑝)]

) 

(1) 

𝜎[𝑞𝑥(𝑝)] = √
𝑝 × (1 − 𝑝)

𝑛 × 𝑓𝑋
2[𝑄𝑋(𝑝)]

 (2) 

Equation 2 can be used to obtain the asymptotic standard errors of the seven quantiles that make up the 

PSNS, based on the orders of the quantiles (p = 0.02275, 0.09121, 0.25249, 0.5, 0.74751, 0.90879, and 

0.97725) of a standard normal distribution [2, 5]. Table 1 presents these quantiles, specifically for the 

standard normal distribution N(0, 1). 

 

Table 1. Value in the probit function, cumulative distribution function, density function, and 

asymptotic standard errors of the PSNS in a standard normal distribution 

QZ(p) = zp FZ(zp) = p fZ(zp) σ(zp) 

-2 0.02275 0.05399 2.76168/√n 

-4/3 0.09121 0.16401 1.75544/√n 

-2/3 0.25249 0.31945 1.35998/√n 

0 0.5 0.39894 1.25331/√n 

2/3 0.74751 0.31945 1.35998/√n 

4/3 0.90879 0.16401 1.75544/√n 

2 0.97725 0.05399 2.76168/√n 

Note. QZ(p) = Φ-1(p) = zp = probit function, quantile function, or inverse function of the cumulative distribution 

function of a variable following a standard normal distribution N(0, 1), p = order or cumulative probability 

associated with the quantile zp in the standard normal distribution, fZ(zp) = φ(zp) = density function of the standard 

normal distribution, σ(zp) = asymptotic standard error of the sample p-th quantile calculated from a random 

sample of size n drawn from a standard normal distribution. 

The standard errors in Table 1 (σ[zp]) allow the definition of asymptotic confidence intervals within 

which sample quantiles are expected to fall when computed from random samples of size n drawn from 

a standard normal distribution, with a probability of 1 - α [10]. See Equation 3. 

𝑍 ~ 𝑁(0, 1) 

𝑃(�̂�𝑝 ∈ [𝑧𝑝 − 𝑧1−𝛼
2
√
𝑝 × (1 − 𝑝)

𝑛 × 𝑓𝑍
2(𝑧𝑝)

, 𝑧𝑝 + 𝑧1−𝛼
2
√
𝑝 × (1 − 𝑝)

𝑛 × 𝑓𝑍
2(𝑧𝑝)

]) = 1 − 𝛼 
(3) 

zp = population p-th quantile of the standard normal distribution. 

�̂�𝑝= sample quantile or point estimate of the population p-th quantile of a variable X following 

a standard normal distribution. 

n = sample size. 

𝑓𝑍
2(𝑧𝑝) = squared height or density of the zp in a standard normal distribution. 

z1-α⁄2 = (1-α/2)-th quantile of a standard normal distribution, where α is the significance level, 

typically 0.05 (z0.975 = 1.96). 

 

From this asymptotic confidence interval, it is possible to derive a normally distributed statistic with a 

mean of 0 and a variance of 1, which allows testing whether a standardized sample quantile 

(standardized using its sample mean and variance) corresponds to the expected quantile of a standard 

normal distribution [5]. See Equation 4. 
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𝑍 =
�̂�𝑝 − 𝑧𝑝

√
𝑝 × (1 − 𝑝)

𝑛 × 𝑓𝑍
2(𝑧𝑝)

~𝑁(0, 1) 
(4) 

3. Testing the Expected Value Under Normality for a Number of the PSNS 

Based on the Z statistic in Equation 4, a statistical test can be formulated to assess whether the sample 

p-th quantile is equivalent to the expected value under a normal distribution, and this test can then be 

generalized to the seven values of the PSNS. 

 Equation 5 shows the statistical hypotheses of the two-tailed test. 

𝐻0: 𝑍[𝑄𝑋(𝑝)] =
𝑄𝑋(𝑝) − 𝜇𝑋

𝜎𝑋
= 𝑄𝑍(𝑝) = 𝑧𝑝, 𝑤ℎ𝑒𝑟𝑒 𝑍~𝑁(0, 1) 

𝐻1: 𝑍[𝑄𝑋(𝑝)] =
𝑄𝑋(𝑝) − 𝜇𝑋

𝜎𝑋
≠ 𝑄𝑍(𝑝) = 𝑧𝑝, 𝑤ℎ𝑒𝑟𝑒 𝑍~𝑁(0, 1) 

(5) 

Z[QX(p)] = population p-th quantile of variable X, standardized by population mean and variance. 

zp = hypothetical value of the p-th quantile in a standard normal distribution N(0, 1). 

 

Assumptions: A random sample of large size drawn from a normal distribution. 

 

Test statistic: Equation 6 shows the double standardization (first by the sample mean and standard 

deviation and second by the mean and expected standard deviation under the null hypothesis of 

normality) experienced by the sample quantile qx(p). 

𝑍[𝑧(𝑞𝑥(𝑝))] =
𝑧[𝑞𝑥(𝑝)] − 𝑧𝑝

√
𝑝(1 − 𝑝)

𝑛𝑓𝑍
2(𝑧𝑝)

=

𝑞𝑥(𝑝) − �̅�
𝑠𝑛−1(𝑥)

− 𝑧𝑝

√
𝑝(1 − 𝑝)

𝑛𝑓𝑍
2(𝑧𝑝)

 
(6) 

The theoretical quantile zp is obtained by evaluating the probit function or quantile function of a 

standard normal distribution in p (Equation 7). In the context of the PSNS, p takes the following values: 

FZ(-2) = 0.0228, FZ(-2/3) = 0.0912, FZ(-1/3) = 0.2525, FZ(0) = 0.5, FZ(1/3) = 0.7475, FZ(2/3) = 0.9088, and FZ(2) 

= 0.9772, where Z ∼ N(0, 1) and FZ is its cumulative distribution function, usually expressed as Φ(zp) = p. 

𝑄𝑍(𝑝) = Φ
−1(𝑝) = 𝑧𝑝, 𝑤ℎ𝑒𝑟𝑒 𝑋 ~ 𝑁(0, 1) (7) 

To obtain the standardized sample p-th quantile, denoted by z[cx(p)], we start by calculating this quantile. 

To do this, the n sample data of X are ordered in ascending direction: x(i), i = 1, 2, ⋯, n. For more details 

refer to Equation 8. 
𝑥 = {𝑥𝑖}𝑖=1

𝑛 = {𝑥1, 𝑥2. … , 𝑥𝑛} ⊆ 𝑋 
𝑥(1) ≤ 𝑥(2) ≤ ⋯ ≤ 𝑥(𝑛) 

(8) 

The position of the quantile qₚ among the n sample observations is calculated using R’s type-8 rule, 

which provides greater accuracy in estimating quantiles across different distributions compared to 

other linear interpolation methods [4, 24-25]. Refer to Equation 9 for more details. The type-6 rule is also 

recommended for general use with very different distributions [26], while the type-9 rule is specifically 

suggested for the normal distribution [27]. 

𝑖 = 1/3 + 𝑝 × (𝑛 + 1/3) = 𝑖 + (𝑖 − ⌊𝑖⌋) (9) 

If the value of i is an integer, the data is searched in that order; whereas if it is a number with decimal 

places, the quantile is obtained by linear interpolation (Equation 10). 

�̂�𝑋(𝑝) = 𝑞(𝑝) = 𝑥(⌊𝑖⌋) + (𝑖 − ⌊𝑖⌋)(𝑥(⌊𝑖⌋+1) − 𝑥(⌊𝑖⌋)) (10) 

The mean (Equation 11) and sample standard deviation (Equation 12) are further calculated. 

�̂�𝑋 = �̅� =
∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
 (11) 
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�̂�𝑋 = 𝑠𝑛−1(𝑥) = √
∑ (𝑥𝑖 − �̅�)

2𝑛
𝑖=1

𝑛 − 1
 (12) 

Finally, the sample quantile is standardized, as shown in Equation 13. 

𝑧[𝑞𝑥(𝑝)] =
�̂�𝑋(𝑝) − �̂�𝑋

�̂�𝑋
=
𝑞𝑥(𝑝) − �̅�

𝑠𝑛−1(𝑥)
 (13) 

 

Sampling distribution: The random variable Z[z(cx(p))], proposed as a test statistic, follows a standard 

normal distribution under the null assumption or hypothesis that variable X follows a normal 

distribution (Equation 14). 

𝑍[𝑧(𝑞𝑥(𝑝))]~ 𝑁(0, 1) (14) 

 

Decision based on probability value or critical level: Let P(Z ≤ |z|) the probability of obtaining a value 

less than or equal to the absolute value of the test statistic in a standard normal distribution. If 2-tailed 

p-value = 2 × (1 - P(Z ≤ |z|) ≥ α, the null hypothesis is maintained in a two-tailed test with a α 

significance level. Conversely, if 2-tailed p-value = 2 × (1 - P(Z ≤ |z|) < α, it is rejected. 

4. The Omnibus Test of Normality Based on the PSNS 

4.1. Approach 

If the seven standardized values z[z(cx(p))] are squared and added together, the resulting statistic, 

denoted by Q, follows a generalized chi-square distribution, since it is the sum of squares of seven 

dependent random variables with a standard normal distribution [28-29]. The chi-square distribution 

with seven degrees of freedom is a concrete case of this generalized chi-square distribution. This 

equality occurs when quantiles, considered as random variables, have very small or no correlations. 

Moral [5] proposed using the chi-square distribution with seven degrees of freedom as an 

approximation to the generalized chi-square distribution and, in this way, obtain an omnibus test of 

normality with simple and well-known calculations of the probability, power, and effect size value [30]. 

Analogous to the variance formula of a quantile (Equation 1), the formula of covariance between two 

quantiles is a quotient, the numerator of which is the product of the order of one quantile and the 

complement of the order of the other quantile, and its denominator is the product of the sample size 

and densities of both quantiles [10]. See Equation 15. This covariance converges to zero when the sample 

size (n) tends to infinity, which is favored by a greater distance between the two quantiles. Except in the 

uniform distribution, the more distant two quantiles are, the lower their correlation. Also, the variance 

and standard deviation of each quantile tend to zero as the sample size increases. However, the 

correlation or quotient between the covariance and the geometric mean of the variances (Equation 16) 

is independent of the sample size. The n in the numerator of the covariance is simplified with the two 

square roots of n of each standard deviation in the denominator. On the other hand, this correlation is 

always positive, since there is no term that could be negative in the formula. Precisely, the definition of 

quantile or order statistic implies a monotonic non-decreasing order [31]. 

𝜎(𝑞𝑝1 , 𝑞𝑝2) =
𝑝1 × (1 − 𝑝2)

𝑛 × 𝑓𝑍(𝑧𝑝1) × 𝑓𝑍(𝑧𝑝2)
, 𝑤ℎ𝑒𝑟𝑒 𝑝1 < 𝑝2 (15) 

𝜌(𝑞𝑝1 , 𝑞𝑝2) =
𝜎(𝑞𝑝1 , 𝑞𝑝2)

√𝜎2(𝑞𝑝1) × 𝜎
2(𝑞𝑝2)

=
𝜎(𝑞𝑝1 , 𝑞𝑝2)

𝜎(𝑞𝑝1) × 𝜎(𝑞𝑝2)
 

(16) 

The correlations between the quantiles of the PSNS of a normal distribution vary from a minimum of 

0.023 to a maximum of 0.581 with a mean of 0.275, 12 out of the 21 correlations are less than 0.3, with 5 

out of these 12 correlations being less than 0.1. In turn, 5 out of the 21 correlations take values between 

0.3 and 0.49 and 4 between 0.5 and 0.59. The four highest correlations are between the third and fourth 

numbers and between the fourth and fifth numbers, as well as between the third and fifth numbers with 

their values contiguous towards the corresponding tail (Table 2). 
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Table 2. Matrix of correlations between PSNS quantiles of a normal distribution 

ρ(z[i,], z[,j]) [,1] [,2] [,3] [,4] [,5] [,6] [,7] 

[1,] 1 0.4816 0.2625 0.1526 0.0887 0.0483 0.0233 

[2,] 0.4816 1 0.5451 0.3168 0.1841 0.1004 0.0483 

[3,] 0.2625 0.5451 1 0.5812 0.3378 0.1841 0.0887 

[4,] 0.1526 0.3168 0.5812 1 0.5812 0.3168 0.1526 

[5,] 0.0887 0.1841 0.3378 0.5812 1 0.5451 0.2625 

[6,] 0.0483 0.1004 0.1841 0.3168 0.5451 1 0.4816 

[7,] 0.0233 0.0483 0.0887 0.1526 0.2625 0.4816 1 

Note. ρ(z[i,], z[,j]) = correlation between quantiles of a standard normal distribution: 1 = z(p = FZ(-2)), 2 = z(p = FZ(-

2/3)), 3 = z(p = FZ(-1/3)), 4 = z(p = FZ(0)), 5 = z(p = FZ(1/3)), 6 = z(p = FZ(2/3)), and 7 = z(p = FZ(2)), where FZ is the 

cumulative distribution function of a standard normal distribution. 

The formula shown in Equation 16, which requires Equations 2 and 15 for calculation, provides the 

population correlation, i.e., when the sample size tends to infinity. Appendix F contains an R script for 

computing this correlation matrix using a bootstrap procedure. 

By extracting a large sample of 1,000 data points from a standard normal distribution using a single 

seed (original reproducible sample), generating 10,000 bootstrap samples, computing the seven 

quantiles in each bootstrap sample, calculating the 21 correlations between these quantiles, and 

averaging the 10,000 estimates for each correlation, the resulting correlation matrix closely resembles 

the one obtained using the formula above (Table 3). The absolute residuals, or differences, between the 

corresponding correlations (asymptotic vs. bootstrap) range from 0.0003 to 0.0237, with a mean of 0.0101. 

The Root Mean Square Error (RMSE) is 0.0090. Therefore, both matrices can be considered equivalent. 

Table 3. Correlation matrix obtained by bootstrap (10,000 replications) from a random sample of 1000 

data extracted from a standard normal distribution. 

r(qx[i,], q[,j]) [,1] [,2] [,3] [,4] [,5] [,6] [,7] 

[1,] 1 0.4677 0.2628 0.1465 0.0933 0.0323 0.0206 

[2,] 0.4677 1 0.5301 0.2965 0.1751 0.0913 0.0581 

[3,] 0.2628 0.5301 1 0.5575 0.3212 0.1758 0.0934 

[4,] 0.1465 0.2965 0.5575 1 0.5647 0.3064 0.1507 

[5,] 0.0933 0.1751 0.3212 0.5647 1 0.5374 0.2555 

[6,] 0.0323 0.0913 0.1758 0.3064 0.5374 1 0.4732 

[7,] 0.0206 0.0581 0.0934 0.1507 0.2555 0.4732 1 

Note. qx[i,] = i-th quantile and c[,j] = j-th quantile of a sample x of size 1000 randomly drawn from a standard normal 

distribution using a fixed seed (123) to ensure reproducibility. Quantile order (i for the quantile per row and j for 

the quantile per column): 1 = Φ(-2), 2 = Φ(-4/3), 3 = Φ(-2/3), 4 = Φ(0), 5 = Φ(2/3), 6 = Φ(4/3), and 7 = Φ(2), where Φ is 

the cumulative distribution function of a standard normal distribution, and r(qx[i,], q[, j]) = Pearson's product-

moment correlation coefficient between the sample quantiles of order i and order j (computed from 10,000 

bootstrap samples using R's type-9 rule). 

It should be noted that the high correlations between the terms (random variables) in the sum of squares 

of the Q statistic cause the generalized chi-square distribution to deviate from the standard chi-square 

distribution due to pronounced leptokurtosis. This results in a greater concentration of values around 

the center and a shorter right tail. This effect occurs because, when variables are correlated, they tend 

to move together, reducing the overall dispersion of the sum of squares. Consequently, leptokurtosis 

increases (more values near the mean), and positive skewness decreases, with fewer extreme values 

appearing in the right tail. 

One of the challenges of the generalized chi-square distribution is the absence of tables for its cumulative 

densities and probabilities, as it does not have a standard form, unlike the chi-square distribution. If 

this distribution is used as an approximation to compute the p-value, the significance level could be 

increased to compensate for the shortening of the right tail [5]. 

Another, much better option is to compute the p-value, statistical power, and effect size using the 

bootstrap procedure [32]. This empirical method allows for the generation of the generalized chi-square 
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distribution underlying the test statistic, which is a sum of squares of dependent standard normal 

variables, thereby preserving the original formulation. A third alternative is to express the statistic as a 

quadratic form–specifically, the product of the transposed vector of standardized quantiles, the 

correlation matrix of the quantiles, and the vector of standardized quantiles–and use R's 

CompQuadForm package [11]. In this approach, 21 duplicate summands are incorporated, 

corresponding to the cross-products of the seven quantiles weighted by their correlations. 

4.2. Statistical Hypotheses 

Equation 17 presents the statistical hypotheses of the Q test. They are formulated as a two-tailed test 

and involve a random vector consisting of seven standardized normal variables (quantiles). 

𝐻0: 𝑋~𝑁(𝜇𝑋, 𝜎𝑋) ⇒ 𝑍 =
𝑋 − 𝜇𝑋
𝜎𝑋

~𝑁(0, 1) ⇒  

(

 
 
 

𝑧𝑄𝑍(𝑝=0.023)
𝑧𝑄𝑍(𝑝=0.091)
𝑧𝑄𝑍(𝑝=0.252)
𝑧𝑄𝑍(𝑝=0.5)
𝑧𝑄𝑍(𝑝=0.748)
𝑧𝑄𝑍(𝑝=0.977))

 
 
 
=

(

 
 
 
 

−2
−4/3
−2/3
0
2/3
4/3
2 )

 
 
 
 

 

𝐻1: 𝑋 ≁ 𝑁(𝜇𝑋, 𝜎𝑋) ⇒ 𝑍 =
𝑋 − 𝜇𝑋
𝜎𝑋

≁ 𝑁(0, 1) ⇒  

(

 
 
 

𝑧𝑄𝑍(𝑝=0.023)
𝑧𝑄𝑍(𝑝=0.091)
𝑧𝑄𝑍(𝑝=0.252)
𝑧𝑄𝑍(𝑝=0.5)
𝑧𝑄𝑍(𝑝=0.748)
𝑧𝑄𝑍(𝑝=0.977))

 
 
 
≠

(

 
 
 
 

−2
−4/3
−2/3
0
2/3
4/3
2 )

 
 
 
 

 

(17) 

4.3. Assumptions 

It is assumed that the sample is random and consists of n scores or values from a continuous quantitative 

variable that follows a normal distribution. A large sample size is required. 

Based on a simulation study, Moral [5] recommended a minimum sample size of 150 participants when 

approximating the p-value using the chi-square distribution with seven degrees of freedom (original 

formulation). This sample size ensures high accuracy (i.e., a proportion of correct decisions—retaining 

or rejecting the null hypothesis of normality—of at least 0.8), as well as high statistical power for 

detecting non-normality and a high complement of power (i.e., the probability of correctly retaining the 

null hypothesis of normality when the alternative is false) for the normal distribution, with both values 

(Φ when H₀ should be retained, or 1 − Φ when H₀ should be rejected) being ≥ 0.8. However, the test 

achieved perfect accuracy (i.e., 1) in detecting normality with a sample size as small as 20, although with 

a power below 0.2. The test’s limited power to reject the null hypothesis of normality was observed in 

the presence of symmetric mesokurtic distributions, such as the uniform and semicircular distributions, 

as well as symmetric distributions with slight leptokurtosis, such as the logistic distribution. This 

limitation can be attributed to the high correlations among the four central values of the PSNS (Table 

2). 

4.4. Test Statistics (Three Variants) 

4.4.1 Statistics Q and QB 

The test statistic is defined as the sum of squared standardized quantiles from the PSNS, using the 

expected values under the assumed distribution (standard normal), and excluding the influence of the 

sample mean ( �̅� = ∑ 𝑥𝑖
𝑛
𝑖=1 𝑛⁄ ) and standard deviation ( 𝑠𝑛−1(𝑥) = ∑ (𝑥𝑖 − �̅�)

2𝑛
𝑖=1 (𝑛 − 1)⁄ ). This new 

random variable is denoted as Q, in reference to the quadratic forms described in Cochran’s theorem 

[28]. See Equation 18, where x is a random sample of n data from a variable X with unknown distribution 

FX that is hypothesized to be normal and Z is a variable defined over the domain (-∞, +∞) that follows a 

standard normal distribution. The R’s implementation is provided in Appendix A. 
𝑥 = {𝑥𝑖}𝑖=1

𝑛 ~ 𝐹𝑛(𝑥𝑖);⊆ 𝑋~ 𝐹𝑋(𝑥𝑖); 𝑧𝑖 ∈ 𝑍 ~  𝐹𝑍(𝑧𝑖) ≡ 𝑁(0, 1) 

𝑄 =∑(

𝑞𝑥(𝑝𝑖) − �̅�
𝑠𝑛−1(𝑥)

− 𝑞𝑍(𝑝𝑖)

𝜎(𝑞𝑍(𝑝𝑖))
)

2

=∑(

𝑞𝑥(𝑝𝑖) − �̅�
𝑠𝑛−1(𝑥)

− 𝑧𝑝𝑖

𝜎(𝑧𝑝𝑖)
)

2

=

7

𝑖=1

7

𝑖=1

 
(18) 
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= (

𝑞𝑥(𝑝1 = 0.02275) − �̅�
𝑠𝑛−1(𝑥)

+ 2

2.76168 √𝑛⁄
)

2

+ (

𝑞𝑥(𝑝2 = 0.09121) − �̅�
𝑠𝑛−1(𝑥)

+
4
3

1.75544 √𝑛⁄
)

2

 

+(

𝑞𝑥(𝑝3 = 0.25249) − �̅�
𝑠𝑛−1(𝑥)

+
2
3

1.35998 √𝑛⁄
)

2

+ (

𝑞𝑥(𝑝4 = 0.5) − �̅�
𝑠𝑛−1(𝑥)

1.25331 √𝑛⁄
)

2

 

+(
𝑧
𝑞𝑥(𝑝5 = 0.74751) − �̅�

𝑠𝑛−1(𝑥)
−
2
3

1.35998 √𝑛⁄
)

2

+(

𝑞𝑥(𝑝6 = 0.90879) − �̅�
𝑠𝑛−1(𝑥)

−
4
3

1.75544 √𝑛⁄
)

2

 

+(

𝑞𝑥(𝑝7 = 0.97725) − �̅�
𝑠𝑛−1(𝑥)

− 2

2.76168 √𝑛⁄
)

2

 

It should be noted that this sum of squares, derived from seven correlated Gaussian random variables 

with a mean of 0 and variance of 1, does not account for the standardized covariance matrix of the 

quadratic form. Strictly speaking, it is not a true quadratic form, as it does not assume that this matrix 

is an identity matrix. Therefore, the symbol Q serves as a referential allusion to Cochran's theorem [28]. 

In the QB variant, the distribution of the test statistic in the sampling process—used for computing the 

p-value (see Appendix B for the R implementation) and statistical power (see Appendix C for the R 

implementation)—is determined using the empirical resampling method with replacement (bootstrap), 

which provides a more accurate approximation than the original approach. 

4.4.2 QT Statistic 

Another option is to express the statistic as a quadratic form without ignoring the correlation matrix 

and use R's CompQuadForm package [11] to compute the probability value and power. This option is 

denoted QT and is properly a quadratic form. The subscript T refers to the fact that the matrix of 

covariances is theoretically established from the null hypothesis of normal distribution. 

A quadratic form is a linear combination involving a transposed vector (of order 1 × k), a symmetric 

matrix of order k × k, and the original vector of order k × 1. To obtain the quadratic form, the values 

z[z(qx(p)] are used as the vector, denoted by z (Equation 19). The symmetric matrix corresponds to the 

matrix of standardized covariances or correlations between the quantiles of the PSNS of a normal 

distribution. This matrix is denoted by R as the correlation matrix (Equation 20). 

The quadratic form zᵀ R z results in a second-degree polynomial with k × k terms, comprising the sum 

of the squared variables and the cross-products of the variables weighted by their corresponding 

correlations (Equation 21). If the vector and the matrix contain only numerical values, without variables, 

the quadratic form yields a scalar. See Appendix D for the calculation of the QT statistic in R. 

𝑧𝑡 = (𝑧1 𝑧2 𝑧3 𝑧4 𝑧5 𝑧6 𝑧7) (19) 

R =

(

 
 
 
 

1 0.2819 0.2625 0.1526 0.0887 0.0826 0.0233
0.2819 1 0.9314 0.5413 0.3146 0.2930 0.0826
0.2625 0.9314 1 0.5812 0.3378 0.3146 0.0887
0.1526 0.5413 0.5812 1 0.5812 0.5413 0.1526
0.0887 0.3146 0.3378 0.5812 1 0.9314 0.2625
0.0826 0.2930 0.3146 0.5413 0.9314 1 0.2819
0.0233 0.0826 0.0887 0.1526 0.2625 0.2819 1 )

 
 
 
 

 (20) 
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𝑄𝑇 = 𝑧
𝑡 × R × 𝑧 = 𝑧1

2 + 𝑧2
2 + 𝑧3

2 + 𝑧4
2 + 𝑧5

2 + 𝑧6
2 + 𝑧7

2 + 2 × 0.4816 × 𝑧1 × 𝑧2

+ 2 × 0.2625 × 𝑧1 × 𝑧3 + 2 × 0.1526 × 𝑧1 × 𝑧4 + 2 × 0.0887 × 𝑧1 × 𝑧5

+ 2 × 0.0483 × 𝑧1 × 𝑧6 + 2 × 0.0233 × 𝑧1 × 𝑧7 + 2 × 0.5451 × 𝑧2 × 𝑧3

+ 2 × 0.3168 × 𝑧2 × 𝑧4 + 2 × 0.1841 × 𝑧2 × 𝑧5 + 2 × 0.1004 × 𝑧2 × 𝑧6

+ 2 × 0.0483 × 𝑧2 × 𝑧7 + 2 × 0.5812 × 𝑧3 × 𝑧4 + 2 × 0.3378 × 𝑧3 × 𝑧5

+ 2 × 0.1841 × 𝑧3 × 𝑧6 + 2 × 0.0887 × 𝑧3 × 𝑧7 + 2 × 0.5812 × 𝑧4 × 𝑧5

+ 2 × 0.3168 × 𝑧4 × 𝑧6 + 2 × 0.1526 × 𝑧4 × 𝑧7 + 2 × 0.5451 × 𝑧5 × 𝑧6

+ 2 × 0.2625 × 𝑧5 × 𝑧7 + 2 × 0.4816 × 𝑧6 × 𝑧7 

(21) 

 

4.5. Sampling Distribution 

The statistic or random variable Q or QB (sum of squares) follows a generalized chi-square distribution, 

χ²g(7, Σ), as does the quadratic form QT (Equation 22). This distribution deviates from the chi-square 

distribution with seven degrees of freedom due to leptokurtosis and a shortened right tail, a 

consequence of the positive correlations among the seven random variables whose sum of squares 

defines it [21, 28-29]. 

The Q statistic would follow a chi-square distribution if the seven variables were independent, and the 

QT statistic would do so if the R matrix were an identity matrix. However, the seven quantiles are 

dependent because they originate from the same distribution, with an average correlation of 0.275. 

If the chi-square distribution with seven degrees of freedom is used as an approximation, the 

significance level could be increased to 0.1 to compensate for the shortened right tail (see Appendix E 

for the calculation in R). 

However, an approximation to the generalized chi-square distribution can be obtained via the bootstrap 

method. On the one hand, the empirical bootstrap distribution is generated from 10,000 replications of 

the original sample. On the other hand, the normative bootstrap distribution is obtained from 2,000 

replications of a random sample drawn from a normal distribution whose location parameter is the 

arithmetic mean of the original sample and whose scale parameter is the standard deviation of the 

original sample, corrected using Bessel's correction. The 0.95 quantile (using R’s type-8 method) of 

normative bootstrap distribution serves as the critical value. The bootstrap right-tailed p-value is 

computed, defined as the proportion of values (Q estimates) in the normative bootstrap distribution 

that exceeds the test statistic (from original sample). See Appendix B for the R code used in this 

calculation. This empirical approach provides a more accurate estimation of both the p-value (Appendix 

B) and the statistical power (see the R script in Appendix C) compared to the chi-square distribution 

with seven degrees of freedom (see the R script in Appendix E). This approach replaces the chi-square 

distribution with a normative bootstrap distribution that has a similar form, as it constitutes a 

generalized chi-square distribution. Consequently, the probability value is computed based on the right 

tail of the distribution. 

 

𝑄~𝜒𝑔
2(7, Σ) 𝑎𝑛𝑑 𝑄𝑇~𝜒𝑔

2(7, R) (22) 

4.6. Decision 

Let P(χ²g(7, Σ) ≥ Q), be the probability of obtaining a value greater than or equal to the test statistic Q in 

a generalized chi-square distribution with seven degrees of freedom. If P(χ²g(7, Σ) ≥ Q) ≥ α, the null 

hypothesis of normality is retained in a two-tailed test with a significance level of α. Conversely, if 

P(χ²g(7, Σ) < α, the null hypothesis is rejected. 

The same procedure applies to the quadratic form QT and the initial approximation of the Q statistic 

using the chi-square distribution with seven degrees of freedom [5]. 

4.7. Statistical Power 

4.7.1 With QB Statistic 

Type II error is defined as the probability of retaining the null hypothesis given that the alternative 

hypothesis is true (Q > critical value). Therefore, it represents the error of failing to reject the null 
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hypothesis. It is denoted by β. Its complement, denoted by φ, represents the statistical power, that is the 

probability of correctly rejecting the null hypothesis when the alternative hypothesis is true [33]. 

Using a resampling procedure with replacement from the original sample, 10,000 bootstrap samples are 

generated. For each bootstrap sample, the Q statistic is calculated, and the proportion of null hypothesis 

rejections is determined. The null hypothesis of normality is rejected if the Q statistic exceeds the critical 

value obtained from 2,000 samples generated under normality (normative bootstrap distribution). The 

rejection rate represents the bootstrap power, reflecting the test’s ability to detect deviations from 

normality in the original sample. See Appendix E for the R implementation. 

4.7.2 With the QT Statistic 

The statistical power of the quadratic form QT = zᵀ R z can be computed using Davies' AS 155 algorithm 

(1980) [34]. The initial evaluation of the generalized non-central chi-square distribution (which 

corresponds to the distribution of a quadratic form of correlated variables) is performed at a critical 

level associated with a specific alternative hypothesis. This level corresponds to the (1 - α)th quantile of 

a chi-square distribution, where the degrees of freedom equal the number of eigenvalues of the 

correlation matrix. Since this is an iterative procedure, the critical value is adjusted at each step. 

In Davies' model, the λ parameter (degrees of freedom) is the eigenvalue vector of the correlation matrix 

R, while the δ parameter (non-centrality parameter) is defined as the element-wise product of the 

eigenvalues and the squared standardized quantiles. See Appendix D for the calculation in R. 

4.7.3 With the Q Statistic 

If we consider the approximation to the chi-square distribution with seven degrees of freedom of the 

original proposal, the Type II error (β) can be computed using the cumulative distribution function of a 

non-central chi-square distribution with seven degrees of freedom. Its non-centrality parameter is set to 

the value of the test statistic Q and is evaluated at the critical level corresponding to the true alternative 

hypothesis (see Equation 23). The statistical power (φ) is the complement of this cumulative probability 

(Equation 24). See Appendix E for the calculation in R. 

𝛽 = 𝜒𝑑𝑓=7 ,𝑁𝐶𝑃=𝑄
2 ( 𝜒𝑑𝑓

2
1−𝛼 ) (23) 

𝜙 = 1 − 𝛽 = 1 − 𝜒𝑑𝑓 = 7,𝑁𝐶𝑃= 𝑄
2 ( 𝜒7

2
0.90 ) (24) 

 

4.8. Effect Size 

4.8.1 With the QB Statistic 

The effect size of the deviation from normality for the Q statistic can be calculated as a standardized 

distance, analogous to Cohen’s d statistic [35]. The mean of Q in the normative bootstrap sampling 

distribution (obtained from 2,000 bootstrap samples of size n drawn from a standard normal 

distribution) serves as the expected value of Q, while the sample standard deviation of Q in that 

distribution represents the bootstrap standard error. 

Using these two values, the standardization, denoted by z, is performed. This value can be interpreted 

in relation to the dispersion of a normal distribution: a z value below 1.7 indicates a trivial effect size, 

below 2.5 a small effect, below 3 a medium effect, and above 3 a very large effect (Equation 25). See 

Appendix B for the calculation in R. 

𝑍 =
|𝑄 − �̂�𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝

𝑁 |

𝑠𝑒𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝
𝑁 = {

< 1.7 𝑡𝑟𝑖𝑣𝑖𝑎𝑙
< 2.5  𝑠𝑚𝑎𝑙𝑙
< 3  𝑚𝑒𝑑𝑖𝑎𝑛
≥ 3      𝑙𝑎𝑟𝑔𝑒

 (25) 

4.8.2 With the QT Statistic 

For the quadratic form QT, whose vector consists of correlated standard normal variables and whose 

symmetric matrix is the correlation matrix of these variables, the mathematical expectation of QT is given 

by the trace of the correlation matrix R, i.e., E[QT] = tr(R) = 7. The variance of QT is equal to twice the 

sum of the squared eigenvalues of R [36-37]. 

The seven eigenvalues of the correlation matrix of the quantiles from the PSNS of the normal 

distribution are: 3.281666, 1.449412, 0.8942277, 0.8293143, 0.4113026, 0.06717703, and 0.06690025. 
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Consequently, the standard deviation of QT is the square root of twice the sum of the squares of these 

eigenvalues, resulting in σ(QT) = 5.3918. 

By standardizing QT using its mean and standard deviation, a measure of effect size in terms of 

standardized distance is obtained. This measure is analogous to Cohen’s d [35], though applied in the 

context of tests based on quadratic forms rather than mean differences. It can be interpreted relative to 

the dispersion of a normal distribution: a z-value below 1.7 indicates a trivial effect size, below 2.5 a 

small effect, below 3 a medium effect, and above 3 a very large effect (Equation 26). See Appendix D for 

the calculation in R. 

𝑄𝑇 = 𝑧
𝑡 × R × 𝑧 ~ 𝜒𝑔

2(7, R) 

𝑍 =
|𝑄𝑇 − 𝐸(𝑄𝑇)|

𝜎(𝑄𝑇)
=
|𝑄𝑇 − 𝑡𝑟(𝑅)|

√2 × ∑ 𝜆𝑖
27

𝑖=1

=
|𝑄𝑇 − 7|

5.3918
= {

< 1.7 𝑡𝑟𝑖𝑣𝑖𝑎𝑙
< 2.5  𝑠𝑚𝑎𝑙𝑙
< 3  𝑚𝑒𝑑𝑖𝑎𝑛
≥ 3      𝑙𝑎𝑟𝑔𝑒

 
(26) 

4.8.3 With Q Statistic 

If we consider the approximation to the chi-square distribution with seven degrees of freedom of the 

original proposal, the effect size of the deviation from normality in the sample distribution can be 

measured using Cramér’s V coefficient [38], which ranges from 0 to 1 [39]. Following Cohen [35], V 

values below 0.1 indicate a trivial effect size, values between 0.1 and 0.29 indicate a small effect, between 

0.3 and 0.49 a medium effect, between 0.5 and 0.69 a large effect, and values of 0.7 or higher indicate a 

very large effect (Equation 27). See Appendix E for the calculation in R. 

𝑉 = √
𝑄

𝑑𝑓 × 𝑛
= √

𝑄

7 × 𝑛
=

{
 
 

 
 
< 0.1   𝑡𝑟𝑖𝑣𝑖𝑎𝑙
< 0.3     𝑠𝑚𝑎𝑙𝑙
< 0.5 𝑚𝑒𝑑𝑖𝑎𝑛
< 0.7     𝑙𝑎𝑟𝑔𝑒
≥ 0.7      ℎ𝑢𝑔𝑒

 (27) 

 

5. Materials and Methods 

5.1. Sample Generation 

Samples were generated using the reverse transform procedure [40] in the R program for 31 sample 

sizes (ranging from 50 to 1500, with increments of 50 and 2000) and 12 continuous distributions: Laplace 

(mu = 50, sigma = 10), normal (mean = 50, sd = 10), Student’s t-distribution with 4 degrees of freedom, 

linearly transformed to have a mean of 50 and a standard deviation of 10, chi-square with 5 degrees of 

freedom, arcsine or beta (shape1 = 0.5, shape2 = 0.5), uniform (min = 0, max = 100), triangular (min = 0, 

max = 3, mode = 2.99), semicircular Wigner or beta (shape1 = 1.5, shape2 = 1.5), linearly transformed to 

have a radius of 3, exponential (rate = 2), hyperbolic drying linearly transformed to have a mean of 50 

and a standard deviation of 10, logistic (location = 50, scale = 10), and Rayleigh (sigma = 12). A seed was 

set for result reproduction (123, except for 12 with the normal distribution). You can visualize the 

samples used with the following script [41]. The result obtained from running the script in Appendix G 

with the first listed distribution—without a hash symbol, which is the Laplace distribution—is shown 

in Table 4. For presentation purposes, each one of 31 original samples (of different size) drawn from 

Laplace distribution in the Table 4 was reduced to the minimum, median and maximum values, with 

the other values being indicated by ellipses (…). 

Table 4. Original sample drawn from a Laplace's distribution 

Sample size Minimum ... Median ... Maximum 

50 9.5898829 ... 47.61486 ... 77.26236 

100 20.4659908 ... 50.09903 ... 93.65911 

150 -6.1995893 ... 48.75828 ... 83.52246 

200 -14.2188404 ... 49.47437 ... 99.03407 

250 -2.2532879 ... 50.11989 ... 103.48888 

300 -1.2977199 ... 49.56351 ... 97.06442 
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350 -14.1836689 ... 50.73552 ... 100.83601 

400 -40.8138988 ... 49.94166 ... 99.69524 

450 -5.7418691 ... 49.28067 ... 94.29004 

500 -9.2878793 ... 49.86201 ... 121.60666 

550 -26.2334393 ... 49.62307 ... 102.91311 

600 0.7197058 ... 50.27604 ... 106.89202 

650 -8.4086652 ... 50.04799 ... 99.44288 

700 -35.1873205 ... 49.93920 ... 124.71132 

750 -4.3566404 ... 49.76694 ... 106.39675 

800 -27.0054577 ... 50.10379 ... 135.88705 

850 -6.2540337 ... 49.47890 ... 160.39084 

900 -23.8530300 ... 49.94832 ... 112.82285 

950 -21.2402997 ... 49.16473 ... 109.56630 

1000 -10.3551434 ... 50.22167 ... 121.36216 

1050 -10.9874128 ... 49.84465 ... 126.42730 

1100 -17.6727651 ... 49.13120 ... 112.89938 

1150 -19.3386696 ... 49.82527 ... 114.30884 

1200 -34.2327092 ... 50.41611 ... 112.19349 

1250 -11.8510114 ... 50.06876 ... 105.43839 

1300 1.8400462 ... 49.71477 ... 119.94513 

1350 -24.1708992 ... 49.83466 ... 129.00185 

1400 -17.6022695 ... 50.03964 ... 108.28709 

1450 -34.8161317 ... 50.20337 ... 106.84666 

1500 -26.7905853 ... 49.88449 ... 111.58504 

2000 -27.9725620 ... 50.11953 ... 117.70299 

 

5.2. Statistical Analysis 

Two criteria were considered to evaluate the performance of the normality tests. One criterion was the 

proportion of hits, defined as the ratio between the number of correct or successful identifications and 

the total number of original samples drawn from each distribution (31 samples). A hit occurs when the 

null hypothesis of normality is retained at the 5% significance level for a sample drawn from a normal 

distribution with a mean of 50 and a standard deviation of 10. Conversely, a hit also occurs when the 

hypothesis is rejected at the 5% level for a sample drawn from a non-normal distribution. Another 

criterion was statistical power at the 5% significance level. For samples drawn from a non-normal 

distribution, power was defined as the probability of correctly rejecting the null hypothesis of normality, 

that is, detecting a deviation from normality when it truly exists. In the case of normal samples, its 

complement, the Type II error (i.e., the probability of failing to reject the null hypothesis when it is false), 

was assessed. A value close to 1 in this context would indicate a high probability of retaining the null 

hypothesis when the data are actually normal. 

Since a single seed was used (123 for non-normal distributions and 12 for the normal distribution) to 

generate the 31-size samples across 12 distributions, the four normality tests are treated as a repeated-

measures factor. Accordingly, hit rates were compared using Cochran’s Q-test, with post-hoc 

comparisons performed using Dunn’s test with Bonferroni correction [42]. The effect size in the omnibus 

test was measured using the eta-squared coefficient [43]. Confidence intervals for the hit rates were 

calculated using Wilson’s procedure [44]. 

Statistical power means were compared using a repeated measures analysis of variance. The normality 

test served as the within-subjects factor with four levels. Distribution was included as a between-

subjects factor with twelve independent groups, and sample size was treated as a covariate. The model 

included the main effect of the test as well as its interactions with sample size and distribution type. 
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The assumption of homogeneity of covariance matrices was assessed using Box’s M test, and sphericity 

was evaluated using Mauchly’s test. Due to a violation of the sphericity assumption, the multivariate 

approach based on Wilks’ lambda was applied [41]. Effect size was estimated using partial eta squared 

(η²ₚ) [43]. 

Normality in the distributions of mean differences was assessed using the Shapiro-Wilk W test [12-13]. 

In case of violation of this assumption, pairwise comparisons between the 4 levels of the repeated 

measures factor were performed using Student's t-test, with the p-value calculated using the bootstrap 

procedure (by drawing 1000 samples with replacement from the original sample), and confidence 

intervals were computed using the Bias-Corrected and Accelerated (BCa) percentile method. The 

interactions between the test and the distribution were examined by checking whether the 95% 

bootstrap BCa confidence intervals for the power means overlapped (not significant) or did not overlap 

(significant), in addition to analyzing crossovers in the power mean plot with lines separated by 

normality test (4 lines) [46]. The interactions between the test and the sample size were assessed using 

the power mean plot with lines separated by normality test, also evaluating the crossovers. 

Statistical analyses were executed with R version 4.4 [41], Excel version 365 [47] and SPSS version 2021 

[48]. 

6. Results 

6.1. Comparison of Hit Ratio or Test Accuracy 

When comparing the number of hits among the four normality tests using Cochran’s Q test for the 

equality of binary proportions in related samples, the difference was significant (Q[df = 3, N = 372] = 158,980, 

asymptotic two-tailed p-value < 0.001), with a large effect size calculated through the eta-squared 

coefficient (η² = 0.142 > 0.14). Comparisons performed using Dunn's post-hoc test revealed that five out 

of six differences were statistically significant, even after applying Bonferroni correction. The Shapiro-

Wilk W test showed the highest hit rate (0.976, 95% Wilson-type CI [0.955, 0.987]), followed by the Q 

test based on bootstrap procedures (0.952, 95% Wilson-type CI [0.925, 0.969]), with their hit rates being 

statistically equivalent (t = 1.137, p = 0.256, pBC = 1). Third place was for the Q test based on the chi-square 

distribution with seven degrees of freedom (0.849, 95% Wilson-type CI [0.810, 0.882]). The Q test based 

on a quadratic form using a generalized chi-square distribution for p-value calculation yielded the 

lowest hit rate (0.766, 95% Wilson-type CI [0.721, 0.806]). Refer to Table 5 and Figure 1 for further details. 

In the representation of the hit-and-miss proportion for each normality test in Figure 1, yellow is used 

for hits and red for misses. 

 

Figure 1. Stacked bar plot illustrates the hit-and-miss proportions for each of the four normality tests. These 

proportions reflect the retention of the null hypothesis of normality for samples drawn from a normal 

distribution, or its rejection for samples drawn from non-normal distributions, using a significance level of 0.05. 

Normality tests: Quadratic Form = Q test based on the quadratic form and using the generalized chi-square 

distribution to calculate the probability value; Bootstrap = Q test employing the bootstrap approach for this 

calculation; Chi-2[7] = Q test with approximate probability values calculated using the chi-square distribution 
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with seven degrees of freedom, assuming independence among random variables; and W = Shapiro-Wilk W test 

standardized using Royston's method [12-13]. 

Table 5. Pairwise comparisons of the proportions of hits using Dunn's test 

Test 1 - Test 2 MSD se t p pc 

Hits_Chi2 - Hits_Quadratic  0.083 0.019 4.406 < 0.001 < 0.001 

Hits_Bootstrap - Hits_Quadratic  0.188 0.019 9.949 < 0.001 < 0.001 

Hits_W - Hits_Quadratic  0.210 0.019 11.086 < 0.001 < 0.001 

Hits_Bootstrap - Hits_Chi2 -  -0.105 0.019 -5.543 < 0.001 < 0.001 

Hits_W - Hits_Chi2  0.126 0.019 6.680 < 0.001 < 0.001 

Hits_W - Hits_Bootstrap  0.022 0.019 1.137 0.256 1 

Note. MSD = Minimum Significant Difference. Each row tests the null hypothesis that the proportions of hits in 

Test 1 and Test 2 are equal. se = asymptotic standard error, t = test statistic value, p = asymptotic two-tailed 

probability value, and pc = adjusted probability value using Bonferroni correction at a significance level of 0.05. 

Hits corresponding to each normality test: Quadratic = Q test based on the quadratic form, using the generalized 

chi-square distribution to compute the probability value; Bootstrap = Q test employing the bootstrap approach for 

this computation; Chi2 = Q test using an approximate probability calculation based on the chi-square distribution 

with seven degrees of freedom (which assumes independence between random variables); and W = Shapiro-Wilk 

W test standardized using Royston's method. 

When calculating the confidence intervals for the hit rates per distribution using Wilson's formula [44], 

the QT test showed significantly lower proportions compared to the other three tests (QB, Q, and W) for 

the chi-square and uniform distributions. For the Rayleigh and logistic distributions, the hit rates of the 

QT and Q tests were significantly lower than those of the W and QB tests, whose confidence intervals 

overlapped. Across the full set of 12 distributions, the hit rates for the QT and Q tests were significantly 

lower than those of the W and QB tests, which were statistically equivalent (Table 6). 

Table 6. Proportions of hits and their 95% Wilson-type confidence intervals for each normality test 

across different distributions 

Distribution QT QB Q W 

Laplace 
0.871 

[0.711, 0.949] 

0.935 

[0.793, 0.982] 

0.903 

[0.751, 0.967] 

0.968 

[0.838, 0.994] 

Normal 
1 

[0.890, 1] 

1 

[0.890, 1] 

1 

[0.890, 1] 

1 

[0.890, 1] 

Student 
0.968 

[0.838, 0.994] 

0.935 

[0.793, 0.982] 

0.968 

[0.838, 0.994] 

1 

[0.890, 1] 

Chi-2 
0.484 

[0.320, 0.652] 

1 

[0.890, 1] 

0.968 

[0.838, 0.994] 

1 

[0.890, 1] 

Arcsine 
0.935 

[0.793, 0.982] 

1 

[0.890, 1] 

0.968 

[0.838, 0.994] 

1 

[0.890, 1] 

Uniform 
0.774 

[0.602, 0.886] 

0.968 

[0.838, 0.994] 

0.871 

[0.711, 0.949] 

1 

[0.890, 1] 

Triangular 
0.839 

[0.674, 0.929] 

0.968 

[0.838, 0.994] 

0.871 

[0.711, 0.949] 

1 

[0.890, 1] 

Semicircle 
0.839 

[0.674, 0.929] 

0.903 

[0.751, 0.967] 

0.871 

[0.711, 0.949] 

1 

[0.890, 1] 

Exponential 
1 

[0.890, 1] 

1 

[0.890, 1] 

1 

[0.890, 1] 

1 

[0.890, 1] 

HSD 
0.871 

[0.711, 0.949] 

0.935 

[0.793, 0.982] 

0.774 

[0.602, 0.886] 

0.935 

[0.793, 0.982] 

Rayleigh 
0.645 

[0.469, 0.789] 

0.968 

[0.838, 0.994] 

0.645 

[0.469, 0.789] 

0.968 

[0.838, 0.994] 

Logist 0.355 0.839 0.516 0.871 
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[0.211, 0.531] [0.674, 0.929] [0.348, 0.680] [0.711, 0.949] 

Total 
0.766 

[0.721, 0.806] 

0.954 

[0.928, 0.971] 

0.849 

[0.810, 0.882] 

0.976 

[0.955, 0.987] 

Note. Normality tests: QT = Q test based on the quadratic form using the generalized chi-square distribution to 

calculate the probability value; B = Q test employing the bootstrap approach for this calculation; χ²[7] = Q test 

with approximate probability values derived from the chi-square distribution with seven degrees of freedom, 

assuming independence among random variables; and W = Shapiro-Wilk W test standardized using Royston's 

method [12–13]. 

6.2. Comparison of Mean Statistical Power 

A repeated-measures model was defined to compare the mean statistical power of the four normality 

tests. The type of distribution was included as a fixed-effects factor for independent measures, while 

sample size was treated as a covariate. The assumption of sphericity was not met, as indicated by the 

Mauchly test (W = 0.900, χ²[5] = 37.615, p < 0.001), and the null hypothesis of equal covariance matrices 

was rejected by the Box test (M of Box = 3005.680, F[90, 107675.456] =28.462, p < 0.001). Consequently, 

the multivariate omnibus test of Wilks' lambda was used. 

The effect of normality tests (an intragroup factor with four levels) was significant, with a large effect 

size. Additionally, the interaction between the normality test and sample size (a covariate with 31 values) 

was significant, showing a medium effect size, as was the interaction between the normality test and 

the type of distribution (a fixed-effect factor with 12 levels), which had a large effect size. The statistical 

power for these differences was unitary. For more details, refer to Table 7. 

Table 7. Multivariate test: Wilks lambda 

Effect Λ F df1 df2 p ηp2 NCP ϕ 

Test 0.710 48,700 3 357 < 0.001 0.290 146.101 1 

Test*N 0.840 22,679 3 357 < 0.001 0.160 68.037 0.999 

Test*Dist 0.407 11.375 33 1052.492 < 0.001 0.259 367.578 1 

Note. Intra-subject design: normality test (with four levels). Interaction of the test with N (sample size) and Distr. 

(type of distribution). The sample size includes 31 values (treated as a covariate), and the type of distribution 

encompasses 12 categories (a fixed-effects factor for independent groups). λ = Wilks Lambda statistic, where the 

asterisk denotes its exact calculation; df = degrees of freedom; p = right-tailed probability in the Snedecor-Fisher F 

distribution; ηp² = partial eta-squared coefficient; NCP = non-centrality parameter; and φ = statistical power 

calculated at a significance level of 0.05. 

The assumption of a normal distribution in the six power differences among the four normality tests is 

satisfied only with the logistic distribution in three out of six comparisons and with the normal 

distribution in two out of six comparisons. For the other distributions, as well as in the combined sample, 

the null hypothesis of normality is rejected using the Shapiro-Wilk test [12-13] at a significance level of 

5% (Table 8). 

Table 8. Testing normality for the difference in power between the four normality tests 

Distribution Diff. n W z p Diff. n W z p 

Laplace QT-B 31 0.651 5.036 <0.001 B-χ² 31 0.445 5.998 <0.001 

Normal  31 0.919 2.010 0.022  31 0.928 1.766 0.039 

Student  31 0.514 5.723 <0.001  31 0.472 5.894 <0.001 

Chi-2  31 0.789 3.994 <0.001  31 0.326 6.400 <0.001 

Arcsine  31 0.269 6.568 <0.001  31 0.269 6.568 <0.001 

Uniform  31 0.451 5.975 <0.001  31 0.533 5.640 <0.001 

Triangular  31 0.616 5.234 <0.001  31 0.489 5.826 <0.001 

Semicircle  31 0.54 5.609 <0.001  31 0.787 4.013 <0.001 

Exponential  31 0.176 6.816 <0.001  31 0.192 6.776 <0.001 

Hyperbolic  31 0.69 4.791 <0.001  31 0.643 5.083 <0.001 

Rayleigh  31 0.522 5.688 <0.001  31 0.723 4.558 <0.001 

Logistic  31 0.965 0.272 0.389  31 0.945 1.208 0.116 
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Total  372 0.683 10.444 <0.001  372 0.704 10.281 <0.001 

Laplace QT-χ² 31 0.676 4.882 <0.001 B-W 31 0.4 6.159 <0.001 

Normal  31 0.97 -0.048 0.513  31 0.945 1.208 0.116 

Student  31 0.334 6.375 <0.001  31 0.44 6.016 <0.001 

Chi-2  31 0.829 3.558 <0.001  31 0.263 6.585 <0.001 

Arcsine  31 0.269 6.568 <0.001  31 0.202 6.750 <0.001 

Uniform  31 0.566 5.488 <0.001  31 0.326 6.400 <0.001 

Triangular  31 0.652 5.030 <0.001  31 0.414 6.110 <0.001 

Semicircle  31 0.694 4.764 <0.001  31 0.375 6.244 <0.001 

Exponential  31 0.282 6.531 <0.001  31 0.179 6.809 <0.001 

Hyperbolic  31 0.65 5.042 <0.001  31 0.644 5.078 <0.001 

Rayleigh  31 0.717 4.602 <0.001  31 0.54 5.609 <0.001 

Logistic  31 0.875 2.909 0.002  31 0.829 3.558 <0.001 

Total  372 0.667 10.56 <0.001  372 0.549 11.280 <0.001 

Laplace QT-W 31 0.639 5.106 <0.001 χ²-W 31 0.435 6.035 <0.001 

Normal  31 0.738 4.442 <0.001  31 0.755 4.303 <0.001 

Student  31 0.356 6.306 <0.001  31 0.313 6.440 <0.001 

Chi-2  31 0.797 3.914 <0.001  31 0.332 6.382 <0.001 

Arcsine  31 0.282 6.531 <0.001  31 0.276 6.548 <0.001 

Uniform  31 0.456 5.956 <0.001  31 0.527 5.666 <0.001 

Triangular  31 0.616 5.234 <0.001  31 0.487 5.835 <0.001 

Semicircle  31 0.559 5.521 <0.001  31 0.721 4.573 <0.001 

Exponential  31 0.331 6.385 <0.001  31 0.277 6.545 <0.001 

Hyperbolic  31 0.694 4.764 <0.001  31 0.686 4.817 <0.001 

Rayleigh  31 0.468 5.910 <0.001  31 0.702 4.709 <0.001 

Logistic  31 0.927 1.795 0.035  31 0.956 0.746 0.232 

Total  372 0.691 10.383 <0.001  372 0.651 10.672 <0.001 

Note. Diff = random variable of the power difference between tests of normality: QT = Q test from quadratic form 

using the generalized chi-square distribution for the calculation of the probability value, B = Q test from its 

bootstrap approach and χ²[7] = Q test from the chi-square approximation with seven degrees of freedom, and W = 

Shapiro-Wilk test with Royston's standardization. Test to check the normality of power differences: W = Shapiro-

Wilk test statistic, n = sample size, z = standardized value of the logarithmic transformation of W (Royston’s 

standardization), and p = probability to the right tail in a standard normal distribution. 

When pairwise comparisons were conducted using the paired-samples Student's t-test with a bootstrap 

procedure for calculating p-values and obtaining BCa percentile confidence intervals (1,000 

replications), the mean power of the W test was significantly higher than that of the other three tests. 

The statistical power of the bootstrap version of the Q test was significantly higher than that of the other 

two versions, which did not differ significantly from each other. See Table 9, which presents the group 

means, the mean differences with their corresponding 95% BCa confidence intervals, and the two-tailed 

bootstrap p-values. 

Table 9. Comparison of mean statistical power using Student's t-test for two matched samples, with 

the BCa method applied for calculating the bootstrap confidence interval. 

Tets m1 m2 md p_boot 

QT-B 0.902 

[0.882, 0.922] 

0.935 

[0.920, 0.950]b 

-0.033 

[-0.049, -0.018]b 

0.001 

QT-χ²[7]  0.902 

[0.881, 0.920]b 

0 

[-0.014, 0.014]b 

0.983 

QT-W  0.961 

[0.946, 0.975]b 

-0.059 

[-0.075, -0.046]b 

0.001 

B-χ²[7] 0.935 0.902 0.034 0.001 
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[0.920, 0.950]b [0.881, 0.920]b [0.020, 0.049]b 

B-W  0.961 

[0.946, 0.975]b 

-0.040 

[-0.055, -0.026]b 

0.001 

χ²-W 0.902 

[0.881, 0.920]b 

0.961 

[0.946, 0.975]b 

-0.060 

[-0.074, -0.046]b 

0.001 

Note. Statistical tests of normality: QT = Q test based on the quadratic form, using the generalized chi-square 

distribution to compute the p-value; B = Q test employing the bootstrap approach; χ²[7] = Q test using the chi-

square approximation with seven degrees of freedom; and W = Shapiro-Wilk test standardized using Royston's 

method. m1 = mean power of the test serving as the minuend, m2 = mean power of the test serving as the 

subtrahend, md = difference between the two means (mean difference) with a 95% bootstrap confidence interval 

computed using the BCa method, and p_boot = bootstrap probability for the null hypothesis of mean equality. 

Figure 2 displays the average power values for the non-normal distributions and the average 

complement of power (beta error) for the normal distribution for the four normality tests. The curves 

are represented in different colors: the Shapiro–Wilk test is shown in yellow, the Q test (quadratic 

version) in blue, the bootstrap version of the Q test in red, and the version of the Q test that uses an 

approximate p-value based on the chi-square distribution with seven degrees of freedom in black. 

Statistical power increased with sample size. The W test showed the fastest improvement as sample size 

increased, exhibiting higher average power than the other tests. The bootstrap version of the Q test 

outperformed the other two Q test versions from the smallest sample size. At a sample size of 1,000, all 

four tests reached unit power. 

 

 

Figure 2. Diagram of the marginal means of power by normality test in relation to sample size. Tests: Q_T = Q test 

based on the quadratic form, using the generalized chi-square distribution to calculate the probability value; B = 

Q test employing the bootstrap approach; Chi2 = Q test with approximate probability values derived from the chi-

square distribution with seven degrees of freedom (assuming independence among random variables); and W = 

Shapiro-Wilk test standardized using Royston’s method [12-13]. 

The interaction effect between the distribution and the normality test was assessed using the mean 

diagram (Figure 3) and the overlap of the 95% bootstrap confidence intervals obtained via the BCa 

percentile method. If no overlap was observed, the difference was considered significant in a two-tailed 

test at a 5% significance level (Table 10). 

Table 10. Mean power in the interaction between the distribution and the test, with 95% bootstrap 

confidence intervals obtained via the BCa method 

Distr. QT Bootstrap χ²[7] W 

Laplace 0.909 [0.834, 0.969]b 0.950 [0.871, 0.998]b 0.935 [0.863, 0.991]b 0.967 [0.895, 1]b 

Normal 0.830 [0.812, 0.845]b 0.724 [0.667, 0.776]b 0.853 [0.836, 0.870]b 0.947 [0.910, 0.973]b 
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Student 0.979 [0.927, 1]b 0.946 [0.891, 0.993]b 0.985 [0.942, 1]b 0.989 [0.963, 1]b 

Chi-2 0.806 [0.708, 0.890]b 0.997 [0.988, 1]b 0.986 [0.963, 1]b 0.995 [0.983, 1]b 

Arcsine 0.992 [0.976, 1]b 0.999 [0.995, 1]b 0.981 [0.943, 1]b 0.991 [0.991, 1]b 

Uniforme 0.964 [0.915, 0.996]b 0.982 [0.938, 1]b 0.941 [0.874, 0.989]b 0.955 [0.956, 1]b 

Triangular 0.873 [0.778, 0.956]b 0.988 [0.956, 1]b 0.944 [0.882, 0.993]b 0.985 [0.959, 1]b 

Semicircular 0.908 [0.821, 0.974]b 0.935 [0.857, 0.993]b 0.830 [0.728, 0.916]b 0.954 [0.882, 0.998]b 

Exponential 1 [0.999, 1]b 1 [0.999, 1]b 1 [0.999, 1]b 1 [0.999, 1]b 

Secant 0.909 [0.830, 0.971]b 0.924 [0.846, 0.982]b 0.866 [0.768, 0.949]b 0.934 [0.830, 0.996]b 

Rayleigh 0.959 [0.906, 0.992]b 0.951 [0.889, 0.996]b 0.795 [0.678, 0.898]b 0.948 [0.859, 0.999]b 

Logistic 0.693 [0.611, 0.774]b 0.830 [0.739, 0.909]b 0.705 [0.608, 0.794]b 0.836 [0.719, 0.927]b 

Note. Normality test: QT = Q test from the quadratic form using the generalized chi-square distribution for the 

calculation of the probability value, Bootstrap = Q test from the bootstrap approach for this calculation, χ²[7] = Q 

test with the approximate probability calculation from the chi-square distribution with seven degrees of freedom 

(which implies assuming independence between random variables), and W = Shapiro-Wilk W test with Royston's 

standardization. 

The mean diagram in Figure 3 shows that the highest average power is achieved by the Shapiro–Wilk 

W test across all distributions, except for the Rayleigh distribution, where the maximum occurs with 

the quadratic form of the Q test (QT). For the normal distribution, the average power of the bootstrap 

version of the Q test (QB) was significantly lower than that of the other three tests (Table 10). 

Additionally, for the chi-square distribution, the average power of the quadratic form of the Q test was 

significantly lower (QT) than that of the other three tests (Table 10). For the remaining distributions, no 

significant differences in average power were found among the four normality tests (Table 10). 

 

 

Figure 3. Diagram of the marginal mean power of the normality tests in relation to the type of distribution. 

Normality test: Q_T = Q test based on the quadratic form, using the generalized chi-square distribution to 

compute the probability value; B = Q test employing the bootstrap approach for this computation; Chi2 = Q test 

using an approximate probability calculation based on the chi-square distribution with seven degrees of freedom 

(which assumes independence between random variables); and W = Shapiro-Wilk W test standardized using 

Royston's method. 

6.3. Application of R scripts to real-world data 

Alexithymia was measured using the 20-item Toronto Alexithymia Scale (TAS-20) [18], adapted for the 

Mexican population by Moral [19]. The scale consists of 20 Likert-type items with six response options 

(0 to 5), yielding a total score ranging from 0 to 100. The sample consisted of 385 participants (85 men 

and 300 women) who took the entrance examination for a psychology program at a public university in 

northeastern Mexico. Below is the random vector of TAS-20 total scores. 
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x <- c(34, 14, 13, 17, 44, 4, 6, 33, 22, 28, 14, 23, 13, 12, 32, 12, 7, 48, 55, 45, 24, 13, 61, 23, 55, 35, 11, 13, 29, 30, 

10, 29, 29, 26, 14, 41, 11, 17, 21, 26, 10, 38, 24, 20, 50, 26, 27, 27, 25, 17, 16, 27, 20, 28, 35, 28, 27, 40, 10, 12, 

21, 19, 23, 40, 22, 4, 8, 26, 14, 35, 47, 24, 21, 31, 33, 23, 0, 33, 36, 31, 24, 25, 25, 4, 43, 21, 41, 26, 27, 21, 21, 32, 

12, 22, 18, 30, 36, 26, 9, 38, 18, 35, 31, 41, 26, 15, 17, 31, 24, 44, 56, 16, 52, 30, 24, 25, 52, 44, 4, 19, 34, 22, 28, 

31, 3, 12, 0, 34, 10, 44, 18, 17, 7, 48, 20, 17, 17, 42, 9, 22, 18, 58, 49, 32, 24, 16, 22, 9, 25, 28, 27, 46, 30, 10, 15, 

29, 22, 18, 16, 13, 34, 13, 12, 14, 25, 33, 52, 5, 35, 20, 16, 28, 17, 20, 5, 25, 35, 9, 35, 45, 16, 26, 32, 27, 20, 27, 

10, 23, 24, 20, 43, 28, 15, 21, 26, 32, 22, 51, 11, 27, 39, 21, 26, 18, 20, 19, 26, 14, 29, 25, 29, 23, 6, 19, 31, 5, 20, 

33, 12, 32, 14, 24, 45, 39, 21, 20, 33, 18, 23, 15, 6, 25, 8, 54, 36, 16, 12, 28, 25, 17, 50, 7, 31, 28, 20, 20, 20, 27, 

29, 32, 34, 41, 29, 31, 18, 4, 19, 30, 31, 5, 12, 35, 34, 17, 39, 14, 23, 18, 21, 22, 31, 36, 19, 50, 23, 10, 31, 36, 29, 

21, 13, 28, 43, 17, 24, 43, 20, 17, 60, 39, 22, 30, 19, 37, 25, 21, 30, 9, 39, 21, 10, 17, 45, 33, 32, 33, 14, 31, 33, 16, 

24, 19, 8, 4, 27, 21, 58, 38, 40, 14, 21, 14, 2, 29, 18, 42, 25, 28, 49, 37, 24, 34, 33, 30, 23, 10, 30, 46, 12, 38, 11, 

32, 27, 37, 7, 25, 24, 12, 22, 10, 5, 24, 24, 20, 19, 16, 29, 28, 18, 19, 28, 17, 13, 47, 27, 15, 13, 25, 35, 6, 19, 45, 

36, 17, 32, 25, 5, 30, 37, 41, 46, 15, 14, 13, 32) 

 

The script in Appendix A yields the following results. First, it produces a density histogram of the 

empirical distribution with the empirical and normal density curves overlaid (Figure 4). The histogram 

was constructed following the Freedman-Diaconis rule [49], and the density was estimated using 

Epanechnikov's kernel [50] and the Sheather-Jones bandwidth [51]. The histogram profile (12 yellow-

filled bins) and its corresponding density curve (dark blue line) resemble the normal curve (red line), 

although a slight positive (right-tailed) skewness is noticeable (Figure 4). Second the script provides the 

sample quantiles corresponding to the PSNS (Table 11), along with the statistics needed to standardize 

these quantiles (sample size, mean, and standard deviation), and a table showing the calculations used 

to calculate the Q-statistic, which is obtained by summing the values in the last column of this table and 

equals 13.7043 (Table 12). 

 

Figure 4. Density histogram of the empirical distribution (using the Freedman-Diaconis rule) with the empirical 

density curve (based on Epanechnikov’s kernel and the Sheather–Jones bandwidth) and the normal density curve 

overlaid. 

Table 11. Sample quantiles corresponding to Parametric Seven-Number Summary (PSNS) 

2.275013% 9.121122% 25.24925% 50% 74.75075% 90.87888% 97.72499% 

4 10 17 24 32 43 52 

 

Statistics needed to standardize sample quantiles corresponding to the PSNS: 

Sample size: 385. 

Sample mean: 25.01818. 

Sample standard deviation: 12.01441. 
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Table 12. Testing normality using the test based on the Parametric Seven-Number Summary 

e_zp p d_zp ee_zp x_p z_xp z z_sq 

-2 0.0228 0.054 0.1407 4 -1.7494 1.7804 3.1698 

-1.3333 0.0912 0.164 0.0895 10 -1.25 0.9313 0.8673 

-0.6667 0.2525 0.3194 0.0693 17 -0.6674 -0.0103 1e-04 

0 0.5 0.3989 0.0639 24 -0.0847 -1.3268 1.7603 

0.6667 0.7475 0.3194 0.0693 32 0.5811 -1.2342 1.5233 

1.3333 0.9088 0.164 0.0895 43 1.4967 1.8259 3.3339 

2 0.9772 0.054 0.1407 52 2.2458 1.7463 3.0495 

Sum       13.7043 

Note: e_zp = expected value for the p-th quantile in a N(0, 1) distribution, p = quantile order, 

d_zp = density of the p-th quantile in a N(0, 1) distribution, ee_zp = standard error of the p-th quantile for n normally 

distributed data points, x_p = p-th sample quantile, z_xp = standardized quantile (calculated using the sample mean 

and standard deviation), z = (z_xp - e_zp) / ee_zp = standardization of the z_xp statistic under the assumption of 

normality, z^2 = squared z_xp statistic. 

Value of test statistic in original sample 13.70427. 

The script in Appendix B applies bootstrap procedures to compute the critical value for a 5% 

significance level. This value is obtained from the normative bootstrap distribution (Figure 5) as its 0.95 

quantile, using R’s Type 8 quantile estimator (Q_critical = 6.43475). The script also calculates the p-value, 

defined as the proportion of values in the normative bootstrap distribution that are greater than the 

observed test statistic, based on the 2000 Q estimates that constitute the distribution (Figure 6). In 

addition, it computes the effect size as the standardized distance between the test statistic and its 

expected value (in the normative bootstrap distribution), using its standard deviation for scaling. The 

null hypothesis of normality is rejected (Q statistic= 13.70427 > Q_critical value = 6.43475; p-value = 

0.0005 < α = 0.05), with a large effect size: Z = (13.70427 - 2.961112) / 1.902137 = 5.6479 > 3. 

Bootstrap sampling distribution of the Q statistic generated from the original sample (Figure 5). 

Number of extractions with replacement = 2000. 

Bootstrap estimation of the Q = 17.59577. 

Bootstrap standard error of the Q = 7.13478. 

Bootstrap bias of the Q = 3.891502. 

Normative bootstrap sampling distribution of the Q statistic (Figure 6). 

This is generated from a normal distribution with mean 25.01818 and standard deviation 12.01441  

Based on 2000 extractions of size 385. 

Bootstrap expected value of Q under normal = 2.961112. 

Bootstrap standard error of Q under normal = 1.902137. 

Bootstrap critical value for the Q statistic with a significance level of 0.05 = 6.43475. 

Bootstrap p-value = 0.0005. 

The null hypothesis that the data follow a normal distribution is rejected with a significance level of 0.05 

based on the bootstrap p-value. 

Effect size as standardized distance: Z_Q = 5.647943. 

Interpretation of effect size 

< 1.7: Trivial 

[1.7, 2.5): Small 

[2.5, 3): Medium 

≥ 3: Large 

Based on the Z statistic = 5.6479, the size effect of the deviation from the normal distribution model is 

classified as large. 

The normative bootstrap distribution of the Q statistic (derived from normally distributed samples) is 

represented in Figure 5 by a histogram and a density curve, along with the chi-square distribution with 

7 degrees of freedom (red curve). The vertical dotted lines indicate the test statistic (black) and the 



 

 

 

 

22 

 

bootstrap critical value (purple). The normative bootstrap distribution appears more peaked and has a 

longer right tail than the chi-square distribution with 7 degrees of freedom. 

 

Figure 5. Histogram of normative bootstrap distribution (under null hypothesis of normality) of Q-Statistic with 

empirical and chi-2[7] density curves overlaid. The critical value (from the normative bootstrap distribution of the 

Q-statistic) is represented by a purple dotted line, while the test statistic value is shown with a black dotted line. 

The empirical bootstrap distribution of the Q statistic (derived from the original sample) is shown in 

Figure 6 as a histogram and a density curve, together with the chi-square distribution with 7 degrees of 

freedom (red curve). The vertical dotted lines represent the test statistic (black) and the bootstrap critical 

value (purple). In contrast to what is observed in Figure 5, the chi-square distribution appears more 

peaked and exhibits a longer right tail than the empirical bootstrap distribution. 

 

 

Figure 6. Histogram of bootstrap distribution (from original sample) of Q-Statistic with empirical and chi-2[7] 

density curves overlaid. The critical value (from the normative bootstrap distribution of the Q-statistic) is 

represented by a purple dotted line, while the test statistic value is shown with a black dotted line. 

Appendix C script using 10,000 bootstrap samples (generated from original sample) computes statistical 

power or proportion of rejections across simulations. When you run the script, you get a very high 

power value (ϕ = 1 > 0.90). 

Number of bootstrap samples = 10000. 

Number of data per bootstrap sample = 385. 
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Bootstrap power at a significance level of 0.05 = 1. 

The script in Appendix D yields the quadratic form of the Q statistic. First, it presents the Gaussian 

vector with quantiles standardized under the null hypothesis of normality. Second, it displays the 

matrix of correlations between quantiles under the null hypothesis (Table 13). Third, it computes the 

scalar resulting from the quadratic form—namely, the row Gaussian vector multiplied by the square 

correlation matrix, and then by the column Gaussian vector—which gives the value of the test statistic 

(Q_T = 13.08073). The p-value is calculated using a generalized chi-square distribution and is greater 

than the significance level, so the null hypothesis of normality is retained (p-value = 0.9103499 > α = 

0.05). Finally, the effect size is computed as the standardized distance between the test statistic and its 

expected value, which turns out to be trivial: Z_Q = (13.08073 − 7) / 4.829811 = 1.259 < 1.7. 

Gaussian vector z: 

z <- (1.780379, 0.9313009, -0.01029847, -1.326763, -1.23424, 1.825896, 1.746296) 

Table 13. Correlation matrix of PSNS quantiles (under the assumption of normality) 

Quantile [,1] [,2] [,3] [,4] [,5] [,6] [,7] 

[1,] 1 0.4816 0.2625 0.1526 0.0887 0.0483 0.0233 

[2,] 0.4816 1 0.5451 0.3168 0.1841 0.1004 0.0483 

[3,] 0.2625 0.5451 1 0.5812 0.3378 0.1841 0.0887 

[4,] 0.1526 0.3168 0.5812 1 0.5812 0.3168 0.1526 

[5,] 0.0887 0.1841 0.3378 0.5812 1 0.5451 0.2625 

[6,] 0.0483 0.1004 0.1841 0.3168 0.5451 1 0.4816 

[7,] 0.0233 0.0483 0.0887 0.1526 0.2625 0.4816 1 

 

The Q statistic value in the quadratic form = 13.08073. 

Eigenvalues: 2.747683, 1.535561, 0.9552459, 0.6382596, 0.4665808, 0.3647546, and 0.2919151. 

Number of eigenvalues: 7. 

Sum of eigenvalues: 7. 

p-value for the Q_T statistic = 0.1019042. 

Statistical power: 0.9103499. 

Expected value of the Q_T statistic = 7. 

Standard deviation of the Q_T statistic = 4.829811. 

Effect size as standardized distance: Z_Q = 1.259. 

Interpretation of effect size. 

< 1.7: Trivial 

[1.7, 2.5): Small 

[2.5, 3): Medium 

≥ 3: Large 

Based on Z statistic = 1.259, the effect size of the deviation from the normal distribution model is 

classified as trivial. 

When you run the Appendix E script to calculate the p-value, statistical power, and effect size of the Q 

statistic using the chi-square approximation with 7 degrees of freedom, the result resembles the 

quadratic form of the Q statistic. This aligns with the hypothesized distribution of the TAS-20 total score 

but differs from the result obtained using the bootstrap version of the Q statistic, which does not support 

this hypothesis. 

Test Statistic: Q = 13.70427, critical value with a significance level of 0.05 = 14.06714 , asymptotic p-value 

= 0.05669822. 

The null hypothesis that the data follow a normal distribution is not rejected with a significance level of 

0.05 by the Q test. 

The statistical power to the right tail for the alternative hypothesis of non-normality for the Q test: ϕ = 

0.2222. 
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If the null hypothesis of normality is maintained, the power must be less than 0.5; while, if rejected, it 

must be greater than 0.5. In the latter case, it is classified as good with a value of 0.8 and very good with 

a value of 0.9. 

Effect size via Cramer's V-coefficient: V = 0.0713. 

Interpretation of effect size based on Cohen (1988) [35]: 

< 0.1: Trivial 

[0.1, 0.3): Small 

[0.3, 0.5): Medium 

≥ 0.5: Large 

Based on the V statistic = 0.0713, the size of the effect of the deviation from the normal distribution 

model is classified as trivial. 

The Shapiro–Wilk test, using Royston’s procedure (Appendix H), confirms the result obtained with the 

bootstrap version of the Q statistic and the histogram of deviations from normality. In contrast, the 

quadratic form and chi-square versions of the Q statistic support the null hypothesis of normality. 

Consequently, this example validates the results of the analysis with simulated data, indicating that the 

bootstrap version is the most appropriate option for the PSNS Q test. 

Shapiro-Wilk W-statistic: w = 0.9819425. 

Logarithmic transformation of W-statistic: ln(1 - w) = -4.014193. 

Expected value of ln(1 - w) = -5.583649. 

Standard deviation of ln(1 - w) = 0.4210108. 

Royston´s standardized W-statistic: z_w = 3.727829. 

Right-tailed p-value = 9.656814e-05. 

The null hypothesis that the data follow a normal distribution is rejected with a significance level of 0.05 

by the Shapiro-Wilk W-test using Royston's procedure. 

Statistical power: ϕ = 0.9813733. 

It should be noted that both the Kolmogorov-Smirnov-Lilliefors test [52] (D = 0.051253, p-value = 0.01674) 

and the Anderson-Darling test [53] (A² = 1.4911, p-value = 0.000751) reject the null hypothesis of 

normality at the 5% significance level. The Anscombe-Glynn kurtosis test [54] indicates mesokurtosis 

(kurt = 2.99577, z = 0.16173, p-value = 0.8715), whereas the D'Agostino asymmetry test [55] reveals right-

tail asymmetry (skew = 0.46965, z = 3.65637, p-value = 0.0002558). However, no outliers are detected 

(Grubbs test [56] for one outlier: G = 2.99489, U = 0.97658, p-value = 0.5018). See Appendix H for the 

implementation of these tests. 

7. Discussion 

The initial proposal of the Q test for normality, based on the PSNS, defined a sum of squares of seven 

standardized quantiles without interaction terms [5]. Although it does not assume independence 

between quantiles, their correlations are ignored to allow the use of the chi-square distribution with 

seven degrees of freedom as an approximate sampling distribution. This approximation greatly 

simplifies the calculation of the probability value, Type II error, statistical power, and effect size, as is 

also done in the K² test [55, 57-60]. The test requires a large random sample of a continuous variable. 

Based on a simulation study and the approximate calculation of the probability value and statistical 

power using the chi-square distribution with seven degrees of freedom, Moral [5] suggested a minimum 

sample size of 150 participants for the Q test to achieve high accuracy (proportion of correct decisions 

in retaining or rejecting the null hypothesis of normality) and high power (for non-normal distributions) 

or complement of power (for the normal distribution). However, for the normal distribution, the test 

exhibited an accuracy of 1 in detecting or retaining the null hypothesis of normality with a sample size 

as small as 20, while maintaining a power below 0.2. 

The lower power of the Q test in rejecting the null hypothesis for non-normal distributions was 

particularly evident in symmetric distributions with slight leptokurtosis (logistic) or platykurtosis 

(uniform, semicircular, and arcsine). This reduced power is explained by the high correlations observed 

among the four central numbers of the seven-number summary. 
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The present study does not ignore the correlation between quantiles but addresses it in two ways: by 

generating the sampling distribution of the Q statistic using the bootstrap method (QB) or by introducing 

a new expression of the statistic that incorporates interaction terms between pairs of random variables, 

weighted by their corresponding correlations. This new approach takes the form of a quadratic 

expression, where the vector of standardized quantiles remains the same as in the previous proposal, 

but the symmetric square matrix is replaced by the correlation matrix of the quantiles under the null 

hypothesis of normality, instead of an identity matrix. Since the standardization of the quantiles and 

the correlation matrix is based on their expected values under the null hypothesis of normality, the 

subscript T (theoretical distribution) is added to Q (quadratic form) to denote the test statistic. 

A sample simulation was used as in the previous study. Thus, simulations were performed for 31 

sample sizes across 12 distributions (one normal and 11 non-normal) using a fixed seed, resulting in 372 

random samples, each of which was subjected to four normality tests. On the one hand, normality was 

assessed using three versions of the Q-test: one ignoring the correlations between quantiles, one 

generating the sampling distribution using a bootstrap procedure, and one specifying the quadratic 

form with the correlation matrix of the quantiles. On the other hand, normality was also tested using 

the Shapiro-Wilk W test [12-13]. The effectiveness (hit rate) and power of the tests were evaluated, and 

both metrics were compared across the four normality tests using two repeated measures tests: 

Cochran's Q test for proportion of correct classifications and Friedman's test for mean power. 

As in the previous study [5], the W test exhibited the highest accuracy and statistical power. Its power 

was significantly higher than those of the three versions of the Q test and its hit ratio was significantly 

higher than those of the approach Q test based on chi-square distribution and generalized chi-square 

distribution, but not than bootstrap approach. The latter showed significant differences in accuracy (hit 

ratio) y statistical power than other two versions of Q test. 

The QB test demonstrated perfect accuracy, or hit ratio, for normal distribution that is a mesokurtic 

symmetrical distribution, as well as for distributions very distant from normality (exponential, arcsine, 

and chi-square), except for these last two distributions are results shared by the four normality tests. Its 

accuracy was very high for platykurtic symmetrical distributions (uniform, arcsine, and semicircular) 

with an average of 0.957, which was the weakness of the original version of Q test. It also was very high 

for leptokurtic symmetrical distribution (Laplace, Student, and hyperbolic secant) with an average of 

0.935, even for a distribution with slight positive asymmetry (√β₁ ≈ 0.631) and slight pointing (β₂ - 3 

≈ 0.256) as is the Rayleigh distribution with a value of 0.968. For the slightly leptokurtic symmetrical 

distribution included in the study, namely the logistic distribution, its accuracy was high of 0.806. In 

fact, its accuracy was equivalent to that of the W test across all 12 distributions. Meanwhile, the QT test 

showed lower accuracy than the W test for the chi-square, uniform, logistic, and Rayleigh distributions, 

as well as lower accuracy than the original version of the Q test for the logistic and Rayleigh 

distributions. Consequently, the bootstrap approach is the best choice among the three versions of the 

Q test. 

Is it worth questioning why the quadratic form is not the best option for the Q test—or, in fact, why it 

performs the worst? The quadratic form is the most theoretically grounded expression, clearly based on 

the assumption of normality, which serves as the null hypothesis of the distributional model. 

Accordingly, it is denoted with the subscript T (for theoretical) and has a specific implementation in R. 

The issue may lie in the second-degree polynomial involving squared standardized values and their 

cross-products, weighted by the corresponding correlation coefficients. This arithmetic structure makes 

the test overly conservative with respect to the null hypothesis, ultimately rendering it inadequate and 

lacking in statistical power. In contrast, the bootstrap procedure generates the sampling distribution in 

a way that incorporates the influence of quantile correlations, but without the excessive conservatism 

of the explicit quadratic form. It also avoids the theoretical limitation of assuming independence, as in 

the original test form, which proved to be both appropriate and powerful. 

While the bootstrap approach is as accurate as the other two versions of the Q test in maintaining the 

null hypothesis under normally distributed data, it exhibits a lower type II error rate (i.e., higher 
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statistical power). Thus, it represents the least conservative formulation with respect to the null 

hypothesis of normality in the Q test. 

Although the W test was a better option than the QB test in its bootstrap approach, the latter remains an 

important alternative when using the seven-number summary to assess normality. Both tests showed 

similar accuracy (0.952, 95% Wilson-type CI [0.925, 0.969] vs. 0.976, 95% Wilson-type CI [0.955, 0.987]) 

and average power (0.935, 95% BCa CI [0.919, 0.950] vs. 0.961, 95% BCa CI [0.946, 0.975]). Notably, the 

W test does not clearly outperform the Q test with samples of 50, and a previous study had already 

reported this finding with smaller samples of 20 and 30 data points [5]. Similarly, Souza, Toebe, Mello, 

and Bittencourt [61] found that the Shapiro-Wilk test performed poorly with small samples. 

The example with real data demonstrates that the bootstrap version of the Q test leads to the same 

conclusion as traditional normality tests—such as the Shapiro-Wilk test—namely, the rejection of the 

null hypothesis. In contrast, the other two versions of the Q test assume normality. Although this 

assumption is supported by previous studies conducted with psychology students [62], high school 

students [63], and both clinical [20] and general [64] populations, the current sample consists of students 

specifically aspiring to enter a psychology program during the selection process. Therefore, the 

deviation from normality, characterized by positive skewness, may be attributed to impression 

management (i.e., social desirability). Since alexithymia entails low emotional intelligence, it is not a 

desirable trait for candidates seeking to become psychologists. Consequently, participants provide 

lower scores on the alexithymia scale. 

Regarding the limitations of the study, it should be noted that the simulation was restricted to a single 

sample per condition (sample size × distribution type) due to computational processing constraints. 

However, a seed was used to ensure the reproducibility of results and to achieve greater statistical 

power in comparisons among the four normality tests when applying repeated measures statistical tests 

(Cochran’s Q and Friedman’s test). Small sample sizes (20, 30, 40) were not included, as a previous study 

on the Q test indicated the necessity of larger samples, including W test [5]. Additionally, only 12 

continuous distributions were considered, meaning the behavior of the Q test with discrete distributions, 

such as uniform, binomial, negative binomial, hypergeometric, negative hypergeometric, or Poisson, 

was not examined [65]. The comparison was limited to the Shapiro-Wilk test [12-13], which is currently 

regarded as the most powerful test for sample sizes ranging from 3 to 2000 [66]. However, other 

alternatives exist, such as the Shapiro-Francia test [16-17], which can be used for samples of up to 5,000 

data points and has a statistical power similar to that of the Shapiro-Wilk test [15]. 

8. Conclusions 

It is concluded that the bootstrap approach in the Q test, based on the parametric seven-number 

summary (PSNS), represents a substantial improvement over the original version, which relied on the 

chi-square distribution with seven degrees of freedom and did not account for correlations among the 

seven quantiles. The QB variant significantly improves both the test's accuracy and statistical power. 

Furthermore, its performance is comparable to that of the Shapiro–Wilk W test, which is currently 

regarded as the most powerful normality test for samples of up to 2,000 observations. 

9. Suggestions 

Further investigation of the QB test with discrete distributions that converge to normality is 

recommended, considering both parameterizations that deviate from normality and parameter values 

that ensure proximity to it. For instance, the binomial distribution B(10, 0.1) can be considered far from 

normal, warranting rejection of the null hypothesis of normality in this case. In contrast, the binomial 

distribution B(100, 0.5) has parameter values that closely approximate the normal distribution, 

supporting the retention of the null hypothesis. 

Similarly, in the case of the Poisson distribution, a rate parameter of 3 results in a distribution that 

deviates significantly from normality, justifying rejection of the null hypothesis. Conversely, a rate 

parameter of 100 provides an acceptable approximation to normality, reinforcing the retention of the 

null hypothesis. 

It is also suggested to include larger sample sizes (ranging from 1,000 to 10,000 in increments of 500) 

and to compare the QB test with the Shapiro-France normality test [16-17] and the quantile-based test 
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by Avdović and Jevremović [6]. The expectation is that the QT test will exhibit similar or slightly lower 

accuracy and power values. If additional tests such as the Kolmogorov-Smirnov test [67] or the G-test 

[68] are included, the QB test is expected to demonstrate superior performance. 

The application of the QB test is recommended either as a standalone procedure—accompanied by 

graphical representations such as bar and box plots, histograms with overlaid density and normal 

curves, and normal quantile-quantile plots [69-70]—particularly when the seven-number summary is 

reported [4], or as a complementary test alongside the Shapiro–Wilk test [12-13]. The R scripts 

developed in this study are available for this purpose. 

The Freedman–Diaconis rule is used to determine the bin width and number of bins for the histogram 

[49] representing the sample data. Epanechnikov’s kernel function [50] and the Sheather–Jones 

bandwidth selector [51] are employed to estimate the density of the overlaid empirical curve. These 

options were selected due to their flexibility regarding the normality assumption and their closer 

alignment with empirical data [71]. Additionally, a normal curve is included as a theoretical reference 

in the plot, which can be saved in Tagged Image File Format (TIFF). This format, developed by Aldus 

Corporation, is known for its high quality and support for both lossless and lossy compression, making 

it suitable for various purposes, including archiving and printing [72]. 
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Appendices 

Appendix A. Q-statistic 

# Shared script for the QB and Q tests. 

# It serves as the introductory section of the scripts found in Appendices C and E. 

 

# Define data vector. 

x <- c() 

 

# Sample representation using a histogram (based on the Freedman-Diaconis rule) with density curves 

(Epanechnikov’s kernel and Sheather-Jones bandwidth) and normal curves overlaid. 

# Remove the hash symbol from tiff() and dev.off to save the graphic as a TIFF file. 

tiff("histogram.tiff", width = 1600, height = 900, units = "px", res = 300) 

par(mar = c(4, 4, 1, 1) + 0.1) # Set the plot margins. 

 

# Define a wider range for x to ensure complete visualization 

x_range <- range(x) 

x_buffer <- 0.2 * diff(x_range) 

xlim_adjusted <- c(x_range[1] - x_buffer, x_range[2] + x_buffer) 

# Compute density for ylim 

density_x <- density(x, kernel = "epanechnikov", bw = "SJ") 

y_normal <- dnorm(x, mean = mean(x), sd = sd(x)) 

# Histogram based on the Freedman-Diaconis rule. 

hist(x, breaks = "FD", freq = FALSE, col = "lightyellow", border = "black", 
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main = "", xlab = "Scores of X", xlim = xlim_adjusted, ylab = "Density", ylim = c(0, max(density_x$y, 

y_normal) + 0.01)) 

# Overlay a density curve (Epanechnikov’s kernel and Sheather-Jones bandwidth) 

lines(density_x, col = "darkblue", lwd = 4) 

# Overlay the expected density curve if data follow a normal distribution. 

x_seq <- seq(xlim_adjusted[1], xlim_adjusted[2], length.out = 1000) 

y_normal <- dnorm(x_seq, mean = mean(x), sd = sd(x)) 

lines(x_seq, y_normal, col = "red", lwd = 4) 

# Add legend. 

legend("topleft", legend = c("Empirical", "Normal"), col = c("darkblue", "red"), 

lwd = 4, bty = "n", title = "", cex = 0.8) 

dev.off() 

 

# Calculation of sample quantiles at the orders corresponding to the parametric seven-number summary 

for a normal distribution, using the R type-8 rule. 

p <- c(pnorm(-2), pnorm(-4/3), pnorm(-2/3), pnorm(0), pnorm(2/3), pnorm(4/3), pnorm(2)) 

q <- quantile(x, probs = p, type = 8) 

cat("\nSample quantiles corresponding to Parametric Seven-Number Summary (PSNS)\n") 

print(round(q, 4)) 

 

cat("\nStatistics needed to standardize sample quantiles corresponding to the PSNS:\n") 

n <- length(x) # sample size 

m <- mean(x) # sample mean 

s <- sd(x) # sample standard deviation 

cat("\nSample size:", n, ".\n") 

cat("\nSample mean:", m, ".\n") 

cat("\nSample standard deviation:", s, ".\n") 

 

# Computation of the statistical value for the normality test, derived from the parametric seven-number 

summary. 

e_zp <- qnorm(p) # Expected value under normal. 

d_zp <- dnorm(qnorm(p)) # Expected density under normal. 

ee_zp <- sqrt((p * (1 - p)) / (n * dnorm(qnorm(p))^2)) # Standard error under normal. 

zx <- (q - m) / s # Standardized quantile. 

z <- (zx - e_zp) / ee_zp # Standardization of zx under assumption of normality. 

z_sq <- z^2 # squared of the z_q statistic. 

Q_stat <- sum(z_sq) # test statistic for the normality Q test. 

 

# Creating a table from a data frame with the previous calculations. 

tabla <- data.frame(e_zp = round(e_zp, 4), p = round(p, 4), d_zp = round(d_zp, 4), ee_zp = round(ee_zp, 

4), x_p = round(q, 4), z_xp = round(zx, 4), z = round(z, 4), z_sq = round(z_sq, 4)) 

fila_suma <- data.frame(e_zp = "Sum", p = "", d_zp = "", ee_zp = "", x_p = "", z_xp = "",  

z = "", z_sq = format(Q_stat, digits = 6)) 

tabla <- rbind(tabla, fila_suma) 

# Displaying the table. 

cat("\nTable: Testing normality using the test based on the Parametric Seven-Number Summary\n") 

print(tabla, row.names = FALSE) 

cat("\nNote: e_zp = expected value for the p-th quantile in a N(0, 1) distribution,  

p = quantile order, 

d_zp = density of the p-th quantile in a N(0, 1) distribution, 

ee_zp = standard error of the p-th quantile for n normally distributed data points, 
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x_p = p-th sample quantile, 

z_xp = standardized quantile (calculated using the sample mean and standard deviation), 

z = (z_xp - e_zp) / ee_zp = standardization of the z_xp statistic under the assumption of normality, 

z^2 = squared z_xp statistic.\n") 

 

# Display value of test statistic in original sample. 

cat("\nValue of test statistic in original sample: Q-statistic =", Q_stat, ".\n") 

 

Appendix B. Bootstrap version of PSNS Q test 

# Script for the QB test: Bootstrap probability and effect size. 

# This script is designed to be used in conjunction with the script from Appendix B, but it can also be 

executed independently. 

 

# Function to compute the Q statistic from a sample vector using R’s type-8 quantiles. 

compute_q_statistic <- function(sample, type = 8) { 

# Define the seven standard normal quantiles used in the PSNS: 

p <- c(pnorm(-2), pnorm(-4/3), pnorm(-2/3), pnorm(0), pnorm(2/3), pnorm(4/3), pnorm(2)) 

# Obtain the sample quantiles at those probabilities 

q <- quantile(sample, probs = p, type = type) 

# Standardize the sample quantiles using the mean and standard deviation of the bootstrap sample. 

zx <- (q - mean(sample)) / sd(sample) 

# Compute the squared deviations between the standardized sample quantiles and the corresponding 

theoretical quantiles, scaled by its standard error (under null hypothesis of normality) 

z_sq <- ((zx - qnorm(p)) / sqrt((p * (1 - p)) / (length(sample) * dnorm(qnorm(p))^2)))^2 

sum(z_sq) 

} 

 

# Value of test statistic in original sample. 

Q_stat <- compute_q_statistic(x) 

 

# Bootstrap sampling distribution for the Q statistic in the normality test based on the Parametric 

Seven-Number Summary (PSNS). 

set.seed(123) # Seed for reproducibility of results. 

Q_bootstrap <- numeric(2000) 

for (i in 1:2000) { 

x_boot <- sample(x, length(x), replace = TRUE) 

Q_bootstrap[i] <- compute_q_statistic(x_boot) 

} 

# print(round(Q_bootstrap, 4)) # Remove the hash symbol if you want to display the empirical 

bootstrap distribution. 

 

# Bootstrap critical value for the null hypothesis of normality using R's type-9 quantiles in the function 

that computes the Q statistic. 

set.seed(123) # Seed for reproducibility of results, 

Q_null <- numeric(2000) 

for (i in 1:2000) { 

x_norm_boot <- rnorm(length(x), mean = mean(x), sd = sd(x)) 

Q_null[i] <- compute_q_statistic(x_norm_boot, type = 9) 

} 

# print(round(Q_null, 4)) # Remove the hash symbol if you want to display the normative bootstrap 

distribution. 
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# Critical value and bootstrap p-value  

alpha <- 0.05 

Q_critical <- quantile(Q_null, 1 - alpha, type = 8) 

 

# Print results. 

cat("\nValue of test statistic in original sample", Q_stat, ".\n") 

cat("\nBootstrap sampling distribution of the Q statistic generated from the original sample\n") 

cat("\nNumber of extractions with replacement =", length(Q_bootstrap), ".\n") 

cat("\nBootstrap estimation of the Q =", mean(Q_bootstrap), ".\n") 

cat("\nBootstrap standard error of the Q =", sd(Q_bootstrap), ".\n") 

cat("\nBootstrap bias of the Q =", mean(Q_bootstrap) - Q_stat, ".\n") 

cat("\nNormative bootstrap sampling distribution of the Q statistic\n") 

cat("\nThis is generated from a normal distribution with mean", mean(x), "and standard deviation", 

sd(x), "\n") 

cat("\nBased on", length(Q_null), "extractions of size", length(x), ".\n") 

cat("\nBootstrap expected value of Q under normal =", mean(Q_null), ".\n") 

cat("\nBootstrap standard error of Q under normal =", sd(Q_null), ".\n") 

p_bootstrap <- mean(Q_null > Q_stat) 

cat("\nBootstrap critical value for the Q statistic with a significance level of", alpha, "=", Q_critical, 

".\n") 

cat("\nBootstrap p-value =", format(p_bootstrap, scientific = FALSE, digits = 5), ".\n") 

if (p_bootstrap < alpha) { 

cat("\nThe null hypothesis that the data follow a normal distribution is rejected \nwith a significance 

level of", alpha, "based on the bootstrap p-value.\n") 

} else { 

cat("\nThe null hypothesis that the data follow a normal distribution is not rejected \nwith a 

significance level of", alpha, "based on the bootstrap p-value.\n") 

} 

 

# Effect size. 

Z_Q <- abs(Q_stat - mean(Q_null)) / sd(Q_null) 

cat("\nEffect size as standardized distance: Z_Q =", Z_Q, ".\n") 

cat("\nInterpretation of effect size\n") 

cat("< 1.7: Trivial\n[1.7, 2.5): Small\n[2.5, 3): Medium\n ≥ 3: Large\n") 

effect_size <- ifelse(Z_Q < 1.7, "trivial", 

ifelse(Z_Q < 2.5, "small", 

ifelse(Z_Q < 3, "medium", "large"))) 

cat("\nBased on the Z statistic = ", round(Z_Q, 4), ", the size effect of the deviation from the normal 

distribution model is classified as", effect_size, ".\n") 

 

# Histogram of the bootstrap sampling distribution of the Q statistic from the sample data, 

# with an overlaid kernel density estimate and a chi-square density curve with seven degrees of 

freedom. 

# Remove the hash symbol from tiff() and dev.off to save the graphic as a Tagged Image File Format 

(TIFF) file. 

# tiff("Empiric_hist.tiff", width = 1600, height = 900, units = "px", res = 300) 

par(mar = c(4, 4, 1, 1) + 0.1) # Set the plot margins 

# Define x-axis limits 

x_min <- min(Q_bootstrap) 

x_max <- max(Q_bootstrap) 
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# Compute kernel density and chi-square density 

dens_kernel <- density(Q_bootstrap) 

dens_chisq <- dchisq(dens_kernel$x, df = 7) 

# Determine max y value for ylim 

y_max <- max(dens_kernel$y, dens_chisq) 

# Plot histogram with adjusted ylim 

hist(Q_bootstrap, breaks = "fd", freq = FALSE, col = "lightyellow", border = "black", 

main = "Bootstrap distribution", xlab = "Q statistic (sample data)", 

ylab = "Density", xlim = c(x_min, x_max), ylim = c(0, y_max * 1.05)) 

# Overlay kernel density estimate (Gaussian kernel) 

lines(dens_kernel, col = "darkblue", lwd = 4) 

# Overlay chi-square density curve with 7 degrees of freedom 

curve(dchisq(x, df = 7), from = 0, to = x_max, col = "red", lwd = 4, add = TRUE) 

# Add vertical line for Q_critical 

abline(v = Q_critical, col = "purple", lwd = 3, lty = 2) 

# Add vertical line for Q_statistic 

abline(v = Q_stat, col = "black", lwd = 3, lty = 2) 

# dev.off() 

 

# Histogram of the bootstrap sampling distribution of the Q statistic under normality, 

# with an overlaid kernel density estimate and a chi-square density curve with seven degrees of 

freedom. 

# Remove the hash symbol from tiff() and dev.off to save the graphic as a TIFF file. 

# tiff("Normative_hist.tiff", width = 1600, height = 900, units = "px", res = 300) 

par(mar = c(4, 4, 1, 1) + 0.1) # Set the plot margins. 

# Density histogram using Freedman-Diaconis rule.  

# Check if the upper limit of 16 for the ordinate axis is appropriate. 

hist(Q_null, breaks = "fd", freq = FALSE, col = "lightyellow", border = "black", 

main = " Bootstrap distribution under normality", xlab = "Q Statistic (Normal samples)", ylab = 

"Density", xlim = c(0, 16)) 

# Overlay kernel density estimate (Gaussian kernel) 

lines(density(Q_null), col = "darkblue", lwd = 4) 

# Overlay chi-square density curve with 7 degrees of freedom 

# Check if the upper limit of 16 for the curve is appropriate. 

curve(dchisq(x, df = 7), from = 0, to = 16, col = "red", lwd = 4, add = TRUE) 

# Add vertical line for Q_critical 

abline(v = Q_critical, col = "purple", lwd = 3, lty = 2) 

# Add vertical line for Q_statistic 

abline(v = Q_stat, col = "black", lwd = 3, lty = 2) 

# dev.off() 

 

Appendix C. Statistical power of bootstrap version of PSNS Q test 

# Script for computing the bootstrap power of the normality test using the QB statistic. 

 

x <- c() # Define data vector. 

Q_critical <- 6.43475 # Bootstrap critical value. It is taken from the result of the previous script. 

alpha <- 0.05 # Level of significance or complement of the critical value order (Q_critical). 

 

# Bootstrap power calculation. 

set.seed(456) # Seed for reproducibility of results. 

# Create a vector to store results of 10000 simulated tests 
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for (i in 1:10000) { 

x_boot <- sample(x, length(x), replace = TRUE) 

p <- c(pnorm(-2), pnorm(-4/3), pnorm(-2/3), pnorm(0), pnorm(2/3), pnorm(4/3), pnorm(2)) 

q <- quantile(x_boot, probs = p, type = 8) 

zx <- (q - mean(x_boot)) / sd(x_boot) 

z_sq <- ((zx - qnorm(p)) / sqrt((p * (1 - p)) / (length(x_boot) * dnorm(qnorm(p))^2)))^2 

Q_sim <- sum(z_sq) 

} 

# Compute empirical power as the proportion of rejections across simulations. 

power <- mean(Q_sim > Q_critical) 

 

# Display results 

cat("\nNumber of bootstrap samples =", length(Q_sim), ".\n") 

cat("\nNumber of data per bootstrap sample =", length(x_boot), ".\n") 

cat("\nBootstrap power at a significance level of", alpha, "=", format(power, scientific = FALSE, digits = 

5), ".\n") 

 

Appendix D. Quadratic form version of PSNS Q test 

# Script for calculating the QT statistic (quadratic form), its probability value, statistical power, and 

effect size. 

 

# Replace the example with your own data vector. 

x <- c(-0.23, -1.39, 0.38, 0.52, -0.49, 0.28, -0.04, 0.11, 1.03, -0.33, -0.33, 0.06, 0.16, 0.29, -0.16, -1.06, 0.54, 

0.88, -1.64, -0.31) 

 

# Gaussian vector z. 

p <- c(pnorm(-2), pnorm(-4/3), pnorm(-2/3), pnorm(0), pnorm(2/3), pnorm(4/3), pnorm(2)) 

q <- quantile(x, probs = p, type = 8) # Parametric seven-number summary 

n <- length(x) # Sample size 

m <- mean(x) # Sample Mean 

s <- sd(x) # Standard Sample Deviation 

e_zp <- qnorm(p) # Expected value under normal 

d_zp <- dnorm(qnorm(p)) # Expected density under normal 

ee_zp <- sqrt((p * (1 - p)) / (n * dnorm(qnorm(p))^2)) # Standard error under normal 

zx <- (q - m) / s # Standardized quantile 

z <- (zx - e_zp) / ee_zp # Standardization of zx statistic under assumption of normality 

cat("\nGaussian vector z:\n") 

cat(z, "\n") 

 

# Matrix of correlations R under the assumption of normality. 

p <- pnorm(c(-2, -4/3, -2/3, 0, 2/3, 4/3, 2)) # Cumulative probabilities corresponding to PSNS z-scores 

d <- dnorm(c(-2, -4/3, -2/3, 0, 2/3, 4/3, 2)) # Density values corresponding to PSNS z-scores 

n <- 1000 # Number of simulations 

# Initialize a square matrix of zeros to store the theoretical covariance values. 

cov_matrix <- matrix(0, nrow = length(p), ncol = length(p)) 

# Compute the diagonal elements (variances) of the covariance matrix. 

# These are based on the variance of the sample quantiles under normality. 

for (i in 1:length(p)) { 

cov_matrix[i, i] <- (p[i] * (1 - p[i])) / (n * d[i]^2)} 

# Compute the off-diagonal elements (covariances) of the covariance matrix. 

# These reflect the expected covariances between different quantiles under normality. 
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for (i in 1:(length(p) - 1)) { 

for (j in (i + 1):length(p)) { 

cov_matrix[i, j] <- (p[i] * (1 - p[j])) / (n * d[i] * d[j]) 

cov_matrix[j, i] <- cov_matrix[i, j]}} 

# Convert the covariance matrix to a correlation matrix. 

# This is done by standardizing each covariance by the square roots of the corresponding variances. 

corr_matrix <- cov_matrix / sqrt(outer(diag(cov_matrix), diag(cov_matrix))) 

cat("\nCorrelation matrix under the assumption of normality\n") 

print(round(corr_matrix, 4)) 

 

# Quadratic form. 

Q_T <- t(z) %*% corr_matrix %*% z 

cat("\nThe Q statistic value in the quadratic form =", Q_T, ".\n") 

 

# Probability value with the generalized chi-square distribution (Davies method). 

library(CompQuadForm) 

eigenvalues <- eigen(corr_matrix, symmetric = TRUE, only.values = TRUE)$values 

p_value <- davies(Q_T, lambda = eigenvalues)$Qq 

cat("\nEigenvalues:", eigenvalues, ".\n") 

cat("\nNumber of eigenvalues:", length(eigenvalues), "\n") 

cat("\nSum of eigenvalues:", sum(eigenvalues), ".\n") 

cat("\np-value for the Q_T statistic =", p_value, ".\n") 

# Exact calculation of power using the generalized chi-square distribution. 

alpha <- 0.05 

Q_alpha <- qchisq(1 - alpha, df = length(eigenvalues)) # Initial approach 

delta <- eigenvalues * z^2 

power <- davies(Q_alpha, lambda = eigenvalues, delta = delta)$Qq 

cat("\nStatistical power:", power, ".\n") 

 

# Effect size. 

ev_Q <- sum(diag(corr_matrix)) # Expected value of the Q_T statistic. 

sd_Q <- sqrt(2 * sum(eigenvalues ^2)) # Standard deviation of the Q_T statistic. 

Z_Q <- abs(Q_T - ev_Q) / sd_Q # Standarized value of the Q_T statistic. 

cat("\nExpected value of the Q_T statistic =", ev_Q, ".\n") 

cat("\nStandard deviation of the Q_T statistic =", sd_Q, ".\n") 

cat("\nEffect size as standardized distance: Z_Q =", Z_Q, ".\n") 

cat("\nInterpretation of effect size.\n") 

cat("< 1.7: Trivial\n[1.7, 2.5): Small\n[2.5, 3): Medium\n ≥ 3: Large\n") 

effect_size <- ifelse(Z_Q < 1.7, "trivial", 

ifelse(Z_Q < 2.5, "small", 

ifelse(Z_Q < 3, "medium", "large"))) 

cat("\nBased on Z statistic =", round(Z_Q, 4), ", the effect size of the deviation from the normal 

distribution model is classified as", effect_size, ".\n") 

 

Appendix E. Chi-square approximation to PSNS Q test 

# Script for calculating the probability value, statistical power, and effect size based on the chi-square 

approximation with 7 degrees of freedom. 

# To be used following script in Appendix B. 

 

cat("\nCalculation of probability value, statistical power, and effect size using the chi-square 

approximation with 7 degrees of freedom.\n") 
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# Calculation of the probability value from the chi-square approximation with 7 degrees of freedom. 

alpha <- 0.05 

p_asint <- pchisq(Q_stat, df = 7, lower.tail = FALSE) 

cat("\nTest Statistic: Q =", Q_stat, ",", "critical value with a significance level of", alpha,"=", 

qchisq(alpha, df = 7, lower.tail = FALSE), ",", "asymptotic p-value =", p_asint, ".\n") 

if (p_asint < alpha) { 

cat("\nThe null hypothesis that the data follow a normal distribution is rejected \nwith a significance 

level of", alpha, "by the Q test.\n") 

} else {cat("\nThe null hypothesis that the data follow a normal distribution is not rejected \nwith a 

significance level of", alpha, "by the Q test.\n")} 

 

# Statistical power of the Q test using the chi-square distribution approximation with 7 degrees of 

freedom. 

power <- 1 - pchisq(qchisq(alpha, df = 7, lower.tail = FALSE), df = 7, ncp = Q_stat, lower.tail = FALSE, 

log.p = FALSE) 

cat("\nThe statistical power to the right tail for the alternative hypothesis of non-normality for the Q 

test: ϕ =", round(power, 4), ".\n") 

cat("\nIf the null hypothesis of normality is maintained, the power must be less than 0.5; \nwhile, if 

rejected, it must be greater than 0.5. In the latter case, it is classified as \ngood with a value of 0.8 and 

very good with a value of 0.9.\n") 

 

# Effect size calculation using the chi-square distribution approximation with 7 degrees of freedom. 

v <- sqrt(Q_stat / (n * 7)) 

cat("\nEffect size via Cramer's V-coefficient: V =", round(v, 4), ".\n") 

 

# Interpretation based on Cohen (1988) [29]. 

cat("\nInterpretation of effect size based on Cohen (1988):\n") 

cat("< 0.1: Trivial\n[0.1, 0.3): Small\n[0.3, 0.5): Medium\n≥ 0.5: Large\n") 

effect_size <- ifelse(v < 0.1, "trivial", 

ifelse(v < 0.3, "small", 

ifelse(v < 0.5, "medium", "large"))) 

cat("\nBased on the V statistic =", round(v, 4), ", the size of the effect of the deviation from the normal 

distribution model is classified as", effect_size, ".\n") 

 

Appendix F. Correlation matrix 

# Population correlation matrix of PSNS quantiles in a normal distribution 

set.seed(123) # Seed for reproducibility of results. 

n <- 1000 # Original sample size and each bootstrap sample. 

B <- 10000 # Number of bootstrap samples. 

p <- pnorm(c(-2, -4/3, -2/3, 0, 2/3, 4/3, 2)) # Quantile orders. 

# Function for extracting sample quantiles by R type-9 rule. 

get_quantiles <- function(sample) {quantile(sample, probs = p, type = 9)} 

# Generating bootstrap distributions. 

original_sample <- rnorm(n, 0, 1) 

bootstrap_samples <- replicate(B, sample(original_sample, n, replace = TRUE)) 

# Calculation of quantiles for each bootstrap sample. 

quantiles_matrix <- apply(bootstrap_samples, 2, get_quantiles) 

# Calculation and printing of the correlation matrix. 

correlation_matrix <- cor(t(quantiles_matrix)) 

print(correlation_matrix) 
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Appendix G. Generation of original samples 

# Generation of original samples of different sizes, drawn from various distributions 

 

# Required libraries. 

library(VGAM) 

library(EnvStats) 

library(extraDistr) 

 

# Define an empty dataframe to store the results. 

results <- data.frame(Sample_Size = integer(), Min = numeric(), Gap1 = character(), Mdn = numeric(), 

Gap2 = character(), Max = numeric()) 

 

# Define sample sizes. 

n_values <- c(seq(50, 1500, by = 50), 2000) # De 50 a 1500 en pasos de 50, más 2000 

 

# Set a seed for reproducibility. 

set.seed(123) 

# set.sed (12) # For normal distribution 

# Iterate over sample sizes 

for (sample_size in n_values) { 

 

# Generate data from a distribution. 

# To select a distribution, remove the hash symbol (#) from the corresponding sample generator. In this 

run, the hash was removed from the generator for the Laplace distribution. 

x <- rlaplace(sample_size, mu = 50, sigma = 10) # Laplace’s distribution. 

# x <- rnorm(sample_size, mean = 50, sd = 10) # Normal distribution. 

# x <- rt(sample_size, df = 4) * 10 + 50 # Student's t-distribution with 4 degrees of freedom. 

# x <- rchisq(sample_size, df = 5) # Chi-square distribution with 4 degrees of freedom. 

# x <- rbeta(sample_size, shape1 = 0.5, shape2 = 0.5) # Arcsine distribution. 

# x <- runif(sample_size, min = 0, max = 100) # Continuous uniform distribution. 

# x <- rtri(sample_size, min = 0, max = 3, mode = 2.99) # Triangular distribution. 

# x <- 3 * (2 * rbeta(sample_size, shape1 = 1.5, shape2 = 1.5) - 1) # Wigner’s semicircle distribution. 

# x <- rexp(sample_size, rate = 2) # Exponential distribution. 

# x <- 50 + 10 * 2/pi * log(tan(pi/2 * runif(sample_size, min = 0, max = 1))) # Hyperbolic secant distribution. 

# x <- rlogis(sample_size, location = 50, scale = 10) # Logistic distribution. 

# x <- rrayleigh(sample_size, sigma = 12) # Rayleigh’s distribution. 

 

# Calculate the minimum, median and maximum. 

results <- rbind(results, data.frame(Sample_Size = sample_size, Min = min(x), Gap1 = "...", Mdn = 

median(x), Gap2 = "...", Max = max(x))) 

} 

# Print the final table. 

# Remove the hash symbol from the corresponding distribution. 

cat("\nOriginal sample drawn from a Laplace's distribution\n") 

# cat("\nOriginal sample drawn from a normal distribution\n") 

# cat("\nOriginal sample drawn from a Student's t-distribution with 4 degrees of freedom\n") 

# cat("\nOriginal sample drawn from a chi-square distribution with 4 degrees of freedom\n") 

# cat("\nOriginal sample drawn from an arcsine distribution\n") 

# cat("\nOriginal sample drawn from a continuous uniform distribution\n") 

# cat("\nOriginal sample drawn from a triangular distribution\n") 
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# cat("\nOriginal sample drawn from a Wigner's semicircle distribution\n") 

# cat("\nOriginal sample drawn from an exponential distribution\n") 

# cat("\nOriginal sample drawn from a hyperbolic secant distribution\n") 

# cat("\nOriginal sample drawn from a logistic distribution\n") 

# cat("\nOriginal sample drawn from a Rayleigh's distribution\n") 

colnames(results) <- c("Sample size", "Minimum", "...", "Median", "...", "Maximum") 

print(results, row.names = FALSE) 

 

Appendix H. Shapiro-Wilk W test and other tests of normality 

# Shapiro-Wilk W test using Royston's procedure for samples of 12 to 2000 data points and statistical 

power estimation. 

 

# Define a vector of data points 

x <- c() 

 

# Load required library 

library(nortest) 

 

# Define significance level 

alpha <- 0.05  

 

# Compute statistics 

sw <- shapiro.test(x) 

w <- sw$statistic 

p_value <- sw$p.value 

sample_size <- length(x) 

m <- 0.0038915 * log(sample_size)^3 - 0.083751 * log(sample_size)^2 - 0.31082 * log(sample_size) - 1.5861 

sd <- exp(0.0030302 * log(sample_size)^2 - 0.082676 * log(sample_size) - 0.4803) 

z_w <- (log(1 - w) - m) / sd 

zc <- qnorm(0.95, mean = m, sd = sd) 

power <- 1 - pnorm((zc - log(1 - w)) / sd) 

 

# Display results 

cat("Shapiro–Wilk W statistic: w =", w, "\n") 

cat("Logarithmic transformation of W statistic: ln(1 - w) =", log(1 - w), "\n") 

cat("Expected value of ln(1 - w):", m, "\n") 

cat("Standard deviation of ln(1 - w):", sd, "\n") 

cat("Royston's standardized W statistic: z_w =", z_w, "\n") 

cat("Right-tailed p-value:", p_value, "\n") 

 

if (p_value < alpha) { 

cat("\nThe null hypothesis that the data follow a normal distribution is rejected\nat the", alpha, 

"significance level by the Shapiro–Wilk W test using Royston's procedure.\n") 

} else { 

cat("\nThe null hypothesis that the data follow a normal distribution is not rejected\nat the", alpha, 

"significance level by the Shapiro–Wilk W test using Royston's procedure.\n") 

} 

 

cat("\nStatistical power: ϕ =", power, "\n") 

 

# Lilliefors (Kolmogorov-Smirnov) normality test 
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lillie.test(x) 

# Anderson-Darling normality test 

ad.test(x) 

# Outliers, symmetry, and kurtosis tests. 

library(outliers) 

grubbs.test(x, type = 10) 

library(moments) 

anscombe.test(x) 

agostino.test(x) 

 
 


