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Abstract 

Chlorfenapyr is a pyrrole-class pesticide with a unique mechanism of action that disrupts mitochondrial 

oxidative phosphorylation. Despite its broad-spectrum insecticidal use, publicly available toxicological data 

on chlorfenapyr remain limited, particularly regarding organ-specific and long-term effects. To address this 

data gap, the present study implements a multi-model in silico toxicity assessment using three AI-based 

platforms—SwissADME, ProTox-II, and ADMETlab 2.0—to predict key toxicokinetic and toxicodynamic 

properties from the compound’s SMILES representation. Physicochemical and pharmacokinetic parameters 

such as molecular weight, lipophilicity, gastrointestinal absorption, and cytochrome P450 inhibition were 

consistently predicted across platforms. However, notable discrepancies emerged in blood–brain barrier (BBB) 

permeability and hepatotoxicity outcomes. Acute toxicity was estimated with a predicted LD₅₀ of 55 mg/kg 

(Class 3), while organ-specific risks included neurotoxicity, hepatotoxicity, and respiratory toxicity. Both 

platforms highlighted mitochondrial membrane potential disruption and oxidative stress pathways as probable 

mechanisms of toxicity. Toxicophore analysis further revealed substructures associated with non-genotoxic 

carcinogenicity, aquatic toxicity, and poor biodegradability, raising environmental safety concerns. By 

combining complementary model outputs, this AI-supported approach allows for scalable, reproducible, and 

ethically favorable screening of chemical hazards despite inherent limitations associated with model training 

data and prediction variability. The findings demonstrate that multi-endpoint in silico toxicology workflows 

can effectively identify early warning signals of compound toxicity and guide future experimental priorities—

particularly for chemicals like chlorfenapyr, where experimental data are scarce and regulatory insight is 

urgently needed. 

Keywords: ADMETlab 2.0, Chlorfenapyr, Computational Toxicology, ProTox-II, Pesticide Risk 

Assessment, SwissADME. 

1. Introduction 

Pesticides are among the most widely used chemical agents in agriculture, public health, and vector control. 

While their effectiveness in controlling pests is well established, their potential risks to human health and the 

environment have led to increased regulatory attention. Chlorfenapyr, a pro-insecticide of the pyrrole class, has 

gained significant attention due to its broad-spectrum insecticidal activity and unique mechanism of action, which 

involves the disruption of mitochondrial oxidative phosphorylation [1]. Despite its increasing usage, the long-

term toxicological profile of chlorfenapyr remains incompletely understood, especially in terms of chronic toxicity 

and potential organ-specific effects. This makes chlorfenapyr an ideal candidate for computational toxicity 

modeling, particularly for exploring data-poor endpoints such as chronic toxicity and carcinogenicity. 

Traditional toxicity testing methods, particularly in vivo animal studies, are time-consuming, costly, and 

ethically constrained. Moreover, they often fail to keep pace with the growing number of chemicals introduced 

into the environment. In this context, computational toxicology has emerged as a powerful alternative, enabling 

the prediction of absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties through 

structure-based and data-driven models. Although these tools are not without limitations, they facilitate early-

stage hazard identification, reduce the need for animal testing, and support risk assessment strategies by generating 

reproducible and scalable predictions [2].   

Although the development of computational models for toxicity prediction dates back to the early use of 

Quantitative Structure–Activity Relationship (QSAR) methods in the 1960s, their practical application remained 

limited for decades due to insufficient data and computational power [3]. In recent years, however, the field has 

advanced rapidly with the integration of machine learning, large chemical databases, and open-access platforms. 

Today’s models operate using a variety of approaches, including descriptor-based algorithms, graph neural 

networks, and multi-task learning frameworks. Several in silico platforms have been developed to estimate 
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toxicological endpoints using molecular descriptors and machine learning algorithms in response to these needs. 

SwissADME provides physicochemical and pharmacokinetic parameters such as lipophilicity, gastrointestinal 

absorption, and blood-brain barrier permeability [4]. ProTox-II enables the prediction of acute toxicity and organ-

specific toxicities through structural similarity-based modeling [5]. ADMETlab 2.0, on the other hand, offers an 

extended suite of predictive models, including those for metabolism, distribution, and long-term toxicity endpoints 

such as carcinogenicity [6]. The integration of outputs from these complementary tools allows for a broader and 

more reliable toxicity profiling of chemical compounds. Furthermore, comparing these computational predictions 

with available in vitro and in vivo data is essential to assess model validity and to identify where experimental 

validation is still lacking. 

The integration of outputs from these complementary tools allows for a broader and more reliable toxicity 

profiling of chemical compounds. These platforms employ artificial intelligence techniques—including 

descriptor-based models, ensemble machine learning methods, and graph neural networks—to perform multi-

endpoint toxicity prediction [4-6]. While comparing these computational results with experimental data remains 

essential for validation, such AI-driven approaches increasingly bridge the gap between early discovery and 

toxicological screening. 

This study aims to construct a multi-model in silico toxicity assessment workflow to evaluate the potential 

health risks associated with chlorfenapyr exposure. By integrating predictions from SwissADME, ProTox-II, and 

ADMETlab 2.0, the toxicological profile of chlorfenapyr is analyzed in terms of its physicochemical behavior, 

absorption and distribution characteristics, acute and organ-specific toxicities, and long-term hazard endpoints. 

The outcomes are further interpreted in the context of existing literature to identify knowledge gaps—particularly 

regarding chronic toxicity and carcinogenic potential—and to propose future directions for research. 

2. Material and Methods  

2.1. Compound Selection and SMILES Retrieval 

Chlorfenapyr (PubChem CID: 9579305) was selected as the model compound for this study due to its 

increasing agricultural use, unique mode of action, and limited availability of long-term experimental toxicity 

data. Its canonical SMILES string (CCOCN1C(=C(C(=C1C(F)(F)F)Br)C#N)C2=CC=C(C=C2)Cl) and 

molecular descriptors (e.g., molecular weight, LogP, TPSA) were retrieved from the PubChem database. The 

SMILES code serves as the structural input for all computational platforms used in this study. 

2.2. In Silico Tools and Workflow 

To assess the toxicological profile of chlorfenapyr, a combination of three widely recognized in silico tools 

was employed, each offering complementary perspectives to the evaluation process. 

SwissADME was utilized to examine physicochemical characteristics and pharmacokinetic behavior, 

including lipophilicity, gastrointestinal absorption, and blood-brain barrier permeability. These features are 

essential for understanding how chlorfenapyr may interact with biological systems and whether it can access 

sensitive tissues such as the central nervous system. ProTox-II was selected for its ability to estimate acute toxicity 

(LD₅₀), assign toxicity classes, and identify target organ toxicities and mechanistic pathways through structural 

similarity analysis. This tool provided insight into the potential systemic and organ-specific effects of the 

compound. To extend the analysis, ADMETlab 2.0 was used due to its broad coverage of endpoints, including 

cytochrome P450 inhibition profiles, hepatotoxicity, carcinogenicity, and other ADME-related parameters. This 

allowed for a more comprehensive evaluation of long-term toxicity and metabolic interactions. 

All predictions were conducted through the official web interfaces of each platform using the compound’s 

SMILES notation. The workflow was organized in a stepwise and integrative manner. It began with the evaluation 

of fundamental absorption and distribution properties, continued with the assessment of acute and organ-specific 

toxicities, and concluded with the prediction of long-term hazard endpoints. The results were subsequently 

interpreted and compared in the context of available experimental literature. 

All tools were accessed via their respective web platforms: SwissADME (accessed March 13, 2025), ProTox-

II (accessed March 28, 2025), and ADMETlab 2.0 (accessed April 4, 2025). 

2.3. Prediction Parameters and Comparison Strategy 

The analysis focused on a range of parameters representing different aspects of toxicokinetics and 

toxicodynamics. From SwissADME, key descriptors such as molecular weight, topological polar surface area 

(TPSA), lipophilicity (LogP), and blood-brain barrier (BBB) permeability were evaluated to infer absorption and 
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tissue distribution potential. ProTox-II was employed to obtain predicted LD₅₀ values, toxicity class, and organ-

specific toxicity outcomes, particularly regarding hepatotoxicity and neurotoxicity. ADMETlab 2.0 provided 

additional insights, including cytochrome P450 enzyme inhibition, hERG liability, skin sensitization, and 

carcinogenicity predictions. Each output parameter was categorized by endpoint type (e.g., acute toxicity, organ-

specific effects, genotoxicity), and overlapping predictions across platforms were assessed for consistency. 

Parameters without consensus were flagged for further interpretation, and endpoints that consistently appeared 

across tools were prioritized in the mechanistic discussion. This approach enabled a cross-validated, AI-driven 

assessment of the toxicological potential of chlorfenapyr. 

3. Results 

3.1. Physicochemical and pharmacokinetic properties 

A summary of key physicochemical and pharmacokinetic parameters predicted by SwissADME and 

ADMETlab 2.0 is provided in Table 1. 

The physicochemical properties of chlorfenapyr were assessed using both SwissADME and ADMETlab 2.0. 

The molecular weight was estimated as 407.61 g/mol by SwissADME and 405.97 g/mol by ADMETlab, with 

both platforms agreeing on a topological polar surface area (TPSA) of 37.95 Å², indicative of favorable membrane 

permeability. The compound exhibited moderate lipophilicity, with a consensus LogP of approximately 4.8. 

Hydrogen bond analysis revealed no donors and a slight variation in acceptor count between platforms (5 vs. 3), 

although this difference is unlikely to influence passive diffusion significantly. 

Regarding pharmacokinetics, both platforms predicted high gastrointestinal absorption and agreed that 

chlorfenapyr is not a substrate for P-glycoprotein. However, their predictions differed concerning BBB 

permeability. SwissADME suggested that the compound would not cross the BBB, whereas ADMETlab indicated 

a positive prediction (++), highlighting a model-based discrepancy. Protein binding was only evaluated by 

ADMETlab, which estimated a plasma protein binding (PPB) rate of 99.04%, suggesting a limited free circulating 

fraction. Additionally, the skin permeation coefficient (Log Kp) was calculated as –5.36 cm/s, reflecting poor 

dermal absorption potential. 

Metabolic predictions revealed strong inhibition of several cytochrome P450 enzymes, particularly CYP1A2 

and CYP2C9, across both tools. ADMETlab additionally suggested moderate inhibition of CYP2C19 and 

negligible inhibition of CYP3A4 and CYP2D6, pointing to a potential for selective metabolic interactions. 

 
Table 1. Comparison of physicochemical and pharmacokinetic properties of chlorfenapyr predicted 

by SwissADME and ADMETlab 2.0. 

Parameter SwissADME ADMETlab Interpretation 

Molecular weight (g/mol) 407.61 405.97 Consistent; minor variation due to rounding 

Topological Polar Surface Area (Å²) 37.95 37.95 Identical 

Consensus LogP 4.8 (approx.) 4.839 Consistent lipophilicity 

H-bond Donors / Acceptors 0 / 5 0 / 3 Slight difference in HBA count 

GI Absorption High --- Predicted only by SwissADME 

P-gp Substrate No --- Consistent (not a substrate) 

BBB Permeability* No ++ Conflicting predictions 

Plasma Protein Binding (%) — 99.04% Only available in ADMETlab 

Log Kp (Skin Permeation) -5.36 cm/s -5.36 cm/s Consistent 

CYP1A2 Inhibition Yes +++ Strong inhibitor; potential interaction 

CYP2C9 Inhibition Yes +++ Strong inhibitor; potential interaction 

CYP2C19 Inhibition Yes ++ Moderate inhibitor 

CYP2D6 Inhibition Yes -- Low inhibition potential 

CYP3A4 Inhibition No -- Low inhibition potential 

An asterisk (*) denotes parameters for which SwissADME and ADMETlab 2.0 produced differing predictions, reflecting 

possible methodological differences between platforms. For the classification endpoints, the prediction probability values 

are transformed into six symbols: 0-0.1(---), 0.1-0.3(--), 0.3-0.5(-), 0.5-0.7(+), 0.7-0.9(++), and 0.9-1.0(+++). 
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3.2. Acute toxicity and organ-specific predictions 

The acute toxicity potential of chlorfenapyr was predicted using ProTox-II, which estimated an LD₅₀ value of 

55 mg/kg and classified the compound in toxicity class 3, indicating a moderate level of acute oral toxicity. As 

detailed in Table 2, organ-specific toxicity predictions revealed a high probability of neurotoxicity (0.79) and 

 
Table 2. Comparative predictions of acute toxicity and organ-specific toxicological endpoints for 

chlorfenapyr, based on ProTox-II and ADMETlab 2.0 outputs. 

Parameter ProTox-II ADMETlab 2.0 Interpretation 

LD50 (mg/kg) 55 — Moderate acute toxicity (ProTox-II only) 

Toxicity Class Class 3 — Toxic if swallowed (GHS Class 3) 

Neurotoxicity Active (0.79) — Consistently predicted across tools 

Respiratory Toxicity Active (0.67) +++ Consistently predicted across tools 

Hepatotoxicity Inactive (0.67) +++ 
Discrepant prediction (ProTox-II: Inactive, 

ADMETlab: +++) 

Nephrotoxicity Inactive (0.66) — Both models indicate low risk 

Carcinogenicity Inactive (0.58) – Predicted inactive by both tools 

Mutagenicity (AMES) Inactive (0.68) -- Predicted non-mutagenic by both tools 

Drug-Induced Liver Injury (DILI) Not available +++ Strong DILI signal from ADMETlab 

BBB Permeability Active (0.90) ++ Conflicting predictions with SwissADME (No) 

Discrepancies between models are marked with interpretation comments. LD₅₀ and toxicity class values are available only from 

ProTox-II. '+++' indicates high confidence prediction in ADMETlab; probability values are shown in parentheses for ProTox-II. 

respiratory toxicity (0.67), while hepatotoxicity and nephrotoxicity were predicted to be inactive by ProTox-II. In 

contrast, ADMETlab 2.0 predicted a high likelihood (+++) for both hepatotoxicity and respiratory toxicity, 

reflecting a model-based divergence in liver-specific toxicity outcomes. 

Both platforms consistently predicted negative results for mutagenicity (AMES test) and carcinogenicity, 

indicating low genotoxic potential. ADMETlab 2.0 additionally flagged chlorfenapyr with a high risk for drug-

induced liver injury (DILI), further supporting hepatotoxicity concerns. Notably, BBB permeability predictions 

showed convergence between ProTox-II and ADMETlab (++/active) but were inconsistent with SwissADME, 

which predicted no BBB penetration. 

These findings were further visualized through the ProTox-II radar chart (Figure 1), which showed extended 

projections for neurotoxicity and respiratory toxicity, indicating strong model confidence in these endpoints. 

Structural toxicity risks were also explored through toxicophore analysis. ADMETlab 2.0 identified specific 

substructures associated with non-genotoxic carcinogenicity, aquatic toxicity, and environmental persistence. 

These flagged motifs are shown in Figure 2, providing mechanistic insight into structural features potentially 

linked to adverse effects.  
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Figure 1. Radar chart generated by ProTox-II illustrating the confidence levels of predicted 

toxicological endpoints for chlorfenapyr. 

 

3.3. Mechanistic Toxicity and Stress Pathway Activation 

The mechanistic toxicity profile of chlorfenapyr was explored using ProTox-II and ADMETlab 2.0, both of 

which predicted notable activation of key cellular stress response pathways. ProTox-II identified strong activation 

for the antioxidant response element (Nrf2/ARE), mitochondrial membrane potential disruption (MMP), heat 

shock response element (HSE), and the p53 tumor suppressor pathway, all with high probability scores (>0.99). 

These findings suggest that chlorfenapyr may induce oxidative stress, mitochondrial dysfunction, and apoptosis-

related processes.  

ADMETlab 2.0 provided complementary evidence by confirming activation of the p53 pathway (+++), heat 

shock protein signaling (++), and mitochondrial toxicity risk (++). Additionally, chlorfenapyr was predicted to 

activate peroxisome proliferator-activated receptor gamma (PPAR-γ), a nuclear receptor associated with lipid 

metabolism and inflammation. These converging results support the hypothesis that chlorfenapyr may exert its 

toxic effects through combined oxidative and metabolic stress mechanisms.  
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Figure 2. Structural alerts identified by ADMETlab 2.0 in the chlorfenapyr molecule. Three key 

toxicophoric substructures are highlighted: (A) a non-genotoxic carcinogenicity-associated motif 

commonly found in compounds with chronic hazard potential; (B) a non-biodegradable fragment 

indicating environmental persistence risk; and (C) a structural feature linked to aquatic toxicity, 

based on established cheminformatic rules. These motifs contribute to the compound’s predicted 

long-term health and environmental risks. 

 

While no strong activity was observed on endocrine-related targets such as estrogen or androgen receptors, 

ADMETlab flagged a weak aromatase interaction (+), which may warrant further investigation. Importantly, most 

molecular initiating events (MIEs), including interactions with thyroid hormone receptors and neurotransmitter 

receptors, were predicted to be inactive, suggesting a degree of target selectivity. 

The integrated results indicate that chlorfenapyr may trigger a multifaceted stress response involving 

mitochondrial, oxidative, and inflammatory pathways—potentially underlying the observed neurotoxic and 

hepatotoxic predictions in earlier models. 
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Table 3. Mechanistic toxicity and stress pathway activation predictions for chlorfenapyr based on 

outputs from ProTox-II and ADMETlab 2.0. 

Target / Pathway ProTox-II ADMETlab 2.0 Interpretation 

Nrf2/ARE (oxidative stress)* Active (1.00) — Strong oxidative stress signal 

Mitochondrial Membrane 

Potential (MMP)* 
Active (0.99) ++ Mitochondrial stress confirmed by both 

Heat Shock Element (HSE)* Active (1.00) ++ Consistent heat shock response 

p53 (tumor suppressor)* Active (0.99) +++ Strong activation across tools 

PPAR-γ (metabolic regulation)* — +++ Activation confirmed by ADMETlab 

Aromatase (hormonal)* — + Weak hormonal interaction 

Estrogen Receptor Inactive (0.88 / 0.92) - No significant endocrine effect 

Androgen Receptor Inactive (0.98 / 0.92) -- No androgenic activity 

Thyroid Hormone Receptors (α/β) Inactive (0.90 / 0.78) -- Inactive thyroid-related events 

Neurotransmitter Receptors 

(GABA, NMDA, AMPA) 
Inactive (0.92–0.99) -- No CNS receptor interaction predicted 

CAR, PXR (xenobiotic sensors) Inactive (0.92 / 0.98) -- No activation of detox sensors 

Pathways predicted as active by either tool are emphasized in the table by (*). ProTox-II provides probabilistic scores, while 

ADMETlab 2.0 uses a qualitative scale (+++ to ---). 

3.4. Toxicophore alerts and structural liabilities 

Structural alert analysis was conducted using ADMETlab 2.0, which flagged several toxicophoric fragments 

in the chlorfenapyr molecule. These substructures were associated with risks of non-genotoxic carcinogenicity, 

aquatic toxicity, and non-biodegradability. Such fragments are commonly flagged in cheminformatics-based 

toxicity filters due to their known association with long-term or environmental hazards. 

In particular, one alert was triggered under the non-genotoxic carcinogenicity rule, indicating the presence of 

a substructure that may induce carcinogenesis through mechanisms other than direct DNA damage. Additionally, 

three separate alerts were detected for aquatic toxicity, and three for poor biodegradability, suggesting that 

chlorfenapyr may pose environmental persistence and ecotoxicity risks. These features are visualized in Figure 2, 

where the flagged chemical motifs are shown in relation to their associated toxicity categories. While the 

compound showed acceptable drug-likeness in initial filters (e.g., Lipinski and PAINS), the FAF-Drugs4 rule 

identified two substructures considered undesirable in drug development contexts due to their potential reactivity 

or off-target effects. 

Together, these toxicophore findings provide a structural basis for interpreting some of the predicted 

toxicological behaviors discussed in earlier sections, particularly regarding carcinogenic potential and 

environmental impact. 

4. Discussion 

In this study, a comprehensive in silico workflow was developed to evaluate the toxicological profile of 

chlorfenapyr using three established AI-powered platforms: SwissADME, ProTox-II, and ADMETlab 2.0. The 

integration of diverse prediction models enabled a multidimensional assessment of physicochemical, 

pharmacokinetic, acute toxicological, organ-specific, and mechanistic endpoints. To the best of the author’s 

knowledge, while previous studies have applied AI-driven techniques such as molecular docking or predictive 

modeling to investigate Chlorfenapyr [7-9], no comprehensive toxicity screening has been conducted using an 

integrated multi-platform in silico workflow. This underscores the novelty and added value of the current study 

within the expanding field of computational toxicology. 

The physicochemical and pharmacokinetic properties of chlorfenapyr suggest high lipophilicity, efficient 

gastrointestinal absorption, and extensive plasma protein binding. Despite its low polar surface area, predictions 

regarding BBB permeability were inconsistent between SwissADME and ADMETlab, highlighting the 

importance of cross-platform evaluation when interpreting distribution-related endpoints [10-12]. CYP450 

inhibition predictions suggested the compound may interact with major metabolic enzymes such as CYP1A2 and 

CYP2C9, posing a potential for drug–drug interactions [13]. These findings align with the known metabolic 

characteristics of chlorfenapyr, which is bioactivated to a mitochondrial uncoupler compound in vivo [14-15]. 
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Toxicity predictions revealed a moderate acute toxicity profile (LD₅₀ = 55 mg/kg; Class 3) and high-confidence 

organ-specific toxicities in the nervous and respiratory systems. The stress response pathway analysis provided 

additional mechanistic insights, with activation of mitochondrial dysfunction (MMP), oxidative stress 

(Nrf2/ARE), and the tumor suppressor pathway (p53) being prominent. These outputs suggest that chlorfenapyr 

may exert its toxicity through mitochondrial disruption and oxidative imbalance, consistent with its proposed 

mechanism of action as a pro-insecticide targeting mitochondrial ATP synthesis [16, 17]. Interestingly, while 

organ toxicity predictions were robust, both mutagenicity and genotoxicity endpoints were consistently negative 

across platforms. Toxicophore alerts further supported concerns about non-genotoxic carcinogenicity and 

environmental impact. Alerts were triggered for substructures associated with poor biodegradability and aquatic 

toxicity, pointing to ecological risks that may be overlooked in human health assessments alone. These findings 

are particularly important given the increasing focus on environmental safety in pesticide regulation [18-21]. 

Incorporating toxicophore-based filters allows for early identification of structural liabilities and aligns with green 

chemistry principles [22]. 

One notable strength of this study is the simultaneous use of multiple AI-driven tools, each relying on different 

algorithms such as graph-based neural networks, support vector machines, and ensemble learning models. This 

redundancy not only improves confidence in overlapping predictions but also identifies inconsistencies that may 

reflect model limitations. For example, the conflicting BBB permeability outputs underscore the need for 

harmonized training datasets and model interpretability in regulatory applications [23-26]. 

Despite the comprehensive scope, the study has limitations. Predictions were not validated against in vitro or 

in vivo experimental data due to limited publicly available toxicological datasets for chlorfenapyr. As such, the 

results should be considered as a high-throughput hypothesis-generating framework rather than definitive 

toxicological evidence. Future studies should focus on experimentally confirming key endpoints such as 

neurotoxicity, hepatotoxicity, and mitochondrial impairment, especially using human-relevant models. Moreover, 

the current workflow could be extended to include population-level toxicogenomic analyses or adverse outcome 

pathway (AOP) mapping to better understand long-term and low-dose effects. Expanding the approach to 

structurally related pesticides may also reveal structure–toxicity relationships and inform safer chemical design 

strategies. 

In conclusion, this work demonstrates the utility of integrative in silico toxicology workflows for early hazard 

identification of chemical compounds. Nonetheless, it is important to recognize that the reliability of these AI-

driven predictions is inherently limited by the quality and scope of training datasets, as well as the lack of 

systematic experimental validation for many endpoints. These limitations underline the necessity of integrating 

computational assessments with confirmatory in vitro or in vivo studies, especially in regulatory contexts. The 

findings provide a predictive toxicological map of chlorfenapyr and highlight the potential of combining AI-

driven tools to strengthen chemical safety evaluation in the absence of wet-lab data. 
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