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Abstract − This study aims to enhance estimation accuracy in systematic sampling by proposing a 

set of novel Exponentially Weighted Moving Average (EWMA)-based memory-type estimators. 

While memory-type estimators have been explored in other sampling frameworks, they have not 

yet been adapted to systematic sampling, which is known for its uniform population coverage and 

greater efficiency compared to simple random sampling. To address this gap, we develop three new 

estimators: An EWMA-based ratio estimator, an exponential ratio estimator, and a regression 

estimator. Through comprehensive simulation studies using both synthetic and real-world datasets, 

we demonstrate that the proposed estimators consistently outperform traditional methods in terms 

of efficiency. Notably, the ratio and regression-type estimators exhibit superior performance in 

different distributional settings, particularly when the weight parameter ϑ is set to 0.3 for symmetric 

distributions. These results offer a practical and robust alternative for survey statisticians and 

practitioners working with structured populations. The proposed methodology makes both 

theoretical and empirical contributions to the field of finite population estimation under complex 

designs. 

Keywords − EWMA, mean, estimation, systematic sampling, simulation 

1. Introduction  

Systematic sampling ensures uniform coverage across the entire region for all units, making it generally 

more efficient than simple random sampling (SRS), as suggested by Madow and Madow [1]. Consequently, 

researchers and field workers often prefer systematic sampling due to its simplicity and operational 

convenience [2]. Although many articles have addressed systematic sampling, recent studies have 

increasingly focused on developing new selection methods and estimators. For example, Pal et al. [3] 

developed a difference estimator within the framework of systematic sampling. Furthermore, Bello et al. [4] 

investigated the treatment of missing values using diagonal systematic sampling. In addition, Shahzad et al. 

[5] proposed a robust regression estimator tailored to systematic sampling, while Azeem et al. [6] introduced 

a modified sampling design for linearly trending data. Moreover, Pandey and Shukla [7] proposed a 

clustering method based on stratified linear systematic sampling to identify financial risk groups using big 

data mining. Azeem [8, 9] also studied proportion estimation within diagonal systematic sampling and 

developed an alternative sampling scheme. Similarly, Mukherjee and Singh [10] introduced a new sampling 

design based on the systematic approach. 

Shabbir et al. [11] proposed a mean estimator utilizing multiple auxiliary variables. Khan et al. [12] 

improved estimator efficiency by introducing an optimal pairing strategy within a new systematic sampling 
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scheme. Lastly, Gupta et al. [13] proposed a modified systematic sampling design incorporating random 

initialization. Research on systematic sampling extends beyond the field of statistics. For instance, Lee et al. 

[14] applied systematic sampling and linear regression to study cyber-attacks and cybersecurity issues. 

Similarly, Ansari et al. [15] used systematic sampling to estimate the remaining functional life of lithium-ion 

batteries. 

Memory-type estimators based on Exponentially Weighted Moving Average (EWMA) control chart statistics 

represent a novel approach to enhance estimator efficiency by incorporating historical data from the same or 

similar populations [16]. In the existing literature, such estimators have been developed for various sampling 

methods, including simple random sampling [17], stratified sampling [18–20], two-phase sampling [21], and 

ranked set sampling [22]. However, no memory-type estimator has yet been proposed for systematic 

sampling. This study introduces a memory-type estimator for systematic sampling using the EWMA 

approach, filling a notable gap in the literature and aiming to enhance estimation efficiency in this context. 

The main original contribution of this paper lies in the development of novel EWMA-based estimators 

tailored for systematic sampling—a gap previously unaddressed in the literature. 

The rest of the paper is organized as follows: Section 2 presents mean estimators for systematic sampling, 

followed by the recommended method. Section 3 details the simulation studies using both synthetic and real 

data. Section 4 discusses the simulation results, and the final section outlines potential directions for future 

research. 

2. Mean Estimators for Systematic Sampling 

Since systematic sampling may not be familiar to all readers, we briefly recall its basic structure and 

estimation approach before presenting the proposed methodology. In its simplest and most commonly used 

form, the standard systematic sampling design selects every k-th unit from a finite population of 𝑁 units, 

assuming that the sample size n satisfies 𝑁 = 𝑛𝑘 for some integer k. The success of systematic sampling 

depends on the ordering of the units. If there is information about the y values of the units, they should be 

ranked accordingly before performing systematic sampling, as this approach can enhance sampling 

efficiency [2, 23]. From a population of size 𝑁, systematic samples of size 𝑛 can be selected by setting 𝑘 =

𝑁/𝑛. In systematic sampling, the simple mean estimator is calculated as shown (2.1), where 𝑦𝑖𝑗 denotes the 

j-th unit of the i-th systematic sample. This estimator is unbiased only if 𝑁 = 𝑛𝑘. 

𝑦̂0 =
∑ 𝑦𝑖𝑗

𝑛
𝑖=1

𝑛
 (2.1) 

In systematic sampling, the ratio estimator was derived by Swain [24], as shown in (2.2).  

𝑦̂1 =
𝑦̂0

𝑥0
𝑋̅ (2.2) 

Here, 𝑥0 =
∑ 𝑥𝑖𝑗

𝑛
𝑖=1

𝑛
  represents the sample mean obtained through systematic sampling and 𝑋̅ is the 

population mean. The exponential estimator for systematic sampling, as proposed by Singh et al. [25], is 

given in (2.3). 

𝑦̂2 = 𝑦̂0 (
𝑋̅ − 𝑥0

𝑋̅ + 𝑥0
) (2.3) 
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2.1. Proposed Memory-Type Estimators 

Starting from this section, we introduce our original methodological contributions, which include three 

newly designed EWMA-based estimators. EWMA statistics included in the proposed estimators are defined 

for Y and X, as given in (2.4) and (2.5). 

𝐸𝑤𝑚𝑎𝑌(𝑇) = 𝜗𝑦̂0 + (1 − 𝜗)𝐸𝑤𝑚𝑎𝑌(𝑇−1) (2.4) 

𝐸𝑤𝑚𝑎𝑌(𝑇) = 𝜗𝑥0 + (1 − 𝜗)𝐸𝑤𝑚𝑎𝑋(𝑇−1) (2.5) 

Here, the weight parameter, denoted by ϑ, should take a value between (0, 1]. For systematic sampling, the 

first estimator, the EWMA-based memory-type ratio estimator inspired by Aslam et al. [22], is given in 

(2.6); the second estimator, the EWMA-based memory-type exponential ratio estimator inspired by Singh et 

al. [25], is given in (2.7); and the third estimator, the EWMA-based memory-type regression estimator 

inspired by Koçyiğit [16], is given in (2.8). 

𝑦̂𝑃1 =
𝐸𝑤𝑚𝑎𝑌(𝑇)

𝐸𝑤𝑚𝑎𝑋(𝑇)
𝑋̅ (2.6) 

𝑦̂𝑃2 = 𝐸𝑤𝑚𝑎𝑌(𝑇)exp (
𝑋̅ − 𝐸𝑤𝑚𝑎𝑋(𝑇)

𝑋̅ + 𝐸𝑤𝑚𝑎𝑋(𝑇)
) (2.7) 

𝑦̂𝑃3 = 𝐸𝑤𝑚𝑎𝑌(𝑇) + 𝑏́(𝑋̅ − 𝐸𝑤𝑚𝑎𝑋(𝑇)) (2.8) 

In (2.8), 𝑏́  is the slope coefficient obtained from the sample. 

The proposed estimators incorporate EWMA to leverage information from both the current and past values 

of the study and auxiliary variables. This memory-type structure allows the estimator to 'remember' prior 

trends, improving stability and efficiency, particularly when dealing with correlated data. The weight 

parameter ϑ controls the relative influence of past versus current data points. 

3. Simulation Studies 

All simulation studies are conducted using the R program. The estimators presented in Section 2 provide 

estimates made without ranking to examine the effect of ranking in systematic sampling. In contrast, the 

estimators denoted by, 𝑦̂𝜕 , 𝜕 = 11,22, 𝑃11, 𝑃22, 𝑃33 represent estimates where the population is ranked 

according to the auxiliary variable X, respectively. After samples are drawn from both synthetically 

generated populations and the real data set, the estimated values of the estimators are calculated. Following 

the calculation of mean square errors, the results are expressed as Relative Efficiency (REff), as shown in 

(3.1). The general simulation steps are summarized in Figure 1. 

𝑅𝐸𝑓𝑓𝛾 =
𝑀𝑆𝐸(𝑦̂0)

𝑀𝑆𝐸(𝑦̂𝛾)
, 𝛾 = 1,2, 𝑃1, 𝑃2, 𝑃3,11,22, 𝑃11, 𝑃22, 𝑃33 (3.1) 
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Figure 1. Simulation steps 

3.1.  Simulation with Synthetic Data 

This section takes the bivariate normal distribution derived with random (10,1) parameters as the population, 

where 𝑁 = 1000 and 𝜌 = 0.65, 0.75, 0.85, 𝑎𝑛𝑑 0.95. The sample size is set to 𝑛 =

10, 20, 25, 50, 100, 𝑎𝑛𝑑 200 to ensure the unbiasedness of the systematic sampling. For the EWMA, 𝑇 = 2, 

and the sample sizes for obtaining the old statistics are 𝑛0 = 10 𝑎𝑛𝑑 50. The weight parameter 𝜗 is set to 

0.3, 0.5, 0.7, 𝑎𝑛𝑑 0.9. The results are presented in Tables 1-3, ordered according to the correlation 

coefficients in increasing order. 
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Table 1. Simulation results for ρ=0.65 

ρ=0.65 

n 10 20 25 50 100 200 

REff1 1.7602 1.7171 1.3950 1.3466 0.5882 0.5278 

REff2 1.8165 1.7245 1.6395 2.2486 1.1090 2.9062 

REff11 2.0244 1.7618 1.3794 1.1826 1.0205 1.5133 

REff22 1.8927 1.8425 1.4478 1.2787 1.1416 1.3021 

ϑ 

n0 10 50 

n 10 20 25 50 100 200 10 20 25 50 100 200 

0.3 

REffP1 19.5718 19.0309 15.5293 14.9056 6.5061 5.8528 19.5888 19.0336 15.5316 14.8877 6.5246 5.8820 

REffP2 20.1928 19.1625 18.2599 24.9055 12.3488 32.2873 20.2245 19.1509 18.2582 25.1050 12.3524 31.7218 

REffP3 21.0412 19.1536 18.4119 24.6654 10.2676 19.5407 21.1044 19.1434 18.4154 24.3556 10.2503 19.3661 

REffP11 22.5437 19.6228 15.2816 13.1312 11.2814 16.4684 22.5720 19.6338 15.2824 13.1155 11.3187 16.7348 

REffP22 21.0204 20.5182 16.0598 14.1317 12.6796 14.4662 21.0543 20.5036 16.0588 14.1906 12.6821 14.3473 

REffP33 21.6166 20.6313 16.0683 13.6622 12.3822 15.0221 21.6354 20.6019 16.0589 13.8038 12.2876 15.0792 

0.5 

REffP1 7.0508 6.8645 5.5896 5.3634 2.3492 2.1166 7.0528 6.8593 5.5899 5.3664 2.3510 2.1174 

REffP2 7.2765 6.8964 6.5685 9.0206 4.4430 11.4761 7.2780 6.8959 6.5709 9.0274 4.4435 11.6296 

REffP3 7.5959 6.8934 6.6337 8.7492 3.6952 7.0285 7.6011 6.8928 6.6405 8.7922 3.6937 7.0456 

REffP11 8.1178 7.0693 5.5053 4.7213 4.0783 6.0453 8.1198 7.0641 5.5074 4.7241 4.0811 6.0414 

REffP22 7.5765 7.3789 5.7841 5.1079 4.5653 5.1793 7.5781 7.3785 5.7857 5.1110 4.5656 5.2087 

REffP33 7.7891 7.4217 5.7761 4.9835 4.4442 5.4178 7.7885 7.4190 5.7799 4.9709 4.4369 5.4444 

0.7 

REffP1 3.5949 3.5015 2.8491 2.7425 1.1991 1.0775 3.5961 3.5023 2.8501 2.7425 1.2000 1.0793 

REffP2 3.7108 3.5187 3.3496 4.5993 2.2648 5.9201 3.7109 3.5191 3.3497 4.5994 2.2657 5.9306 

REffP3 3.8775 3.5168 3.3874 4.4860 1.8847 3.5981 3.8773 3.5170 3.3864 4.4836 1.8846 3.5954 

REffP11 4.1376 3.6005 2.8113 2.4117 2.0813 3.0802 4.1381 3.6013 2.8117 2.4116 2.0825 3.0863 

REffP22 3.8647 3.7627 2.9527 2.6085 2.3289 2.6553 3.8648 3.7631 2.9528 2.6085 2.3297 2.6568 

REffP33 3.9738 3.7853 2.9494 2.5356 2.2639 2.7824 3.9740 3.7857 2.9494 2.5363 2.2630 2.7814 

0.9 

REffP1 2.1739 2.1191 1.7228 1.6613 0.7260 0.6518 2.1738 2.1194 1.7230 1.6614 0.7259 0.6520 

REffP2 2.2434 2.1288 2.0249 2.7781 1.3696 3.5865 2.2434 2.1289 2.0249 2.7782 1.3695 3.5883 

REffP3 2.3457 2.1275 2.0491 2.7121 1.1402 2.1779 2.3457 2.1275 2.0492 2.7120 1.1402 2.1774 

REffP11 2.5006 2.1759 1.7022 1.4596 1.2598 1.8678 2.5006 2.1762 1.7023 1.4596 1.2597 1.8683 

REffP22 2.3371 2.2751 1.7870 1.5784 1.4093 1.6073 2.3371 2.2752 1.7871 1.5784 1.4093 1.6075 

REffP33 2.4039 2.2900 1.7842 1.5341 1.3692 1.6838 2.4039 2.2901 1.7840 1.5341 1.3696 1.6835 

Bold marked present the best REff value. 
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Table 2. Simulation results for ρ=0.75 

ρ=0.75 

n 10 20 25 50 100 200 

REff1 1.5362 1.4261 2.2395 3.3891 8.7457 3.3935 

REff2 2.0133 2.2980 2.0104 2.3542 3.9349 2.9132 

REff11 1.5326 1.7457 2.1281 1.7016 2.8881 1.7341 

REff22 1.4914 1.7754 2.0746 1.7324 3.4460 1.9338 

ϑ 

n0 10 50 

n 10 20 25 50 100 200 10 20 25 50 100 200 

0.3 

REffP1 17.1882 15.9021 25.2254 37.4644 97.1695 37.5071 17.1905 15.8948 25.2667 37.4380 97.0899 37.2120 

REffP2 22.4067 25.5853 22.3296 26.1754 43.8142 32.3376 22.4026 25.5725 22.3739 26.1093 43.9354 32.3988 

REffP3 18.7838 18.9149 27.1888 41.3532 110.5158 53.0071 18.8430 19.0303 27.2216 41.1371 111.0763 52.5412 

REffP11 17.0911 19.4562 23.6188 18.9165 32.1449 19.2719 17.0990 19.4580 23.6579 18.9031 32.1421 19.1920 

REffP22 16.6104 19.7675 23.0015 19.2562 38.2409 21.4666 16.6068 19.7595 23.0472 19.2194 38.3302 21.4917 

REffP33 17.7977 20.0293 23.7769 19.4225 35.7239 20.3995 17.8152 20.0282 23.8228 19.3407 35.6539 20.5008 

0.5 

REffP1 6.1781 5.7230 9.0653 13.5060 35.0107 13.5238 6.1774 5.7189 9.0624 13.5055 34.9901 13.5364 

REffP2 8.0640 9.2058 8.0574 9.4217 15.7795 11.4585 8.0636 9.2044 8.0554 9.4220 15.7927 11.6584 

REffP3 6.7921 6.8223 9.7990 14.8701 40.1948 19.0215 6.7930 6.8536 9.8001 14.8707 40.0197 19.2450 

REffP11 6.1502 7.0019 8.5228 6.8081 11.5744 6.9345 6.1492 6.9983 8.5197 6.8078 11.5683 6.9403 

REffP22 5.9761 7.1126 8.3036 6.9318 13.7831 7.6474 5.9756 7.1109 8.3018 6.9315 13.7936 7.7365 

REffP33 6.4136 7.2104 8.5894 6.9859 12.7967 7.3854 6.4147 7.2171 8.5814 6.9836 12.8330 7.3540 

0.7 

REffP1 3.1449 2.9147 4.6021 6.9025 17.8538 6.9013 3.1454 2.9148 4.6034 6.9005 17.8560 6.9156 

REffP2 4.1120 4.6935 4.1074 4.8052 8.0475 5.9312 4.1121 4.6936 4.1076 4.8061 8.0476 5.9485 

REffP3 3.4668 3.4986 4.9980 7.5929 20.4634 9.8067 3.4661 3.4981 4.9993 7.5860 20.4576 9.8013 

REffP11 3.1333 3.5670 4.3451 3.4741 5.9000 3.5363 3.1336 3.5672 4.3459 3.4728 5.9001 3.5406 

REffP22 3.0467 3.6259 4.2351 3.5355 7.0370 3.9402 3.0468 3.6260 4.2354 3.5360 7.0365 3.9475 

REffP33 3.2727 3.6823 4.3782 3.5653 6.5389 3.7503 3.2726 3.6820 4.3797 3.5625 6.5409 3.7546 

0.9 

REffP1 1.8989 1.7615 2.7718 4.1809 10.7982 4.1881 1.8990 1.7617 2.7714 4.1811 10.7978 4.1871 

REffP2 2.4863 2.8378 2.4830 2.9069 4.8610 3.5973 2.4863 2.8379 2.4829 2.9068 4.8614 3.5972 

REffP3 2.0964 2.1153 3.0242 4.5901 12.3629 5.9365 2.0962 2.1145 3.0240 4.5898 12.3683 5.9277 

REffP11 1.8934 2.1561 2.6280 2.1008 3.5665 2.1414 1.8934 2.1563 2.6278 2.1008 3.5666 2.1411 

REffP22 1.8419 2.1924 2.5616 2.1389 4.2549 2.3877 1.8419 2.1925 2.5615 2.1390 4.2550 2.3875 

REffP33 1.9797 2.2272 2.6495 2.1556 3.9589 2.2692 1.9797 2.2271 2.6491 2.1556 3.9581 2.2714 

Bold marked present the best REff value. 
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Table 3. Simulation results for ρ=0.85 

ρ=0.85 

n 10 20 25 50 100 200 

REff1 4.8350 4.1849 4.2444 5.5630 4.3901 2.3237 

REff2 3.0577 2.8581 2.9967 3.6623 4.2975 5.3680 

REff11 4.2061 4.3984 3.9697 3.6056 3.4594 1.6245 

REff22 3.8579 4.2172 4.3070 4.7745 4.8258 2.0322 

ϑ 

n0 10 50 

n 10 20 25 50 100 200 10 20 25 50 100 200 

0.3 

REffP1 54.5269 47.0400 47.1559 60.6637 48.3976 25.6734 54.5276 47.0835 47.2594 61.3442 48.2231 25.7799 

REffP2 33.8854 31.7149 33.3157 40.8038 46.9469 54.0104 33.8891 31.7061 33.3245 40.8262 47.8328 59.2784 

REffP3 44.0908 49.8250 50.4071 82.4707 64.5548 46.6157 44.0083 49.9717 50.5165 82.1131 63.5735 47.6490 

REffP11 46.3626 48.7324 43.9668 39.7715 38.4314 17.9736 46.3668 48.7738 44.0463 40.0591 38.3090 18.0188 

REffP22 42.7034 46.8201 47.8072 53.0115 52.3708 21.7275 42.7068 46.7984 47.8289 53.0659 53.4882 22.5267 

REffP33 48.2789 51.2645 46.2603 44.1145 43.3400 19.3091 48.2858 51.4070 46.2601 44.3654 42.7834 19.3340 

0.5 

REffP1 19.5710 16.8892 17.0137 22.1452 17.3217 9.2250 19.5599 16.8938 16.9987 22.1397 17.4593 9.3032 

REffP2 12.2131 11.4107 11.9961 14.6843 17.0649 21.4573 12.2113 11.4233 11.9962 14.6828 17.2106 21.4706 

REffP3 15.8981 17.9800 18.2220 29.5982 23.4352 17.0900 15.8455 17.9837 18.2035 29.6356 23.1379 17.1305 

REffP11 16.7388 17.5678 15.8709 14.4265 13.7576 6.4628 16.7323 17.5692 15.8600 14.4239 13.8304 6.4986 

REffP22 15.3963 16.8279 17.2214 19.1032 19.0735 8.1256 15.3931 16.8611 17.2211 19.1004 19.2685 8.1293 

REffP33 17.3866 18.5129 16.6357 15.9689 15.2995 6.9485 17.3849 18.4874 16.6350 15.9642 15.3967 6.9939 

0.7 

REffP1 9.9369 8.5827 8.6757 11.3171 8.9282 4.7433 9.9377 8.5886 8.6740 11.3166 8.9312 4.7388 

REffP2 6.2344 5.8302 6.1196 7.4773 8.7862 10.9518 6.2346 5.8297 6.1194 7.4845 8.7861 10.9524 

REffP3 8.0801 9.1622 9.2914 15.1099 11.8978 8.7445 8.0821 9.1741 9.2893 15.1271 11.8874 8.7465 

REffP11 8.5551 8.9645 8.0997 7.3562 7.0592 3.3150 8.5557 8.9680 8.0986 7.3579 7.0607 3.3131 

REffP22 7.8613 8.6029 8.7903 9.7354 9.8484 4.1470 7.8616 8.6039 8.7898 9.7443 9.8486 4.1468 

REffP33 8.8697 9.4233 8.4921 8.1444 7.8618 3.5676 8.8698 9.4252 8.4926 8.1434 7.8686 3.5638 

0.9 

REffP1 5.9849 5.1769 5.2421 6.8606 5.4142 2.8683 5.9841 5.1763 5.2423 6.8615 5.4147 2.8694 

REffP2 3.7737 3.5281 3.7004 4.5236 5.3088 6.6265 3.7739 3.5279 3.7004 4.5235 5.3088 6.6269 

REffP3 4.8919 5.5511 5.6180 9.1489 7.1897 5.2888 4.8899 5.5500 5.6180 9.1474 7.1861 5.2873 

REffP11 5.1873 5.4289 4.9000 4.4514 4.2711 2.0051 5.1871 5.4284 4.9002 4.4516 4.2712 2.0056 

REffP22 4.7605 5.2062 5.3171 5.8945 5.9578 2.5086 4.7605 5.2059 5.3172 5.8947 5.9580 2.5089 

REffP33 5.3657 5.7040 5.1379 4.9264 4.7591 2.1572 5.3657 5.7028 5.1380 4.9270 4.7596 2.1590 

Bold marked present the best REff value.  
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Table 4. Simulation results for ρ=0.95 

ρ=0.95 

n 10 20 25 50 100 200 

REff1 7.2851 5.7901 11.8017 6.2171 4.0074 4.6200 

REff2 3.4452 3.1905 3.2445 3.7547 3.4292 4.3374 

REff11 8.1254 6.8871 13.1487 11.8136 12.0575 17.1696 

REff22 6.7464 6.0416 11.0305 14.6982 16.6617 34.5826 

ϑ 

n0 10 50 

n 10 20 25 50 100 200 10 20 25 50 100 200 

0.3 

REffP1 81.0449 65.1341 130.3617 69.0056 44.7170 51.6974 81.1177 65.4500 130.7843 68.9975 44.7077 51.5767 

REffP2 38.2971 35.5999 36.0674 41.5308 37.9548 47.7635 38.3351 35.6562 36.1005 41.5531 38.0341 48.0584 

REffP3 72.0267 62.7918 125.4078 81.3608 50.8220 63.0224 72.2945 63.3223 125.5002 81.4302 51.0263 62.7529 

REffP11 90.4106 76.3520 145.1784 131.0259 133.9888 190.6803 90.4702 76.7572 145.7031 131.0447 133.7823 189.4438 

REffP22 74.9315 66.9617 122.0541 162.7218 183.0658 364.5445 75.0515 67.1864 122.3106 162.9876 184.8529 383.0451 

REffP33 89.3404 79.4083 147.8935 138.5470 143.8050 209.2882 89.5572 79.7727 147.8992 138.4909 143.8818 206.9460 

0.5 

REffP1 29.1992 23.4626 47.0892 24.8604 16.0773 18.5793 29.1830 23.4632 47.1175 24.8510 16.0829 18.5599 

REffP2 13.7965 12.8148 12.9923 14.9637 13.6955 17.2793 13.7958 12.8159 12.9924 14.9644 13.6951 17.2905 

REffP3 26.0044 22.8927 45.0154 29.4118 18.3613 22.6930 25.9744 22.8561 45.1047 29.2713 18.3780 22.6454 

REffP11 32.5610 27.6152 52.4573 47.2264 48.1758 68.6773 32.5483 27.6235 52.4906 47.1967 48.2438 68.4292 

REffP22 27.0100 24.1822 44.0611 58.4746 66.5022 135.5907 27.0074 24.1801 44.0673 58.5683 66.4396 136.5979 

REffP33 32.2386 28.7203 53.2159 49.8778 51.7989 75.3717 32.2235 28.7368 53.2609 49.8876 51.9393 74.8123 

0.7 

REffP1 14.8852 11.9119 24.0513 12.6815 8.1941 9.4563 14.8844 11.9100 24.0595 12.6810 8.1953 9.4550 

REffP2 7.0354 6.5283 6.6264 7.6483 6.9924 8.8399 7.0357 6.5279 6.6261 7.6499 6.9938 8.8426 

REffP3 13.2583 11.6639 22.9852 14.9766 9.3721 11.5646 13.2571 11.6598 23.0171 14.9562 9.3717 11.5614 

REffP11 16.5984 14.0800 26.7938 24.0921 24.5876 35.0280 16.5982 14.0777 26.8032 24.0922 24.6135 35.0233 

REffP22 13.7746 12.3351 22.4922 29.9309 33.9751 70.3407 13.7749 12.3349 22.4953 29.9745 33.9901 70.5507 

REffP33 16.4396 14.6609 27.1598 25.4408 26.4481 38.3437 16.4404 14.6585 27.1820 25.4517 26.4899 38.3150 

0.9 

REffP1 8.9990 7.1668 14.5639 7.6753 4.9503 5.7089 8.9982 7.1671 14.5639 7.6744 4.9503 5.7093 

REffP2 4.2547 3.9422 4.0063 4.6329 4.2320 5.3530 4.2543 3.9422 4.0064 4.6329 4.2326 5.3530 

REffP3 8.0210 7.0521 13.9203 9.0534 5.6634 6.9950 8.0204 7.0527 13.9189 9.0523 5.6646 6.9956 

REffP11 10.0360 8.5066 16.2255 14.5829 14.8849 21.1937 10.0349 8.5069 16.2255 14.5821 14.8855 21.1954 

REffP22 8.3308 7.4596 13.6139 18.1420 20.5608 42.6879 8.3303 7.4597 13.6142 18.1417 20.5693 42.6905 

REffP33 9.9474 8.8669 16.4467 15.4016 16.0117 23.1855 9.9459 8.8671 16.4448 15.4003 16.0164 23.1891 

Bold marked present the best REff value. 
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3.2.  Simulation with Real Data 

The 2022-2023 data from the Turkish Statistical Institute [26] is used as the population. The population 

parameters are presented in Table 5, where Y represents the number of fatal injury accidents in 2023, and X 

is regarded as the number of motor vehicles in 2023. Based on the population size, the systematic sample 

size is determined as 𝑛 = 3, 9, 𝑎𝑛𝑑 27, while the SRSWR sample size is set to 𝑛0 = 3, 5 𝑎𝑛𝑑 10. For 

EWMA, 𝑇 = 2, and since the correlation values in the real data are higher than those in the simulation study, 

𝜗 = 0.3, 0.5, 0.7, 𝑎𝑛𝑑 0.95  are selected. The correlation coefficient required for the 𝑏́ estimate in the 

regression estimator is chosen as ρ Y2022- X2022. The simulation results are shown in Table 6. 

 

Table 5. Population parameters for real data set 

Parameters Value Parameters Value 

Min. (Y2023) 175 Min. (Y2022) 129 

Max. (Y2023) 25622 Max. (Y2022) 22914 

Mean (Y2023) 2902.111 Mean (Y2022) 2435.321 

Std. Dev. (Y2023) 3888.364 Std. Dev. (Y2022) 3425.946 

Skewness (Y2023) 3.380185 Skewness (Y2022) 3.589712 

Kurtosis (Y2023) 17.36067 Kurtosis (Y2022) 18.93664 

ρ Y2023- Y2022 0.9986 ρ Y2022- X2023 0.9689 

ρ Y2023- X2023 0.9608 ρ Y2022- X2022 0.9692 

ρ Y2023- X2022 0.9611   

Parameters Value Parameters Value 

Min. (X2023) 9470 Min. (X2022) 8802 

Max. (X2023) 5406820 Max. (X2022) 4940010 

Mean (X2023) 354820.9 Mean (X2022) 326948.7 

Std. Dev. (X2023) 700257.7 Std. Dev. (X2022) 641133.3 

Skewness (X2023) 5.280241 Skewness (X2022) 5.257002 

Kurtosis (X2023) 35.91974 Kurtosis (X2022) 35.6198 

ρ X2023- X2022 0.9999   
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Table 6. Simulation results for real data 

n 3 9 27 

REff1 3.2128 3.8395 2.9698 

REff2 5.3690 4.6130 6.1812 

REff11 6.4959 4.6420 8.7457 

REff22 6.7544 15.4167 221.9643 

ϑ 
n0 3 5 10 

n 3 9 27 3 9 27 3 9 27 

0.3 

REffP1 73.5095 24.8468 12.5293 74.2009 23.7025 13.7282 71.9329 24.3906 12.7751 

REffP2 32.2278 13.4182 7.5438 32.8431 13.1718 7.4988 32.5316 13.6294 7.4044 

REffP3 44.6884 49.6717 17.5646 45.1393 46.5100 18.7660 46.3305 48.8954 17.6394 

REffP11 75.8903 23.9631 14.8148 76.6364 22.9360 16.7388 74.1379 23.5592 15.2090 

REffP22 34.9392 16.2091 8.5396 35.6483 15.8594 8.4836 35.2833 16.5033 8.3644 

REffP33 77.9665 44.7127 14.9305 78.9279 42.5718 15.8814 79.6523 44.4400 14.9699 

0.5 

REffP1 45.0150 19.2724 12.5293 45.0020 19.4062 11.6347 44.6292 19.3148 11.6096 

REffP2 20.2986 12.5020 7.5438 20.0332 12.9683 9.9514 20.2907 12.7266 9.8875 

REffP3 19.5910 68.5304 17.5646 19.4919 70.6357 34.7091 19.2923 69.5229 34.4437 

REffP11 48.4580 17.9451 14.8148 48.4133 18.0806 20.4697 48.1028 18.0132 20.3665 

REffP22 23.8411 22.6729 8.5396 23.5042 23.9962 17.0485 23.8359 23.2846 16.8722 

REffP33 36.6442 43.9244 14.9305 36.4721 45.7953 35.8325 36.0847 45.4178 35.4401 

0.7 

REffP1 19.9648 11.3566 7.2193 19.8933 11.4361 7.2808 19.5453 11.3718 7.2522 

REffP2 11.5141 9.1499 9.7146 11.5083 9.1222 9.6980 11.4943 9.1281 9.7924 

REffP3 10.0595 37.6856 30.1054 10.0331 38.0860 30.5758 9.9129 37.7780 30.4127 

REffP11 23.0224 10.7573 18.4291 22.9503 10.8232 18.3825 22.5993 10.7695 18.4607 

REffP22 14.0307 25.6945 44.0091 14.0246 25.5403 43.6964 14.0114 25.5847 45.3636 

REffP33 18.3008 24.1004 84.6790 18.2503 24.3489 84.6231 18.0161 24.1409 86.3716 

0.9 

REffP1 6.9355 5.7145 3.9788 6.7892 5.7905 3.9931 6.8554 5.7482 3.9949 

REffP2 6.8382 5.8143 7.4488 6.8333 5.8201 7.4531 6.8408 5.8112 7.4454 

REffP3 5.8405 17.4020 14.8170 5.7940 17.5778 14.8736 5.8161 17.4975 14.8974 

REffP11 9.9192 6.0857 11.4250 9.7670 6.1465 11.4599 9.8341 6.1128 11.4630 

REffP22 8.5049 19.2196 192.6337 8.5015 19.2192 193.7554 8.5081 19.2085 191.2603 

REffP33 10.2734 12.2361 57.8197 10.1835 12.3688 58.2028 10.2239 12.2985 58.3644 

0.95 

REffP1 4.8852 4.7779 3.4392 4.9118 4.7062 3.4558 4.8983 4.7535 3.4395 

REffP2 6.0501 5.1806 6.7958 6.0531 5.1749 6.8016 6.0514 5.1782 6.7997 

REffP3 5.1742 14.8574 12.4527 5.1829 14.7104 12.5015 5.1785 14.8092 12.4421 

REffP11 7.9631 5.3570 10.0057 7.9894 5.2997 10.0494 7.9762 5.3375 10.0067 

REffP22 7.5661 17.2615 236.7119 7.5685 17.2651 237.6795 7.5671 17.2625 237.8079 

REffP33 9.0317 10.6574 45.8580 9.0475 10.5439 46.1411 9.0396 10.6192 45.7693 

Bold marked present the best REff value. 
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4. Results and Discussion 

Simulation results based on synthetic data show that the proposed EWMA-based memory-type estimators 

consistently outperform existing methods across all correlation levels, particularly when the parameter ϑ is 

set to 0.3. This value provides a balanced weight to past and current information, making it especially 

effective under symmetric distribution settings. At a correlation of 0.75, non-ranked systematic sampling 

yielded superior performance, whereas at a higher correlation of 0.95, the ranked systematic sampling with 

auxiliary variable X was more effective. Interestingly, variations in the first-phase sample size  𝑛0 did not 

have a significant impact on estimator performance. 

In the real data analysis, characterized by a high correlation structure, ranked systematic sampling with 

auxiliary information generally produced more efficient estimates. However, no consistent improvement in 

REff was observed with increasing values of 𝑛0. While the existing best-performing estimator in the 

literature 𝑦̂2 remains competitive, the proposed EWMA-based estimators surpassed its performance under 

several scenarios. For instance, when 𝑛 =3, the regression-type EWMA estimator with ranked systematic 

sampling and ϑ = 0.3 provided the best results. For 𝑛 =9, the non-ranked version with ϑ = 0.5 was preferable, 

and for 𝑛 =27, the exponential EWMA estimator with ranked sampling and ϑ = 0.95 delivered the highest 

efficiency. 

As a result of the simulation studies, it was observed that the proposed estimators provide more effective 

results than the estimators in the literature under all conditions. The proposed estimators served as 

alternatives to each other. However, except for the lowest n values at correlations of 0.65 and 0.85, the 𝑦̂𝑃1 

estimator did not perform well in both synthetic and real data studies. While 𝑦̂𝑃1  may still be useful in 

specific contexts, 𝑦̂𝑃2 and 𝑦̂𝑃3  should be prioritized for better performance across a wider range of 

conditions. Based on the synthetic data simulation results, using the proposed estimators with ϑ = 0.3 for 

symmetric distributions is recommended.  

The main limitation of the proposed approach lies in its reliance on the correct selection of the parameter ϑ. 

Although ϑ = 0.3 is generally effective for symmetric distributions, optimal values may vary for skewed or 

multimodal distributions. Moreover, the current evaluation is limited to continuous variables; further testing 

is needed for categorical or binary data. 

Future studies may explore adaptive strategies to select ϑ based on data characteristics or investigate the 

performance of these estimators in more complex sampling schemes (e.g., stratified or cluster sampling). 

Moreover, extending the method to multivariate settings or incorporating robust estimation techniques could 

further enhance its practical utility. 

Based on our findings, practitioners, particularly those working in official statistics, health surveys, and 

market research, can benefit from using the proposed EWMA-based estimators for improved accuracy when 

dealing with structured populations. Decision-makers are encouraged to adopt the regression-type or 

exponential-type estimators depending on the sample size and correlation level, with careful tuning of the ϑ 

parameter to align with the data structure. 

5. Conclusion  

This study makes a novel methodological contribution by extending memory-type estimation to the context 

of systematic sampling for the first time. This study aimed to address a methodological gap in memory-type 

estimators specifically designed for systematic sampling by introducing three novel EWMA-based 

estimators: A ratio-type, an exponential-type, and a regression-type estimator. Systematic sampling is widely 

used in practice due to its operational simplicity and efficient coverage of the population, yet no prior 

research has incorporated exponentially weighted memory structures into estimators under this framework. 

The simulation and empirical results demonstrated that the proposed estimators significantly improve 
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estimation efficiency over traditional alternatives, particularly when the weight parameter is appropriately 

chosen. The contribution of this work lies in extending memory-type estimation to systematic designs, 

offering both theoretical innovation and empirical performance gains. These estimators are especially useful 

in structured sampling scenarios where auxiliary information is partially available, and are well-suited for 

fields such as official statistics, agricultural surveys, environmental monitoring, and market research, where 

systematic designs are commonly employed. 

Future research may focus on adapting the proposed estimators to more complex designs such as modified or 

stratified systematic sampling, as well as exploring their robustness under skewed populations, outlier 

contamination, or when the exact condition N=nk is not satisfied. Overall, the proposed approach offers a 

practical and flexible tool for improving the precision of finite population mean estimation under systematic 

sampling schemes. 
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