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Abstract: It is known that the variance of the maximum likelihood estimator (MLE)
inflates when the explanatory variables are correlated. This situation is called the mul-
ticollinearity problem. As a result, the estimations of the model may not be trustful.
Therefore, this paper introduces a new restricted estimator (RLTE) that may be applied
to get rid of the multicollinearity when the parameters lie in some linear subspace in
logistic regression. The mean squared errors (MSE) and the matrix mean squared errors
(MMSE) of the estimators considered in this paper are given. A Monte Carlo experiment
is designed to evaluate the performances of the proposed estimator, the restricted MLE
(RMLE), MLE and Liu-type estimator (LTE). The criterion of performance is chosen to
be MSE. Moreover, a real data example is presented. According to the results, proposed
estimator has better performance than MLE, RMLE and LTE.

Lojistik Regresyon’da Yeni Bir Kısıtlı Yanlı Tahmin Edicinin Performansı

Anahtar Kelimeler
Tahmin,
Liu-tipi tahmin edici,
MLE,
MSE,
Çoklu-bağlantı,
Monte Carlo simülasyonu.

Özet: Açıklayıcı değişkenler ilişkili olduğunda en çok olabilirlik tahmincisinin (MLE)
varyansının şiştiği bilinmektedir. Bu durum çoklu-bağlantı problemi olarak adlandırılır.
Sonuç olarak, modelin tahminleri güvenilir olmayabilir. Bu nedenle, bu makale, lojistik
regresyon modelinde, düşük boyutlu veriler için (n > p), çoklu-bağlantı problemini gi-
dermek için parametrelerin bir alt uzayda olduğu durumda uygulanabilecek yeni kısıtlı
bir tahminciyi ortaya koymaktadır. Bu makalede ele alınan tahmin edicilerin hata kareler
ortalamaları (MSE) ve matris MSE’leri(MMSE) verilmiştir. Monte Carlo deneyi, öner-
ilen tahmincinin (RLTE), kısıtlı en çok olabilirlik tahmincisinin (RMLE), MLE ve Liu
tipi tahmincisinin (LTE) performanslarını değerlendirmek üzere tasarlanmıştır. Ayrıca
gerçek veri üzerinde bir örnek gösterilmiştir. Performans değerlendirme kriteri olarak
MSE seçilmiştir. Sonuçlara göre, yeni tahmincinin MLE, RMLE ve LTE’den daha iyi
performansı vardır.

1. Introduction

The binary logistic regression model has become the pop-
ular method of analysis in the situation that the outcome
variable is discrete or dichotomous. Although, its original
acceptance is important in the field of epidemiologic re-
searches, this method has become a commonly employed
method in applied sciences such as engineering, health
policy, biomedical research, business and finance, crimi-
nology, ecology, linguistics and biology [9].
In the analysis of a dichotomous dependent variable, lots
of distribution functions are used, see [5]. However, the
logistic distribution being an extremely flexible and easily
used function and providing clinically meaningful inter-
pretation, it has become the popular distribution in this
research area [9].
Now, consider the following binary logistic regression
model with intercept where the dependent variable is dis-
tributed as Bernoulli Be(π) such that

π =
eXβ

1+ eXβ
(1)

where X is the n× (p+1) design matrix such that (n > p),
β = [β0,β1, . . .βp]

′
is the (p+1)× 1 coefficient vector

and p is the number of explanatory variables. In order
to estimate the coefficient vector β , the following log-
likelihood function is needed to be maximized

L(β ) =
N

∑
i=1

yilog(πi)+
N

∑
i=1

(1− yi) log(1−πi) . (2)

The log-likelihood function can be maximized by differ-
entiating it with respect to β and setting the obtained ex-
pression called likelihood equations equal to zero. The
likelihood equations are given as follows:

N

∑
i=1

(yi−πi) = 0 (3)
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N

∑
i=1

xi (yi−πi) = 0. (4)

Since the Equations (3) and (4) are nonlinear in β , one
may use the iteratively weighted least squares (IWLS) al-
gorithm. Therefore, maximum likelihood estimator (MLE)
of β can be obtained using IWLS algorithm where which
is given as follows [21]

β̂
t+1 = β̂

t +
(

X ′Ŵ tX
)−1

X ′
(
y− π̂

t) (5)

where π̂ t is the estimated values of π̂ using β̂ t and Ŵ t =

diag
(

π̂ t
j

(
1− π̂ t

j

))
such that π̂ t

j is the jth element of π̂ t .
In the final step of the algorithm, one gets the maximum
likelihood estimator as

β̂MLE = S−1X ′Ŵ ẑ (6)

where S = X ′ŴX , ẑ′ = (z1,z2, ...,zn) with η j = x
′
jβ and

ẑ j = η̂ j +(y j− π̂ j)/(∂η j/∂ π̂ j) .
The weighted sum of squares can be minimized approx-
imately by using the MLE. However, this estimator be-
comes unstable when the regressor variables are correlated.
This problem is called multicollinearity. Thus, due to the
high variance and very low t-ratios, the estimations of MLE
are no more trustful. This is because the matrix S becomes
ill-conditioned when there is multicollinearity.
There are some solutions to this ill-conditioning problem.
Ridge regression which is firstly defined by [7] for the
linear model is a very popular method. The ridge estimator
has been generalized to binary logistic regression by [22]
successfully as follows:

β̂LR = (S+ kI)−1 X ′Ŵ ẑ (7)

where k > 0 and I is the (p+1)× (p+1) identity matrix.
The authors applied the ridge estimators defined by [7] and
[8] in logistic regression. Recently, a number of logistic
ridge estimators have been applied and investigated by
[16]. Moreover, see the following studies for different
characterizations of this method in different models: [19],
[23] and [24].
Another solution to the problem is to use Liu estimator de-
fined by [12]. Logistic version of this estimator is defined
by [15]. The authors showed that logistic Liu estimator has
a better performance than MLE according to mean squared
error (MSE) criterion. Since the logistic Liu estimator uses
shrinkage parameter, its length becomes smaller than the
length of MLE.
The logistic Liu-type estimator (LTE) defined by [10] can
also be used as a solution to the problem. There are two
parameters used in this estimator which seems to be a
combination of Liu estimator and ridge estimator. LTE
was defined as follows:

β̂LT E = (S+ kI)−1 (S−dI) β̂MLE (8)

where k > 0 and −∞ < d < ∞. Different methods to select
the parameters (k,d) used in LTE are proposed by [3].
In statistical research, there may be prior information re-
garding the variables considered in the statistical analysis.

Such kind of information my arise from different sources
such as past experience or being an expert of the area etc.
(see [18]). Therefore, in this paper, we also consider im-
posing some restrictions on the parameter space of the
coefficient vector.
The purpose of this paper is to propose a restricted estima-
tor by imposing restrictions on LTE and make a compar-
ison between the estimators considered in this study and
the new restricted Liu-type estimator (RLTE) by designing
a Monte Carlo simulation study and a real data application.
The organization of the paper is as follows: In Section
2, derivation of the proposed estimator is considered and
MSE characteristics of listed estimators are given. More-
over, the optimal shrinkage parameters of the new estima-
tor are obtained. In Section 3, the details of Monte Carlo
simulation are demonstrated, a discussion regrading results
of simulation are provided. and a real-life application is
performed to show the benefits of the new method. Finally,
a brief summary and conclusion are given in Section 4.

2. Theory and Method

2.1. Definition of the new estimators

Consider the following restrictions on the parameter space
of the coefficient vector β

Hβ = h (9)

where H is a matrix of order q×(p+1) of known elements
and h is a vector of known elements of order q×1. The
restricted MLE (RMLE) is proposed by [6] by imposing
restrictions on the log-likelihood function (2). Therefore,
the following objective function should be maximized

L(β ,λ ) = L(β )+λ
′(Hβ −h) (10)

where λ is a vector of Lagrangian multipliers. A Newton-
Raphson method can be applied to find the solution ([11],
[20]). One can compute the derivatives of (10) with respect
to β and λ as follows

∂L(β ,λ )
∂β

= X ′ (y−π)+H ′λ ,

∂ 2L(β ,λ )
∂β∂β ′

=−
(
X ′WX

)
and

∂L(β ,λ )
∂λ

= Hβ −h.

Now, the tth step of Newton-Raphson method is given by

β̂
t+1
∗ = β̂

t +
(

X ′Ŵ tX
)−1 [

X ′
(
y− π̂

t)+H ′λ
]

= β̂
t +
(

X ′Ŵ tX
)−1

X ′
(
y− π̂

t)
+
(

X ′Ŵ tX
)−1

H ′λ (11)
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where β̂ t +
(

X ′Ŵ tX
)−1

X ′ (y− π̂ t) is in the form of MLE

and β̂∗ is the solution vector. Thus, Equation (11) becomes

β̂
t+1
∗ = β̂

t+1 +
(

X ′Ŵ tX
)−1

H ′λ (12)

where β̂ t+1 = β̂ t +
(

X ′Ŵ tX
)−1

X ′ (y− π̂ t) . Now, multi-

plying both sides of (12) by H and using Hβ̂ t+1
∗ = h,

h = Hβ̂
t+1 +H

(
X ′Ŵ tX

)−1
H ′λ

is obtained. Then, one gets

h−Hβ̂
t+1 = H

(
X ′Ŵ tX

)−1
H ′λ .

Since H
(

X ′Ŵ tX
)−1

H ′ is a positive definite matrix, λ can
be estimated as

λ̂ =

[
H
(

X ′Ŵ tX
)−1

H ′
]−1(

h−Hβ̂
t+1
)
. (13)

Now, using (13) in (12), it is obtained that

β̂
t+1
∗ = β̂

t+1 +
(

X ′Ŵ tX
)−1

H ′
[

H
(

X ′Ŵ tX
)−1

H ′
]−1

×
(

h−Hβ̂
t+1
)
. (14)

Therefore, letting β̂∗ = β̂RMLE , in the the final step of this
weighted procedure RMLE can be obtained as

β̂RMLE = β̂MLE −S−1H ′
[
HS−1H ′

]−1
(

Hβ̂MLE −h
)
.

(15)
Now, following [6], [13] and [20], the following penalized
log-likelihood function is considered:

L(β ,k,d,λ ) = L(β )− 1
2
‖
√

kβ +
d√
k

β̂MLE‖2 +λ
′(Hβ −h) (16)

where ‖β‖ is the norm of β . Taking the derivatives of (16)
with respect to β and λ , the followings are obtained

∂L(β ,k,d,λ )
∂β

= X ′ (y−π)− kβ −dβ̂MLE +H ′λ ,

∂ 2L(β ,k,d,λ )
∂β∂β ′

=−
(
X ′WX + kI

)
and

∂L(β ,k,d,λ )
∂λ

= Hβ −h.

Similarly, the tth step of Newton-Raphson method is given
by

β̂
t+1
∗∗ = β̂

t +
(

X ′Ŵ tX + kI
)−1

×
[
X ′
(
y− π̂

t)− kβ −dβ̂MLE +H ′λ
]

β=β̂ t
(17)

where β̂∗∗ is the solution the problem. Now, rearranging
the terms of (17), it becomes

β̂
t+1
∗∗ =

(
X ′Ŵ t X + kI

)−1
X ′Ŵ t X

(
β̂

t +
(

X ′Ŵ t X
)−1

X ′ (y− π̂
t )

)
+
(

X ′Ŵ t X + kI
)−1 [

H ′λ −dβ̂
t+1
]

=
(

X ′Ŵ t X + kI
)−1

X ′Ŵ t X β̂
t+1−d

(
X ′Ŵ t X + kI

)−1
β̂

t+1

+
(

X ′Ŵ t X + kI
)−1

H ′λ

=
(

X ′Ŵ t X + kI
)−1 (

X ′Ŵ t X−dI
)

β̂
t+1

+
(

X ′Ŵ t X + kI
)−1

H ′λ (18)

=

(
I− (k+d)

(
X ′Ŵ t X + kI

)−1
)

β̂
t+1 +

(
X ′Ŵ t X + kI

)−1
H ′λ

= β̂
t+1 +

(
X ′Ŵ t X + kI

)−1 [
H ′λ − (k+d)β̂ t+1

]
(19)

where β̂ t+1 = β̂ t +
(

X ′Ŵ tX
)−1

X ′ (y− π̂ t) is the MLE at

the (t +1)th step. Multiplying both sides of (19) and using
Hβ̂ t+1
∗∗ = h, one obtains

h = Hβ̂
t+1 +H

(
X ′Ŵ tX + kI

)−1(
H ′λ − (k+d)β̂ t+1

)
Then, after some algebra, the estimator of λ becomes

λ̂ =
(

HŜ−1
k H ′

)−1 [
h−HŜ−1

k Ŝd β̂
t+1
]

(20)

where Ŝ−1
k =

(
X ′Ŵ tX + kI

)−1
, Ŝd =

(
X ′Ŵ tX−dI

)
. Sub-

stituting (20) in (18), it is obtained that

β̂
t+1
∗∗ = Ŝ−1

k Ŝd β̂
t+1 + Ŝ−1

k H ′
(

HŜ−1
k H ′

)−1 [
h−HŜ−1

k Ŝd β̂
t+1
]

(21)

At the final iteration, letting β̂∗∗ = β̂RLT E , the proposed
estimator RLTE is given by

β̂RLT E = β̂LT E −S−1
k H ′

[
HS−1

k H ′
]−1
(

Hβ̂LT E −h
)

(22)

where Sk = S+ kI. There is also an alternative expression
of RLTE as follows

β̂RLT E = MkSd β̂MLE +S−1
k H ′

[
HS−1

k H ′
]−1

h (23)

where Mk = S−1
k −S−1

k H ′
[
HS−1

k H ′
]−1

HS−1
k and Sd = S−

dI.

2.2. MSE characteristics of estimators

Containing all relevant information of an estimator MMSE
and MSE functions are used in the literature to make com-
parisons between estimators. MMSE and MSE of an esti-
mator β̃ are defined respectively by

MMSE
(

β̃

)
= E

[(
β̃ −β

)(
β̃ −β

)′]
, (24)

MSE
(

β̃

)
= tr

(
MMSE

(
β̃

))
= E

[(
β̃ −β

)(
β̃ −β

)′]
(25)

where tr is the trace of a matrix.
In this subsection, the MMSE and MSE functions of the es-
timators are obtained. To obtained these functions, firstly,

55



Y. Asar / Performance of a New Restricted Biased Estimator in Logistic Regression

covariance matrices and bias vectors of estimators are com-
puted. Firstly, since MLE is asymptotically unbiased, the
covariance matrix, MMSE and MSE of MLE are given as
follows (see, [16])

Cov
(

β̂MLE

)
= S−1, (26)

MMSE(β̂MLE) = S−1 (27)

MSE(β̂MLE) =
p+1

∑
j=1

1
λ j

(28)

where λi’s are the eigenvalues of the matrix S.
RMLE has the following theoretical properties (see [1]):

Cov
(

β̂RMLE

)
= S−1−S−1H ′

[
HS−1H ′

]−1
HS−1

= M, (29)

Bias
(

β̂RMLE

)
= −S−1H ′

[
HS−1H ′

]−1
(Hβ −h)

= −δ , (30)

MMSE
(

β̂RMLE

)
= M+δδ

′, (31)

MSE
(

β̂RMLE

)
=

p+1

∑
j=1

[
m j j +δ

2
j

]
(32)

where Cov(η) is the covariance matrix and Bias(η) is the
bias of the vector η , m j j is the jth diagonal of V ′MV and
δ j is the jth component of V ′δ such that the columns of V
are the eigenvectors of S.
The bias and covariance of LTE are presented by

Bias
(

β̂LT E

)
=−(d + k)S−1

k β (33)

and
Cov

(
β̂LT E

)
= S−1

k Sd Λ
−1Sd S−1

k . (34)

In [1], MMSE and MSE of LTE are respectively given as

MMSE
(

β̂LT E

)
= S−1

k Sd S−1Sd S−1
k +(d + k)2 S−1

k ββ
′S−1

k ,

(35)
and

MSE
(

β̂LT E

)
=

p+1

∑
j=1

(
(λ j−d)2

λ j (λ j + k)2

)
+

p

∑
j=1

(
(d + k)2

α2
j

(λ j + k)2

)
(36)

where α j is the jth component of V ′β .
Using the alternative definition of RLTE, we can compute
MMSE and MSE of RLTE as the following

Cov
(

β̂RLT E

)
= MkSdS−1SdMk, (37)

Bias
(

β̂RLT E

)
= −(d + k)Mkβ , (38)

MMSE
(

β̂RLT E

)
= MkSd S−1SdMk +(d + k)2 Mkββ

′Mk, (39)

MSE
(

β̂RLT E

)
=

p+1

∑
j=1

[
(λ j−d)2

λ j
m(k)2

j j +(d + k)2
α

2
j m(k)2

j j

]
(40)

where m(k) j j is the jth diagonal of V ′MkV , λ j is the
jth eigenvalue of S.
Since the values of k and d are not known in real data,
it is useful to compare the estimators for some definite
values of these parameters. Therefore, we obtain the MSE
differences between the estimators.
Using the equations (28) and (40), we compute the differ-
ence

∆1 = MSE
(

β̂MLE

)
−MSE

(
β̂RLT E

)
=

p+1

∑
j=1

1
λ j
−

[(
λ j−d

)2

λ j
m(k)2

j j +(d + k)2
α

2
j m(k)2

j j

]

=
p+1

∑
j=1

1
λ j

(
1−m(k)2

j j

[(
λ j−d

)2
+(d + k)2

λ jα
2
j

])
.

(41)

Similarly, using (32) and (40), we can also compute

∆2 = ∆2 = MSE
(

β̂RMLE

)
−MSE

(
β̂RLT E

)
=

p+1

∑
j=1

[
m j j +δ

2
j
]
−

[(
λ j−d

)2

λ j
m(k)2

j j +(d + k)2
α

2
j m(k)2

j j

]

=
p+1

∑
j=1

(
m j j−m(k)2

j j

((
λ j−d

)2

λ j
− (d + k)2

α
2
j

)
+δ

2
j

)
.(42)

Finally, using (36) and (40), the following difference is
obtained

∆3 = MSE
(

β̂LT E

)
−MSE

(
β̂RLT E

)
=

p+1

∑
j=1

( (
λ j−d

)2

λ j
(
λ j + k

)2 +
(d + k)2

α2
j(

λ j + k
)2

)

−

[(
λ j−d

)2

λ j
m(k)2

j j +(d + k)2
α

2
j m(k)2

j j

]

=
p+1

∑
j=1

(
1(

λ j + k
)2 −m(k)2

j j

)((
λ j−d

)2

λ j
+(d + k)2

α
2
j

)
(43)

If the differences ∆1,∆2 and ∆3 can be showed that they are
positive, then it means that RLTE is superior to the others.
However, we skip the detailed theoretical comparisons and
refer to [2] for similar comparisons. Therefore, we design
a Monte Carlo experiment to compare the estimators in
Section 3.

2.3. How to choose k and d

This subsection presents how to choose the biasing param-
eters used in RLTE. Since the MSE functions are quadratic
functions of the parameter d and nonlinear functions of
the parameter k, fixing the value of k, the optimal values
of the parameter d can be obtained. In order to find the
optimal parameter, fixing the value of the parameter k, it is
sufficient to minimize the MSE function given in the past
subsection by differentiating the MSE functions accord-
ing to d and solving the resultant expression for d. Since,
the optimal way of choosing the value of the parameter k
cannot be obtained, the value of k is computed by using
k = p+1

β̂
′
MLE β̂MLE

due to [22].
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∂MSE
(

β̂RLT E

)
∂d = 2

p+1
∑
j=1

[
(λ j−d)

λ j
m(k)2

j j +(d + k)α2
j m(k)2

j j

]
= 0

the optimal parameter dRLT E is computed as follows:

dRLT E =
∑

p+1
j=1

[
m(k)2

j j

(
1− kα2

j

)]
∑

p+1
j=1

[
m(k)2

j j

(
α2

j +
1
λ j

)] . (44)

3. Numerical Experiments

In order to evaluate the performances of listed estimators, a
Monte Carlo simulation experiment is conducted. Details
and results of the simulation are presented in this section.

3.1. Details of the simulation

In a simulation study, defining important factors in design-
ing the simulation is crucial. The main effective factor
of this study is degree of correlation ρ among indepen-
dent variables. In the experiment, strength of correlation ρ

varies such that ρ = 0.90,0.99 and 0.999. The sample size
and number of regressor variables, being crucial factors,
are varied as in many researches, for example see [14],
[15], [16] and [25].
The following equation is used to produce the dataset hav-
ing different strengths of correlation:

xi j =
(
1−ρ

2)1/2
zi j +ρzi p (45)

where i = 1,2, . . . ,n, j = 1,2, . . . , p and zi j is a random
number produced using standard normal distribution. The
response variable is also is generated from the Bernoulli
distribution Be(πi) where

πi =
exiβ

1+ exiβ
(46)

where xi is the ith row of data matrix X .
To impose some restrictions on the parameter space, fol-
lowing [17], the following restriction matrices are chosen
for p = 4 and p = 8 respectively:

H4 =

[
1 0 −2 1
1 −1 1 −1

]

H8 =

[
1 0 −2 1 −3 1 1 1
1 1 0 1 −3 1 −2 1

]

and h =

[
0
0

]
for both cases.

Performances of estimators are investigated by the simu-
lated MSEs which are computed by the following equation:

MSE
(

β̃

)
=

5000

∑
r=1


(

β̃ −β

)′
r

(
β̃ −β

)
r

5000

 (47)

where
(

β̃ −β

)
r
is the difference for each estimator con-

sidered in this study at the rth step of simulation. Finally,
we estimate the parameters of LTE following [1] and the
parameters of RLTE are estimated by the proposed method.

Table 1. The estimated MSE values when p = 4
n ρ MLE LTE RMLE RLTE

50 0.9 1.8735 1.1048 1.2743 1.0358
0.99 2.4023 1.1603 1.3037 1.0166

0.999 10.0165 2.5475 4.9053 1.0518
200 0.9 1.7663 1.1719 1.2763 1.0697

0.99 1.8914 1.0852 1.3221 1.0239
0.999 3.3698 1.3687 1.7409 1.0212

500 0.9 1.7321 1.2350 1.2107 1.0887
0.99 1.7794 1.0772 1.2390 1.0283

0.999 2.3380 1.1683 1.4210 1.0190

Table 2. The estimated MSE values when p = 8
n ρ MLE LTE RMLE RLTE

50 0.9 2.0697 1.1517 1.3692 1.0262
0.99 3.1446 1.4788 2.3250 1.0239

0.999 26.1147 8.1679 12.7852 1.1934
200 0.9 1.7703 1.1103 1.3542 1.0331

0.99 2.1467 1.1837 1.6183 1.0189
0.999 5.9215 2.4199 3.8429 1.0260

500 0.9 1.7423 1.1581 1.3700 1.0640
0.99 1.8525 1.1041 1.3668 1.0189

0.999 3.3166 1.5889 2.2829 1.0208

3.2. Results of the simulation study

In Tables 1 - 2, the simulated MSEs of listed estimators
are reported for different values of n, ρ and p. According
to the tables, MLE seems to have the highest MSE values
and RLTE has the lowest MSE values for all situations.
LTE shows a better performance than MLE and RMLE in
almost all cases.
Moreover, it is observed that the MSE values of MLE
increase as the degree of correlation increases. On the
other hand, the MSE of LTE and RMLE increases with a
few exceptions as the degree of correlation increases. The
MSE of RLTE shows a degenerated pattern in this situation.
As the sample size increases, the MSE of MLE decreases.
However, there is no regular pattern in the other estimators
for this situation. Moreover, if the number of explanatory
variables increases, the MSE values increase generally.

3.3. A real data application

In this subsection a real data application is presented to
show the usefulness of the new estimator. The data set is
taken from [9] and it is called "Myopia Study". There 618
observations and 17 different explanatory variables. How-
ever, for illustrative purposes, only the following variables
are considered in the analysis.

• LT: Lens thickness

• ACD: Anterior chamber depth

• SPHEQ: Spherical equivalent refraction

• AL: Axial length

• VCD: Vitreous chamber depth

57



Y. Asar / Performance of a New Restricted Biased Estimator in Logistic Regression

The response variable is that whether a subject has a my-
opia or not (coded as 1 and 0 respectively). Since all the
variables are in the same scale (mm), the design matrix
is not centred and standardized. The correlation matrix is
presented in Table 3. Moreover, the condition number of
the matrix X ′ŴX is computed as 14426 which shows that
there is a collinearity problem in the data [4].

Table 3. The correlation matrix of the Myopia data set
SPHEQ AL ACD LT VCD

SPHEQ 1.0000 -0.3055 -0.2388 0.0727 -0.2471
AL -0.3055 1.0000 0.4563 -0.3289 0.9419

ACD -0.2388 0.4563 1.0000 -0.3393 0.1994
LT 0.0727 -0.3289 -0.3393 1.0000 -0.4516

VCD -0.2471 0.9419 0.1994 -0.4516 1.0000

The restriction matrix H1 =
[

1 −1 −1 1 0
]

with
h = 0 is used in order to compare the variables with the
opposite sign of correlation and the correlation between
AL and VCD is 0.94. Moreover, another restriction matrix
H2 defined as follows

H2 =

 1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0


with h2 =

[
0 0 0

]′ is also used computing the MSE
performances of the estimators. The estimated MSE values
are reported in Table 4. According to Table 4, it is observed
that RLTE has the lowest MSE value and the MSE of MLE
is inflated due to multicollinearity.

Table 4. MSE values for different restriction matrices
Restriction MLE LTE RMLE RLTE

H1 5253.2388 245.2170 6.2390 5.0788
H2 5253.2388 245.2170 1.1929 0.1927

4. Conclusion

In this paper, a new restricted estimator is proposed in
the logistic regression. Theoretical properties of the new
estimator are investigated. Moreover, MMSE and MSE
functions are obtained. By a Monte Carlo simulation, the
estimators MLE, RMLE, LTE and RLTE are compared
in the sense of simulated MSE values. According to the
results of the simulation, it is concluded that the new es-
timator RLTE has better performance than the others es-
pecially when the degree of correlation is high and the
sample size is low. Furthermore, an application of the
mentioned methods are also applied to a real life example
and RLTE has the least MSE value. Therefore, RLTE is
a better alternative when the multicollinear situations are
present in the data.
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