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Abstract: Networks have an important place in our daily lives. Internet networks, elec-
tricity networks, water networks, transportation networks, social networks and biological
networks are some of the networks we run into every aspects of our lives. A network
consists of centers connected by links. A network is represented when centers and con-
nections modelled by vertices and edges, respectively. In consequence of the failure of
some centers or connection lines, measurement of the resistance of the network until the
communication interrupted is called vulnerability of the network. In this study, neighbor
rupture degree which is a parameter that explores the vulnerability values of the resulting
graphs due to the failure of some centers of a communication network and its neighboring
centers becoming nonfunctional were applied to some middle graphs and neighbor rupture
degree of the M(Cn), M(Pn), M(K1,n), M(Wn), M(Pn×K2) and M(Cn×K2) have been
found.

Bazı Middle Grafların Komşu Rupture Derecesi

Anahtar Kelimeler
Graf teorisi,
Zedelenebilirlik,
Komşu rupture derecesi,
Middle graflar

Özet: Ağların günlük hayatımızda önemli bir yeri vardır. İnternet ağları, elektrik ağları,
su şebekeleri, ulaşım ağları, sosyal ağlar, biyolojik ağlar gibi hayatımızın her alanında
karşımıza çıkmaktadırlar. Bir ağ, bağlantılar ile birbirine bağlı olan merkezlerden oluşur.
Merkezler tepeler ve bağlantılar da ayrıtlar ile modellendiğinde bir graf bir ağı temsil
etmektedir. Bir ağın bazı merkezlerinin veya bağlantı hatlarının bozulması sonucunda,
ağdaki iletişim kesilene kadar geçen süredeki ağın dayanma gücünün ölçümüne o ağın
zedelenebilirlik değeri denir. Bir ağın zedelenebilirliğinin belirlenmesinde, tanımlanmış
çeşitli zedelenebilirlik parametreleri kullanılmaktadır. Bu parametrelerden bazıları; bağlan-
tılılık sayısı (connectivity), dayanıklılık sayısı (toughness), bütünlük değeri (integrity),
kararlılık değeri (tenacity ), saçılma sayısı (scattering number) ve rupture derecesidir.
Bu çalışmada bir iletişim ağının bazı merkezlerinin bozulmasıyla kendisine komşu merkez-
lerin de işlevsiz hale gelmesi sonucu oluşan grafların zedelenebilirlik değerlerini inceleyen
bir parametre olan komşu rupture derecesi bazı middle graflara uygulanmış ve elde edilen
M(Cn), M(Pn), M(K1,n), M(Wn), M(Pn×K2) ve M(Cn×K2) graflarının komşu rupture
dereceleri elde edilmiştir.

1. Introduction

Today, with the development of technology, expectations
about speed and reliability in transportation and commu-
nication networks have increased even more. Communi-
cation networks consists of connection lines connecting
centers. These networks can be modeled with the help
of graphs. In consequence of the failure of some centers
of connection lines, measurement of the resistance of the
network until the communication interrupted is called vul-
nerability of a network. Several parameters have been
introduced in the calculation of the vulnerability in graphs.
In connectivity [1], toughness [2], integrity [3], tenacity
[4], scattering number [5] and rupture degree [6]. But they
have just taken into account the vertices dismissed from

the graph. When the centers of a network are disrupted, the
network in which the neighbors of these centers affected is
called a spy network. In a spy network, the neighbors of
the disrupted vertices are unreliable. For this reason, the
neighborhoods should be taken into consideration in spy
networks [7]. Neighbor connectivity [8], neighbor integrity
[9, 10], neighbor scattering number [11], neighbor togh-
ness [12], neighbor isolated tenacity [13], and neighbor
rupture degree [7] are some of the vulnerability parameters
related to the spy networks.
In this paper, neighbor rupture degree which is a parame-
ter that explores the vulnerability values of the resulting
graphs due to the failure of some centers of a commu-
nication network and its neighboring centers becoming
nonfunctional were studied. The neighbor rupture degree
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of a noncomplete connected graph G is defined to be

Nr(G) = max
S⊂V (G)

{ω(G/S)−|S|− c(G/S);ω(G/S)≥ 1}

where S is any vertex subversion strategy of a graph G,
that is the elements of S and all its neighbor have been
deleted from G, ω(G/S) is the number of connected com-
ponents in G/S and c(G/S) is the maximum order of the
components of G/S [7].

2. Neighbor Rupture Degree of Middle Graphs

The middle graph M(G) of a graph obtained from G by
inserting a new vertex into every edge of G and joining
these new vertices by edges which lie on adjacent edges of
G [14]. There are many studies about the vulnerability of
middle graphs such as integrity [15], rupture degree [16],
bondage number [17] and edge tenacity [18].
In this study, the neighbor rupture degree and the vulner-
ability of middle graphs are considered. The neighbor
rupture degree of middle graphs of cycle, path, star and
wheel graphs are studied and general results are derived.
Also cartesian product of the complete graph K2 by path
graph Pn and cycle graph Cn are obtained.

Theorem 2.1. Let Cn be a cycle graph of order n and
let M(Cn) be the middle graph of Cn. Then the neighbor
rupture degree of M(Cn) is

Nr(M(Cn)) =−1.

Proof. Let S be a subversion strategy of M(Cn) and |S|= r
be the number of removing vertices of M(Cn).
Case 1: Let n 6≡ 0 (mod6)
Subcase 1: If 0≤ r ≤ b n

2c, then we have ω(M(Cn)/S)≤ r
and c(M(Cn)/S)≥ b 2n−3r

r c.
Hence,

ω(M(Cn)/S)−|S|− c(M(Cn)/S)≤ r− r− 2n−3r
r

and we get

Nr(M(Cn))≤max
r
{3− 2n

r
}.

The function f (r) = 3− 2n
r is an increasing function and

takes its maximum value at b n
2c.

Thus, we obtain

Nr(M(Cn))≤ f (bn
2
c)≤−1. (1)

Subcase 2: If r > b n
2c, then we have

ω(M(Cn)/S)≤ r−1, c(M(Cn)/S)≥ 1. Hence,

ω(M(Cn)/S)−|S|− c(M(Cn)/S)≤ r−1− r−1≤−2
(2)

According to the definition of neighbor rupture degree we
take maximum of (1) and (2). Thus we get,

Nr(M(Cn))≤−1 (3)

On the other hand, there exist S∗ such that |S∗| = b n
2c,

ω(M(Cn)/S) = b n
2c and c(M(Cn)/S) = 1, then

ω(M(Cn)/S)−|S|− c(M(Cn)/S)≥−1

and we get
Nr(M(Cn))≥−1 (4)

By (3) and (4) we obtain the result

Nr(M(Cn)) =−1. (5)

Case 2: Let n≡ 0 (mod6)

Subcase 1: If 0≤ r≤ n
3 , then we get ω(M(Cn)/S)≤ r and

c(M(Cn)/S)≥ 2n−5r
r . Thus,

ω(M(Cn)/S)−|S|− c(M(Cn)/S)≤ r− r− 2n−5r
r

and
Nr(M(Cn))≤max

r
{5− 2n

r
}.

The function f (r) = 5− 2n
r is an increasing function and

takes its maximum value ar r = n
3 . Hence, we have

f (
n
3
) = 5− 2n

n
3

=−1.

As a result we get,

Nr(Cn)≤−1. (6)

Subcase 2: If r > n
3 then, we obtain ω(M(Cn)/S)≤ r−1

and c(M(Cn)/S)≥ 1. Hence,

ω(M(Cn)/S)−|S|− c(M(Cn)/S)≤ r−1− r−1 =−2.
(7)

According to the definition neighbor rupture degree we
take maximum of (6) and (7). Thus we get

Nr(M(Cn))≤−1. (8)

There exist S∗ such that |S∗|= n
3 , ω(M(Cn)/S∗) = n

3 and
c(M(Cn)/S∗) = 1 then,

Nr(M(Cn))≥
n
3
− n

3
−1 =−1. (9)

By (8) and (9) we get the result,

Nr(M(Cn)) =−1 (10)

From case (1) and case (2) the proof is completed.

Theorem 2.2. Let Pn be a path of order n and let M(Pn) be
the middle graph of Pn. Then the neighbor rupture degree
of M(Pn) is

Nr(M(Pn)) = 0.

Proof. Let S be a subversion strategy of M(Pn) and let
the vertices of M(Pn) be labeled as {1,2,3, ...,2n−1}. If
|S| = r vertices are subverted from M(Pn), then the sur-
vival subgraph M(Pn/S) contains at most r + 1 compo-
nents having at least one vertex. Since ω(M(Pn)/S) ≤
r + 1 and c(M(Pn)/S) ≥ 1, we get ω(M(Pn)/S)− |S| −
c(M(Pn)/S)≤ r+1− r−1 = 0. Thus,

Nr(M(Pn))≤ 0. (11)

On the other hand, there exists a subversion strategy S∗

such that |S∗| = b n−1
2 c and by the definition we have
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Nr(M(Pn))≥ ω(M(Pn)/S∗)−|S∗|− c(M(Pn)/S∗).

If n is odd, then let S∗ = {3,7,11, ...,2n− 3} and if
n is even let S∗ = {3,7,11, ...,2n − 9,2n − 4}. After
the subversion of S∗, the survival subgraph M(Pn)/S∗

contains only isolated vertices as components, i.e.
M(Pn)/S∗ = {1,5,9, ...,2n − 1} where n is odd and
M(Pn)/S∗ = {1,5,9, ...,2n−7,2n−1} where n is even.

Therefore |S∗| = b n−1
2 c, ω(M(Pn)/S∗) = b n−1

2 c+ 1 and
c(M(Pn)/S∗) = 1. Thus we get, ω(M(Pn)/S∗)− |S∗| −
c(M(Pn)/S∗)

= bn−1
2
c+1−bn−1

2
c−1 = 0

and
Nr(M(Pn))≥ 0. (12)

By (11) and (12), we get the result.

Theorem 2.3. Let K1,n be a star graph of order n+1 and
let M(K1,n) be the middle graph of K1,n. Then the neighbor
rupture degree of M(K1,n) is

Nr(M(K1,n)) = n−2.

Proof. Let S be a subversion strategy of M(K1,n) and let
|S|= r.

Case 1: If r = 1, then the number of components after the
subversion of any vertex is at most n having at least one
vertex. Since ω(M(K1,n)/S) ≤ n and c(M(K1,n)/S) ≥ 1
we get,

ω(M(K1,n)/S)−|S|− c(M(K1,n)/S)≤ n−1−1 = n−2.

Thus,
Nr(M(K1,n))≤ n−2. (13)

Case 2: If r ≥ 2, then the number of components that the
survival subgraph M(K1,n)/S) can have is at most n− 1
having at least one vertex.
Hence ω(M(K1,n)/S))≤ n−1, c(M(K1,n)/S))≥ 1 and we
have,

ω(M(K1,n)/S))−|S|− c(M(K1,n)/S)) ≤ n−1−2−1
= n−4.

Therefore,
Nr(M(K1,n))≤ n−4. (14)

By taking the maximum of (13) and (14) we get,

Nr(M(K1,n))≤ n−2. (15)

On the other hand, there exist a subversion strategy S∗

such that S∗ = {v|deg(v) = n and v ∈V (M(K1,n))}. Thus
the survival subgraph is M(K1,n)/S∗ = {u1,u2, ...,un}, the
only vertices of K1,n having degree 1.
Since these vertices are independent in M(K1,n), we have
ω(M(K1,n)/S∗) = n and c(M(K1,n)/S∗) = 1. By the defi-
nition of neighbor rupture degree

w(M(K1,n)/S∗)−|S∗|−c(M(K1,n)/S∗)≥ n−1−1= n−2.

Thus,
Nr(M(K1,n))≥ n−2. (16)

By (15) and (16)we get the result.

Theorem 2.4. Let Wn be a wheel graph of order n and
let M(Wn) be the middle graph of Wn. Then the neighbor
rupture degree of M(Wn) with n > 6 is

Nr(M(Wn)) =−1.

Proof. Let S be a subversion strategy of M(Wn) and |S|= r
be the number of removing vertices of M(Wn).

Case 1: If 0≤ r ≤ b n−1
2 c, then we get

ω(M(Wn)/S)≤ r and c(M(Wn)/S)≥ b 2n−2−3r
r c.

Hence,

ω(M(Wn)/S)−|S|−c(M(Wn)/S)≤ r−r−b2n−2−3r
r

c

and

Nr(M(Wn))≤max
r
{3− 2n−2

r
}

The function f (r) = 3− 2n−2
r is an increasing function and

takes its maximum value at b n−1
2 c. Thus, we get

f (bn−1
2
c)≤−1

and
Nr(M(Wn)))≤−1. (17)

Case 2: If r > b n−1
2 c, then we obtain ω(M(Wn)/S)≤ r−1

and c(M(Wn)/S)≥ 1. Hence,

ω(M(Wn)/S)−|S|− c(M(Wn)/S)≤ r−1− r−1≤−2.
(18)

According to the definition of neighbor rupture degree we
take the maximum of (17) and (18). Thus we get,

Nr(M(Wn))≤−1. (19)

Moreover, it can be easily seen that there is a subversion
strategy S∗ of M(Wn) such that |S∗| = b n−1

2 c,
ω(M(Wn)/S∗) = b n−1

2 c and c(M(Wn)/S∗) = 1. Thus,

ω(M(Wn)/S∗)−|S∗|− c(M(Wn)/S∗)≥ bn−1
2
c−bn−1

2
c−1

=−1.
(20)

By (19) and (20) we get the result

Nr(M(Wn) =−1.

From case 1 and case 2, the proof is completed.

Theorem 2.5. Let Pn×K2 be the cartesian product of a
path graph Pn and K2. M(Pn×K2) be the middle graph of
this graph with n > 2. Then,

Nr(M(Pn×K2)) =

{
−2, n≡ 2 (mod3);
−1, otherwise.

Proof. Let S be a subversion strategy of M(Pn×K2) and
|S|= r be the number of removing vertices of M(Pn×K2).

Case 1: Let n≡ 2 (mod3).
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Subcase 1: If 0≤ r ≤ b 2n
3 c+1, then we get

ω(M(Pn × K2)/S) ≤ r − 1 and c(M(Pn × K2)/S) ≥
b 5n−6r−2

r−1 c. Thus,

ω(M(Pn×K2)/S)−|S|− c(M(Pn×K2)/S)

= r−1− r− 5n−6r−2
r−1

≤ 5− 5n−8
r−1

Nr(M(Pn×K2))≤max
r
{5− 5n−8

r−1
}.

The function f (r) = 5− 5n−8
r−1 is an increasing function and

takes its maximum value at b 2n
3 c+1. Hence, we have,

f (b2n
3
c+1)≤−2.

Nr(M(Pn×K2))≤−2. (21)

Subcase 2: If r > b 2n
3 c+1, then we have

ω(M(Pn × K2)/S) ≤ r − 2 and c(M(Pn × K2)/S) ≥ 1.
Hence,

ω(M(Pn×K2)/S)−|S|− c(M(Pn×K2)/S)≤ r−2− r−1
≤−3

(22)

According to the definition of neighbor rupture degree we
take the maximum of (21) and (22). Thus we get

Nr(M(Pn×K2))≤−2 (23)

In addition to this, there exist S∗ such that
|S∗|= b 2n

3 c+1, ω(M(Pn×K2)/S∗) = b 2n
3 c and

c(M(Pn×K2)/S∗) = 1 then

ω(M(Pn×K2)/S∗)−|S∗|− c(M(Pn×K2)/S∗)≥−2

and
Nr(M(Pn×K2))≥−2. (24)

From (23) and (24) we obtain the result

Nr(M(Pn×K2)) =−2. (25)

Case 2: Let n 6≡ 2 (mod3).

Subcase 1: If 0≤ r≤d 2n
3 e, then we get ω(M(Pn×K2))≤ r

and c(M(Pn×K2)/S)≥ b 5n−2−6r
r c. Hence,

ω(M(Pn×K2)/S)−|S|− c(M(Pn×K2)/S)

≤ r− r− 5n−6r−2
r

= 6− 5n−2
r

and
Nr(M(Pn×K2))≤max

r
{6− 5n−2

r
}.

The function f (r) = 6− 5n−2
r is an increasing function and

takes maximum value at r = d 2n
3 e. Thus, we get

f (d2n
3
e) = 6−b5n−2

2n
3

c ≤ −1.

and
Nr(M(Pn×K2))≤−1. (26)

Subcase 2: If r > d 2n
3 e then, we obtain

ω(M(Pn × K2)/S) ≤ r − 1 and c(M(Pn × K2)/S) ≥ 1.
Hence,

ω(M(Pn×K2)/S)−|S|− c(M(Pn×K2)/S)≤ r−1− r−1
≤−2.

(27)

According to the definition neighbor rupture degree we
take maximum of (26) and (27). Thus we get,

Nr(M(Pn×K2))≤−1. (28)

It is obvious that there is a subversion strategy S∗ of
M(Pn×K2) such that |S∗|= d 2n

3 e. Then
ω(M(Pn × K2)/S∗) = d 2n

3 e and c(M(Pn × K2)/S∗) = 1.
Thus,

ω(M(Pn×K2)/S∗)−|S∗|− c(M(Pn×K2)/S∗)

≥ d2n
3
e−d2n

3
e−1≥−1

(29)

According to (28) and (29), we get the result

Nr(M(Pn×K2) =−1.

The proof is completed.

Theorem 2.6. Let Cn×K2 be the cartesian product of a
cycle Cn and K2. M(Cn×K2) be the middle of this graph
with n > 3. Then,

Mr(M(Cn×K2)) =

{
−1, if n is even;
−2, if n is odd.

Proof. Let S be a subversion strategy of M(Cn×K2) and
|S|= r be the number of removing vertices of M(Cn×K2).

Case 1: If n is even:

Subcase 1: If 0≤ r ≤ n, then we have
ω(M(Cn×K2)/S)≤ r and c(M(Cn×K2)/S)≥ 5n−4r

r .
Therefore,

ω(M(Cn×K2)/S)−|S|−c(M(Cn×K2)/S)≤ r−r− 5n−4r
r

= 4− 5n
r
.

Nr(M(Cn×K2))≤max
r
{4− 5n

r
}.

The function f (r) = 4− 5n
r is an increasing function and

takes its maximum value at r = n. Thus, we have

f (n) = 4− 5n
n

=−1.

and
Nr(M(Cn×K2))≤−1. (30)
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Subcase 2: If r > n, then we obtain
ω(M(Cn×K2)/S)≤ r−1, c(M(Cn×K2)/S)≥ 1. Hence,

ω(M(Cn×K2)/S)−|S|− c(M(Cn×K2)/S)≤ r−1− r−1
=−2

and
Nr(M(Cn×K2))≤−2. (31)

In compliance with the definition of neighbor rupture de-
gree, we get maximum of (30) and (31). Thus, we obtain,

Nr(M(Cn×K2))≤−1. (32)

In other respects, there exist S∗ such that |S∗| = n,
ω(M(Cn×K2)/S∗) = n and c(M(Cn×K2)/S∗) = 1 then

ω(M(Cn×K2)/S∗)−|S∗|− c(M(Cn×K2)/S∗)≥ n−n−1
=−1.

(33)

According to (32) and (33) we obtain the result.

Nr(M(Cn×K2)) =−1.

Case 2: If n is odd:

Subcase 1: If 0≤ r ≤ n, then we get ω(M(Cn×K2)/S)≤
r−1 and c(M(Cn×K2)/S)≥ 5n−4r−1

r−1 . Thus,

ω(M(Cn×K2)/S)−|S|− c(M(Cn×K2)/S)

≤ r−1− r− 5n−4r−1
r−1

= 3− 5(n−1)
r−1

.

Nr(M(Cn×K2))≤max
r
{3− 5(n−1)

r−1
}.

The function f (r) = 3− 5(n−1)
r−1 is an increasing function

and gets its maximum value at r = n. Therefore, we have

f (n) = 3− 5(n−1)
n−1

=−2

and
Nr(M(Cn×K2))≤−2 (34)

Subcase 2: If r > n, then we get
ω(M(Cn×K2)/S)≤ r−2 and c(M(Cn×K2)/S)≥ 1. So,

ω(M(Cn×K2)/S)−|S|− c(M(Cn×K2)/S)≤ r−2− r−1
=−3.

and
Nr(M(Cn×K2))≤−3. (35)

We take maximum of (34) and (35) from the definition of
neighbor rupture degree and we get

Nr(M(Cn×K2))≤−2. (36)

Besides, it can be easily seen that there is a subversion
strategy S∗ of M(Cn×K2) such that |S∗|= n,

ω(M(Cn ×K2)/S∗) = n− 1 and c(M(Cn ×K2)/S∗) = 1
then,

ω(M(Cn×K2)/S∗)−|S∗|− c(M(Cn×K2)/S∗)

≥ n−1−n−1 =−2

and
Nr(M(Cn×K2))≥−2. (37)

According to (36) and (37) we obtain the result.

Nr(M(Cn×K2)) =−2.

3. Conclusion

In this paper, a vulnerability parameter for spy networks,
neighbor rupture degree is studied. This parameter is
applied to the middle graphs of cycle, path, star and wheel
graphs and some general results are obtained. Also the
neighbor rupture degree of the cartesian product graphs
Pn×K2 and Cn×K2 are derived.
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İntegrity of trees. Ars Combinatoria, 43, 169-180.

[10] Kirlangic, A. 2004. Graph Operations and Neighbor
Integrity. Mathematica Bohemica, 129(3), 245-254.

[11] Wei, Z.T. 2003. On the reliability parameters of net-
works. Northwestern Polytechnical University, MSc.
Thesis, 40s.

[12] Kurkcu, O.K., Aksan, H. 2016. Neighbor Tough-
ness of graphs. Bulletin of International Mathematical
Virtual Institue, 6(2), 135-141.

79



G. Bacak-Turan et al. / Neighbor Rupture Degree of Some Middle Graphs

[13] Aslan, E. 2015. Neighbor Isolated Tenacity of
Graphs. RAIRO-Theor. Inf.Appl. 49(4), 269-284.

[14] Nihei, M.2001. On the toughness of the middle graph
of a graph. Ars Combinatoria, 49, 55-58.

[15] Mamut, A., Vulmar, E.2007. A Note on the Integrity
of Middle Graphs. Discrete Geometry, Combinatorics
and Graph Theory, Lecture Notes in Computer Sci-
ence, 4381, 130-134.

[16] Odabas, Z., Aytac, A. 2012. Rupture Degree and Mid-
dle Graphs. Comptess rendus de I’Acade’mie bulgare
des Sciences, 65(3), 315-322.

[17] Aytac, A., Turaci, T., Odabas, Z. 2013. On the
bondage number of middle graphs. Mathematical
Notes, 93(5), 795-801.

[18] Aytac, A. 2005. On the edge-tenacity of the middle
graph of a graph. International Journal of Computer
Mathematics, 82(5), 551-558.

80


	Introduction
	Neighbor Rupture Degree of Middle Graphs
	Conclusion

