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Abstract: Some of the experimental designs can be composed of replicated
response measures in which the replications cannot be identified exactly and may
have uncertainty different than randomness. Then, the classical regression analysis
may not be proper to model the designed data because of the violation of
probabilistic modeling assumptions. In this case, fuzzy regression analysis can be
used as a modeling tool. In this study, the replicated response values are newly
formed to fuzzy numbers by using descriptive statistics of replications and golden
ratio. The main aim of the study is obtaining the most suitable fuzzy model for
replicated response measures through fuzzification of the replicated values by
taking into account the data structure of the replications in statistical framework.
Here, the response and unknown model coefficients are considered as triangular
type-1 fuzzy numbers (TT1FNs) whereas the inputs are crisp. Predicted fuzzy
models are obtained according to the proposed fuzzification rules by using Fuzzy
Least Squares (FLS) approach. The performances of the predicted fuzzy models are
compared by using Root Mean Squared Error (RMSE) criteria. A data set from the
literature, called wheel cover component data set, is used to illustrate the
performance of the proposed approach and the obtained results are discussed. The
calculation results show that the combined formulation of the descriptive statistics
and the golden ratio is the most preferable fuzzification rule according to the well-
known decision making method, called TOPSIS, for the data set.

Tekrarh Yanit Olgiimleri i¢cin Tekrarlarin Betimsel istatistikler ve Altin Oran ile
Bulaniklastirilmasina Dayali Olusturulan Bir Bulanik Modelleme Yaklasimi

Anahtar Kelimeler
Tekrarh yanit 6l¢timleri,
Bulanik en kiictik kareler,
Uggensel tip-1 bulanik
sayilar,

Altin oran

Ozet: Bazi deneysel tasarimlar tekrarli yamit o6lgiimlerini icerebilir. Bu
tasarimlarda tekrarlar tam olarak belirlenemeyebilir ve rasgelelikten farkli olarak
belirsizlikler icerebilir. Olasiliksal modelleme varsayimlarinin saglanamamasi
nedeniyle verilerin modellenmesi icin klasik regresyon analizi uygun olmayabilir.
Bu durumda, bulanik regresyon analizi bir modelleme araci olarak kullanilabilir.
Bu ¢alismada, tekrarh yanit degerleri, tekrarlara iliskin betimsel istatistiklerin ve
altin oranin kullanilmasi ile yeni bir formda bulanik sayilara doniistiiriilmiistiir.
Calismanin temel amaci, tekrarli degerlerin bulaniklastirilmasinda tekrarlarin
yapisini istatistiksel anlamda dikkate alarak, veri seti icin en uygun bulanik
modelin elde edilmesini saglamaktir. Burada, yanit ve bilinmeyen model
katsayilari licgensel tip-1 bulanik sayilar, girdi degiskenleri kesin degerler olarak
ele alinmistir. Tahmini bulanik modeller, dnerilen bulaniklastirma kurallarina gére
bulanik en kiigiik kareler yaklasimi kullanilarak elde edilmistir. Tahmini bulanik
modellerin performanslari hata kareler ortalamasinin karekokii (RMSE) kriteri
kullanilarak karsilastirilmistir. Literatiirde taniml bir veri seti lizerinde onerilen
yaklasim uygulanarak elde edilen sonuglar degerlendirilmistir. Elde edilen
sonuglar, betimsel istatistikler ve altin oran ile olusturulan formiilasyonun,
oldukga iyi bilinen bir karar verme yontemi olan TOPSIS’e gore, ilgilenilen veri seti
icin en ¢ok tercih edilen bulaniklastirma kurali oldugunu gosterir.
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1. Introduction

Statistical regression analysis is the most important
tool used by researchers for modeling of the
relationship among the response and input
variables, and also important for making
predictions with minimum error. However, in many
real life problems, classical regression analysis
cannot be used for model building phase properly
due to violation of probabilistic modeling
assumptions, which are necessary for statistical
inference through ANOVA techniques, e.g. data set
has small size, or the errors are not normally
distributed, or the relationship between response
and input variables has imprecision, or there is
uncertainty about the variables different than
randomness. There are some cases where the
response values cannot be identified exactly. One of
these cases is that the response may be composed of
replicated measures where the qualification of the
response has uncertainty. When there is uncertainty
about a number it can be modeled as a fuzzy set in
which case it is called a fuzzy number, firstly
introduced by Zadeh [1].

In the literature, the application of fuzzy approach
in regression analysis is roughly divided into two
categories: (i) Tanaka’s Linear Programming (LP)
approach [2], and (ii) Diamond’s Fuzzy Least
Squares (FLS) approach [3]. Later on, many studies
have been done about fuzzy linear regression and
its application. A detailed review on fuzzy
regression can be found in [4]. In recent years, some
studies have been carried out about modeling of
replicated response measures in fuzzy framework.
Bashiri and Hosseininezhad [5] is proposed a
methodology for optimizing multi response surface
in robust design by applying fuzzy set theory and
replicated response measured data set is used to
illustrate the proposed methodology. And also,
Bashiri and Hosseininezhad [6] is developed an
approach to multiple response optimization for
responses without replicates and with some
replicates based on fuzzy concept. Tiirksen and
Apaydin [7] proposed a modeling approach based
on FLS method by using triangular type-1 fuzzy
numbers (TT1FNs) for multi response experiments
with replicated response measures. Tiirksen and
Gller [8] applied fuzzy logic based modeling
approaches, e.g. FLS Regression, Switching Fuzzy C-
Regression (SFCR), and Takagi-Sugeno (TS) fuzzy
model, on replicated response measured data set
and calculated prediction performance of modeling
approaches. It is seen that the SFCR gives the better
prediction performance according to the root mean
square error (RMSE) criteria. Tiirksen and
Kocadagh [9] applied triangular type-2 fuzzy
numbers for representation of replicated response
measures as fuzzy numbers. And also, FLSR is used
for estimating of fuzzy model coefficients. Tiirksen
[10] used Bayesian and fuzzy approaches to model
the data sets with replicated response measures.
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Comparison of modeling approaches are evaluated
by interval arithmetic metrics. In these papers,
replicated response measures are transformed to a
fuzzy number by using descriptive statistics for
each observation unit. In fact, the replicated
measures cannot be quantified exactly. Besides,
replicated values are different from each other
which cause uncertainty different than randomness.
Therefore, the natural structure of replicated
measures should be taken into account to represent
the uncertainty of replicated values properly.

In this study, data structure of the replicated
response measures is taken into account for
fuzzification of the replicated measures in order to
apply fuzzy modeling from a new perspective. For
this purpose, descriptive statistics of the replicated
response values are used to form response as
TT1FNs. Thus, the uncertainty of the replicated
response measures is defined according to the
character of the replications in statistical manner.
Also, in the study, golden ratio, derived from
Fibonacci series, is combined with descriptive
statistics and it is used to transform replications to
the TT1FNs. The main purpose of the study is
demonstrating the importance of fuzzification of
replicated measures for fuzzy modeling of the data
set. It is possible to say that using descriptive
statistics with golden ratio gives appropriate
fuzzification approach for replicated measured data
set according to the RMSE criteria. The paper is
organized as follows: In Section 2, fuzzification of
replicated measures is given in detail with a brief
description about FLS regression. In Section 3, a real
data set in the literature is used to illustrate the
applicability of the proposed fuzzification approach
with comparison results. Finally, discussion and
conclusion are given in Section 4.

2. Material and Method
2.1. Design of replicated measures

In modeling stage of an unknown response, the first
basic step is data gathering and proper design of
experimental data. Sometimes, the design of the
data may be composed by using the replicated
measures of the response as given in Table 1.

Table 1. Experimental design for an experimental
data set with replicated response measures

Input levels Response
No x x, X, Y
1 X11 X12 b le .yll ylZ .ylr
2 X21 XZZ XZP .yZl y22 .er
n Xn1 Xn2 Xop Y Y Y
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In Table 1, n denotes the number of experimental
units and r is the number of replications for the
response. It should be noted that each replication is
measured for each setting of a group of p input
variables. One of the main aim for the experimental
data set, designed in Table 1, is modeling of the data
set as a function of input variables and replicated
response measures. In order to model the replicated
data set properly, the uncertainty of the nature of
the replicated response measures should be taken
into account. For this purpose, in this study, TT1FNs
are used to represent vagueness of the replicated
response values.

2.2. Triangular type-1 fuzzy numbers (TT1FNs)
and some basic operators

One of the most useful representation of fuzziness is
defining a membership function for the data set.
The shape of membership function, e.g. triangular,
trapezoidal, Gaussian, helps to classify the fuzzy
numbers. In this study, TT1FNs are preferred to use
due to easiness of mathematical calculations.

A type-1 fuzzy set A is a set function on universe D4
into [0,1], eg #,:X—[0,1]. The membership
function (MF) of A is denoted 4, (x) and is called a
type-1 MF, eg A ={(x,,uA (x)):x eX} in which

0<u, (x)Sl [11].

When the uncertainty is modeled using a type-1
fuzzy set it is called a type-1 fuzzy number. Let A be
a fuzzy set in R. A is called a type-1 fuzzy number if:
(i) A is normal, (ii) A is convex, and (iii) 4 has a
bounded support [11].

The MF formula for TT1FN is given below

(x—a,)/(a,—a,) , a,<x<a,
w,(x)=2(a,-x)/(ay—a,) , a,<x<a, (1)
0 , X>a, or x<a,

where the A can be denoted as A=(qa,,a,,a;). The

basic arithmetic operators for TT1FNs are defined
in many studies due to wide range of usage of
TT1FNs. Here, some elementary operations are
given basicly.

Let A=(a,,a,,a,) and B=(b,,b,,b,) be two TT1FNs.

Addition: A+B=(a, +b,,a,+b,,a,+b,)
Subtraction: A-B=(a, —b,,a,—b,,a,—b,)
Multiplication: AxB=(a,b,,a,b,,a,b,)

Scalar Multiplication: Let 1 be a scalar.

e (%a;,Aa,,2a,) , A>0
(-Aay,—Aa,,—2a;) , A<0

2.3. Fuzzification of replicated response
measures

In order to apply fuzzy modeling approach to
replicated data set, the replicated response
measures should be represented as fuzzy numbers.
For this purpose, in this study, replicated measures
are transformed to the TT1FNs through the
descriptive statistics and the golden ratio. The
proposed fuzzification rules are given in detailed.

Let the matrix of observed replicated response
measures be

Yl Yll YlZ 1r
YZ YZl Y22 2r
y=| - |2 - . . (2)
_Yn _ _Ynl YnZ an _

where n denotes the number of units and r denotes
number of replications for each unit. The triangular
fuzzy values of the each unit is given as

- (Yll’chlylu)

Ry z:<1

(v, ;7))
v=| - |- . (3)

_Yn_ (Yn[’ync’yvnu)
Thus, the fuzzy responses Y, =(Y/,Y°Y") ,

i=1,2,..,n, are obtained by wusing different
fuzzification rules for each unit as shown below:

Rule-1:

Y =Y, - ZStddev(Yij)

Ye :Yi. ,1=1,2,.,n, j=1,2,.,r  (4)
Y =Y, +2stddev(Y,)

IR 0TS

where ¥, ===~ and stddev(Y, )=
' r r-1

It should be noted here that the }71 ,i1=1,2,...,n, is the

mean of observed replicated response measures for
each unit and 2xstddev is assumed as the spread
for fuzzification of the replicated response
measures to obtain an interval similar as a 95%
confidence interval.
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Rule-2:

n, j=1,2,.,r (5)

where Y,,) and Y, are the smallest and the largest

order statistics for each unit.

Rule-3:
I _
Y =Y
Y =med(Y,) , i=12,..n, j=1,2 (6)
Y=Y,

in which med( )represents the median of the

replicated response measures for each unit.

Rule-4:
I _
Y =Y,
Ye Yim +Rxp , i=12,.,n
Yiu = Yi(r)
(7)

where R, is called as the range and is obtained by
substracting the smallest observation from the
largest observation for each unit, i.e. R, =Y,,,—Y,,),
i=12,.,
equal to 0.618. The golden ratio, also sometimes
called golden section, golden mean, golden number,

n. Here, p is the golden ratio and taken

divine  proportion, divine section, golden
proportion, is the limit of consecutive Fibonacci
numbers, detailed information can be seen in

Dunlap [12], that is

TR C CRPPS
n—o F;: 2
and
= -0.618.
n—w F;r+1 ﬂ
Rule-5:
I _
Y, —Y,m
Yxc =Y, i1 +IQR. xp , i=1,2,.,n (8)
Ylu Yl(r)

in which IQR, is interquartile range of replicated
response measures for each unit.
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2.4. Fuzzy least squares regression

A general form of the fuzzy linear regression model,
used in this study, can be given as

=XB+E (9)

where the observed response values, model
coefficients and errors are assumed as TT1FNs,

~ ~ ~ ~ ! ~

denoted as Y=[Y1 Yz...Yn] , B:(B’,B”,p”), and
E:(s',s‘,s“), respectively. Here, the inputs are
considered as crisp values. In order to estimate the
unknown fuzzy model parameters, FLS method is
used. The FLS aims to obtain fuzzy parameter
estimates by minimizing the sum of the squared
distance between observed and predicted fuzzy
response values, formalized as

mm ¢([~3) mln (dz (\? \:())

(10)

where Y represents predicted triangular fuzzy
response values. In this case, vertex method,
proposed by Diamond [3], can be used to calculate

the distance between Y and \:( as following
2 (G _1 A ¢ e\’ u _u Y
d (Y,Y)_5 (Y —Y) (v -v) +(Y -y ) (11)

It is clear that Equation (11) gives sum of squared
errors. The root mean of sum of squared error
terms, RMSE, is preferred to use as a criteria to
evaluate the prediction performances of the fuzzy
regression models whose response values are
composed with the proposed five fuzzification rules
of the replicated response measures.

3. Results

In this section, a well-known data set, wheel cover
component data set, is chosen from the literature. It
is originally given in Harper et al. [13]. The purpose
of the data set is to determine the effects of seven
injection molding input variables (denoted as
X,,X,,..X,;) on the equality characteristics of the
component which are considered as responses.
These are measured by the total weight and the

balance which are denoted as Y, (in grams) and Y,

(in inch-ounces). Throughout the work, it is
assumed that the responses are uncorrelated. The
experiment was conducted in a 27* fractional
factorial design with five replications in each unit.
The two levels of each input variables XU., i =

1,2,..,8, j=1,2,..,7 are coded as -1 and +1 [8]. The
experimental data set is given in Table 2. The box-
plots of the replicated response measures for each
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Table 2. The wheel cover component data set

Input levels Responses
Y1 Y2
No X1 X2 Xs Xs Xs Xe X7 | Rep. Rep. Rep. Rep. Rep. Rep. Rep. Rep. Rep. Rep.
1 2 3 4 5 1 2 3 4 5
1 -1 -1 -1 -1 -1 -1 -1 | 7119 713.4 712.3 712.4 711.9 059 059 047 071 0.63
2 -1 -1 -1 +1  +1 +1 +1 | 725 720.1 711.8 723.9 720.9 0.70 091 113 0.79 0.78
3 -1+ +1 -1 -1 +1  +1 | 711.6 711.7 711.3 712.1 711.7 056 044 046 0.53 046
4 -1+ +1 +1 +1 0 -1 -1 | 733.7 724.1 732 732.7 733.3 1.5 155 138 145 145
5 +1 -1 +1 -1 +1 -1 +1 | 7254 721.6 722.6 723.1 721.1 1.25 136 151 122 1.25
6 +1 -1 +1  +1 -1 +1 -1 | 7281 721.1 722.9 723 719.7 1.17 097 098 098 0.73
7 +1  +1 -1 -1 +1  +1 -1 | 726.6 731.4 731.4 729.6 731.3 1.52 158 161 140 1.57
8 +1  +1 -1 +1 -1 -1 +1 | 714.3 714.4 713.6 716.3 714.6 057 051 044 044 0.56
unit are given in Figure 1 and Figure 2 for the first and

and the second responses, repectively.

It is clear to say from Figures 1-2 that the replicated
response measures are not symmetrically
distributed. The replications have skewed
distribution. Therefore, R, IQR and med values of
replications will provide more information to
construct triangular fuzzy response values. The data
sets with the fuzzy response values, composed
according to the five fuzzification rules, are given in
Table 3. Predicted fuzzy model parameters are
obtained by minimizing the objective function,
given in Equation (10), according to the each
fuzzification rule. The RMSE values are calculated

for each predicted fuzzy responses, \:(1 and \:(2, and
presented in Table 3.

0 o
17 =3

é,
==

1 2 3 4 5 6 7 8
Figure 1. Box-plots of the replications of the first
response for each unit

725~

715~

=

It can be easily seen from Table 3 that the smallest

RMSE values of Y, and Y, are 13.9738 and 0.4177
which are related to Rule-5 and Rule-4, respectively.
The common trait of the Rules 4-5 is that both rules
are composed with variation of replicated response
measures, e.g. R, IQR. The predicted fuzzy response
models, which have the smallest RMSE values, are
given below:

Y, =(717.5125,721.0119,723.175) +(-0.4,2.359,5.2625) X,
+(-2.0375,0.6536,3.625) X, +(—1.2375,1.607,4.425) X,
+(-1.6375,1.5256,4.025) X, +(1.7125,4.8166,7.375) X,
+(-6.1,-3.3174,-0.4375) X,
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v =(0.8475,1.0043,1.1013) +(—0.02,0.1085,0.2338) X,
(-0.0313,0.0958,0.2225) X, +(0.2112,0.3406,0.465) X;
(-0.28,-0.1545,-0.0262) X,

%i?
é,

0.8 i
+

ok = =l

0.4 *

2
+
+

16r-

1.4r

1 2 3 4 5 6 7 8
Figure 2. Box-plots of the replications of the second
response for each unit

If someone wants to use the same fuzzification rule
for both responses, a compromise fuzzification rule
must be chosen among the proposed five rules. In
this case, a multi criteria decision making (MCDM)
approach should be applied to the RMSE values,
given in Table 3. For this purpose, a MCDM
approach, TOPSIS method, presented in [14], is
preferred to use. Here, the fuzzification rules and
responses are considered as alternatives and
criteria, respectively. The working principle of the
TOPSIS is that the chosen compromise solution
among the alternative solutions should have the
shortest distance from the positive ideal solution
and the farthest distance from the negative ideal
solution. By assuming that the both responses have
equal importance, relative closeness vector of the
fuzzification rules with respect to positive ideal
solution is

C=[C, C,C, C, C;]=[0 0.9979 0.9957 1 0.9931].

Itis clear from C,,i=1, 2, ..., n, values that the Rule-

4 is chosen as a compromise fuzzification rule. Thus,
one can use fourth rule for transforming replicated
response measures to triangular fuzzy responses
for wheel cover component data set.
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Table 3. Observed fuzzy response values composed according to fuzzification rules

Observed fuzzy response values RMSE
Fuzzification o o 2 =
Rules Vi Yz Yl YZ
711152 712.38 713.608 04246 0598  0.7714
709.9625 720.34 730.7175 05269 0.862  1.1971
7111073  711.68 712.2527 03861  0.49 0.5939
723163  731.16 739.157 1339 1466 1593
Rule-1 719.4116  722.76 726.1084 10783 1318 15577 222414 0.6506
716.5951  722.96 729.3249 06534 0966 12786
7258992  730.06 734.2208 13707 1536  1.7013
712.637  714.64 716.643 03786 0504  0.6294
711.9 712.38 713.4 0.47 0598  0.71
711.8 720.34 725 0.7 0862  1.13
7113 711.68 712.1 0.44 0.49 0.56
724.1 731.16 733.7 1.38 1466 155
Rule-2 721.1 722.76 725.4 1.22 1318 151 13.9762 0.4182
719.7 722.96 728.1 0.73 0966  1.17
726.6 730.06 731.4 14 1536 161
713.6 714.64 7163 0.44 0504 057
711.9 712.3 713.4 0.47 0.59 0.71
711.8 720.9 725 0.7 0.79 1.13
7113 711.7 712.1 0.44 0.46 0.56
7241 732.7 733.7 1.38 145 155
Rule-3 721.1 722.6 725.4 1.22 1.25 151 13.9774 0.4187
719.7 722.9 728.1 0.73 0.98 117
726.6 7313 731.4 1.4 1.57 1.61
713.6 714.4 7163 0.44 0.51 0.57
711.9 712.827 7134 0.47 06183 0.71
711.8 719.9576 725 0.7 09657 1.13
7113 711.7944  712.1 0.44 05142  0.56
724.1 730.0328  733.7 1.38 14851 155
Rule-4 721.1 723.7574 7254 1.22 13992 151 13.9766 0.4177
719.7 7248912 728.1 0.73 1.0019  1.17
726.6 729.5664 731.4 1.4 15298  1.61
713.6 7152686  716.3 0.44 05203  0.57
711.9 712.3635 713.4 0.47 05256  0.71
711.8 715.6007 725 0.7 08267 1.13
7113 7114699 712.1 0.44 0491 056
7241 7261857  733.7 1.38 14294 155
Rule-5 721.1 722.4596  725.4 122 13158 151 13.9738 0.4193
719.7 7218785 728.1 0.73 08026  1.17
726.6 7281759 7314 1.4 14603 161
713.6 7141562  716.3 0.44 05157  0.57

4, Discussion and Conclusion

In this study, fuzzy regression analysis based on FLS
approach, is used for modeling of the replicated
response measured data set. In order to apply fuzzy
modeling, replicated response measures are
transformed to TT1FNs by using newly proposed
fuzzification rules, based on descriptive statistics
and golden ratio. In the present study, the
uncertainty of the replicated response measures is
handled in fuzzy framework by taking into account
to the data structure of replications via statistical
data mining. Proposed rules for fuzzification of
replicated response measures and fuzzy modeling
approach are demonstrated on a real experimental
data set which is defined in the literature. The RMSE
values of predicted fuzzy responses are calculated
for prediction performances of the predicted fuzzy
models in which the observed responses are
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fuzzified by using fuzzification rules. Calculation
results show that the compromise fuzzification rule,
decided through the TOPSIS method, is obtained by
combining descriptive statistics and golden ratio for
the wheel cover component data set.
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