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Abstract 

 

In recent years, convolutional neural networks have been frequently used for finger-vein biometrics. Various methodologies 

have been proposed to improve the recognition performance on available datasets. Deep learning-based approaches have a 

promising performance, and they have been an effective solution for feature learning. Nevertheless, some problems in the 

literature need to be solved, such as the lack of test protocol and comparability. In this study, a review of deep learning-based 

studies on finger-vein biometrics has been presented in two categories: identification and verification. This review contains 68 

publications from reputable databases published between 2016 and 2025. The contents of the articles have been discussed in 

detail. The pros and cons of the proposed algorithms have been stated critically. The arising confusion due to the usage of the 

term recognition for identification and verification has been removed. The role of the experimental protocol and metrics in 

performance results on reviewed papers has been stated. The need for comparing the results against the existing results in the 

literature on the same finger-vein datasets using totally the same test protocol has been highlighted. Lastly, foreseen opportunities 

have been listed to draw the researcher's attention. 
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1.  INTRODUCTION 

Biometric systems are intended to recognize the innate 

physical characteristics and the embraced behaviors of 

individuals. Fingerprint, face, signature, and finger-vein are 

some of the biometrics traits that are widely in use in today’s 

world. Like other biometric traits, finger-vein offers a variety 

of expected advantages such as being unique, universal, 

collectible, permanent, and user-friendly [1]. Thus, it has 

been regarded as a reliable and preferable trait for biometric 

applications. However, vein images have low contrast due to 

the scattering effect of near-infrared light, and finger-vein 

biometric systems suffer from this characteristic [2]. Since 

vein images are not so clear and there is not any accurate 

mathematical model to detect finger-vein patterns, various 

conventional feature extraction methods have been proposed 

in the literature [3]. As known, convolutional neural 

networks (CNNs) provide more effective generalization than 

conventional feature extraction methods [4]. Therefore, with 

the advances in deep learning, CNNs have started to be 

widely used for finger-vein biometrics. Since CNNs provide 

feature learning rather than feature extraction, deep learning-

based studies have started to replace conventional feature 

extraction-based studies [5]. 

The finger-vein studies in the literature can be examined in 

roughly several main categories. Therefore, these studies can 

be searched using some keywords: Image enhancement and 

preprocessing oriented, data augmentation and synthetic data 

generation oriented, spoofing attack oriented, imaging 

platform design oriented, region of interest extraction 

oriented, multimodal biometrics oriented, cross finger and 

cross-database oriented, the effect of hyperparameter 

oriented, identification oriented and verification oriented 

studies. Each study in these categories aims either to 

contribute or improve the best obtained performance rates 

for identification and verification in the literature on used 

datasets. However, some of the published studies in the 

literature do not use a common test protocol with the 

previous studies and just aim to obtain the best performance 

rates on certain publicly available datasets. Without sharing 

the crucial details about hyperparameter selections and 

experimental protocols, these studies report the obtained 

results and compare findings against the ones published in 

the literature on the same database, although scientifically 

unacceptable [6]. Therefore, rather than focusing on only the 

reported quantitative performance results, this study 

highlights the methodology and original contributions of 

manuscripts published in identification and verification 

categories. 
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1.1.  Related Works 

Deep learning provides effective end-to-end solutions in 

recognition systems [7]. The importance of review articles is 

rising in biometrics gradually since the number of 

publications increased with the help of deep learning-based 

methodologies. However, there are few review articles on 

finger-vein using deep learning in the literature because 

review articles mostly focus on studies using conventional 

methods. 

In 2018, [8] published one of these review papers. This paper 

provides a thorough analysis of finger-vein biometrics. With 

its comprehensive content, it introduces publicly available 

datasets and characteristics of finger-vein biometrics. It lists 

preprocessing algorithms, ROI extraction methods, and 

image enhancement methods. This review paper mainly 

focuses on conventional feature extraction methods such as 

vein-based methods, local binary-based methods, 

dimensionality-based, and minutiae-based methods. 

Additionally, it provides a brief review of various deep 

learning-based studies. 

In 2018, [9] provided a systematic review of finger-vein 

biometric verification systems. They stated challenges and 

motivations collected from various studies on finger-vein 

verification. In this review, they provided an extensive 

literature review from hand-crafted methods to deep 

learning-based methods. They analyzed the distribution of 

published articles in certain categories. They presented the 

details of publicly available datasets, and they provided the 

advantages of using finger-vein as a biometric trait in terms 

of security and accuracy. They listed faced challenges related 

to finger-vein such as low image quality and template 

protection needs. They also provided some 

recommendations to developers, researchers, and 

companies. 

In 2021, [10] released a review on physiological biometric 

trait systems. They presented recent advances in biometrics 

based on some physiological biometric traits such as finger-

vein, palm vein, fingerprint, and iris. In this study, they 

summarized studies that use deep learning-based or 

conventional techniques for each biometric modality. By 

revisiting and analyzing biometric steps of recognition, they 

tried to focus on challenges and future trends for biometric 

systems. 

In 2021, [5] published a comprehensive review of feature 

extraction methods for finger-vein. They listed publicly 

available datasets and provided the download links of these 

datasets. They examined the advantages and disadvantages 

of feature extraction algorithms. They focused on mainly 

feature extraction methods. They reviewed publications that 

use mostly conventional methods, but they still listed some 

feature learning methodologies with CNN. They presented 

the pros and cons of proposed architectures in terms of 

performance evaluation criteria. Moreover, they shared the 

distribution of publications related to finger-vein.  

In 2022, [11] released a detailed analysis of finger-vein 

recognition. With a deep content, they introduced the 

characteristics of finger-vein biometrics. They listed the 

usage of artificial neural networks for finger-vein biometrics 

via 149 related papers, where these papers are related to 

artificial neural networks and deep neural networks. These 

papers were grouped by several topics such as verification, 

image enhancement, and segmentation. Lastly, they 

discussed the challenges and potential directions of finger-

vein biometrics for the future. 

In 2022, [12] published a comprehensive analysis of finger-

vein biometrics. With detailed content, they introduced the 

characteristics of finger-vein biometrics. They listed 

conventional feature extraction methods for finger-vein. 

They roughly compiled deep learning-based methods. They 

mainly intended to provide an overview of finger-vein 

imaging, vein image preprocessing, feature learning, and 

feature matching. 

In 2022, [13] published a review article that focuses on 

manuscripts related to finger-vein authentication, 

presentation attack detection, and multi-modal biometric 

finger-vein authentication. In this review, paper selection 

criteria and selection processes were illustrated. Performance 

analysis of selected papers was presented, and promising 

research articles were indicated. They subdivided deep 

learning-based finger-vein authentication into 

preprocessing, feature extraction, and recognition categories. 

They listed deep learning-based feature extraction, 

recognition, and quality assessment approaches. Besides, 

they shared the state-of-the-art performances of the existing 

deep learning-based methods. 

Lastly, [14] published a comprehensive analysis of finger-

vein biometrics in 2023. With detailed content, they 

introduced the characteristics of finger-vein biometrics. 

They focused on details of image acquisition, image 

enhancement, and feature extraction for finger-vein. They 

discussed the advances and shortcomings of the literature on 

finger-vein image enhancement and feature extraction for 

identification by compiling conventional method-based 

papers. 

1.2.  Contributions 

Our contributions can be listed as follows: There is no need 

to go through topics that have previously been covered in 

review papers on finger-vein biometrics, such as hand-

crafted feature extraction methods and image acquisition 

techniques. Thus, this study focuses on only deep learning-

based recognition studies in finger-vein biometrics. Firstly, 

a detailed keyword-guided search was conducted on the 

publications. These publications are journal papers and 

conference papers indexed by Google Scholar. The 

keywords used were related to "finger-vein", "recognition", 

"verification", "identification", "authentication", and "deep 

learning". In this study, distinguished publications available 

in the literature about deep learning-based finger-vein 

biometrics have been listed and reviewed. The inevitable 

ambiguity arising from the common use of the term 

recognition for identification and verification has been 

removed by referring to ISO standards that locate these two 

terms under the umbrella of 'biometric recognition'. The 

necessity of the common experimental protocol usage to 

compare obtained performance results against the results on 
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reviewed papers has been stated and highlighted. Most of the 

publications do not have any mechanism to promote 

interpretability and explainability in their model. Thus, there 

is an urgent need for Explainable Artificial Intelligence 

(XAI) methods in finger-vein systems as future work. This 

study proposes to use XAI for finger-vein biometrics for the 

first time. Lastly, existing opportunities other than XAI 

usage in finger-vein biometrics have been listed for future 

works in this area for researchers. 

The rest of the paper is organized as follows: Section 2 

introduces some of the popular publicly available finger-vein 

datasets.  Section 3 presents the definitions of performance 

metrics for identification and verification in detail. Section 3 

presents the definitions, protocols, and performance metrics 

for identification and verification in detail. Moreover, this 

section explains open-set and closed-set scenarios with 

computational examples to encourage reproducible works in 

the literature. Section 4 presents a comprehensive analysis of 

the deep learning-based finger-vein recognition literature in 

2 categories, namely identification and verification. Section 

5 lists flaws of finger-vein recognition analyses in the 

literature.  Section 6 presents the existing challenges and 

opportunities in finger-vein biometrics to help researchers. 

Lastly, Section 7 discusses the contributions of this study to 

the literature and concludes the conducted study with an 

outlook on future works. 

2.  DATASETS 

There are a few publicly available finger-vein datasets in the 

literature commonly used for biometric recognition. With a 

comprehensive search and analysis, the details about these 

datasets are given in this section. Moreover, information 

about the suitability of the datasets for identification or 

verification applications is also given. Although feature 

learning based on deep learning is considered more robust 

compared to conventional feature extraction methods while 

building an efficient recognition system, the limited image 

amount of publicly available finger-vein datasets is an 

indisputable challenge since those systems are mostly data-

driven [13]. The main disadvantage of deep learning-based 

approaches is the lack of huge, and publicly available 

datasets [5]. This handicap is managed by using data 

augmentation methods and transfer learning strategies. 

SDUMLA is the first publicly available finger-vein dataset, 

collecting data from multiple fingers of each subject [15]. It 

was collected from 106 different individuals in total. Vein 

images were captured from individuals' (his/her) index 

fingers, ring fingers, and middle fingers of both hands. 

Images were taken from each finger 6 times. The images in 

the dataset contain information through 3 channels. In total, 

the dataset contains 3816 finger-vein images [16]. It could 

be used in identification and verification applications due to 

the diversity of the dataset and the fact that the dataset 

contains sufficient samples for each finger.  

HKPU dataset was created by collecting finger-vein images 

from 156 volunteers for 11 months. 93% of the subjects of 

the dataset were individuals under the age of 30. Data was 

collected in 2 sessions. Samples were taken from the index 

finger and middle finger of the left hand of each subject. For 

data collection, 105 of 156 volunteers attended both sessions. 

In total, 6 finger-vein images were obtained from each finger 

in each session. Thus, 3132 finger-vein images were 

collected for the dataset [17]. Considering the diversity of the 

dataset and the number of samples, it seems to be suitable for 

identification and verification applications. 

UTFVP dataset was collected from a total of 60 volunteers 

in an academic year. 82% of the subjects of the dataset were 

between the ages of 19-30. Images were taken from the ring, 

index, and middle fingers of both hands of the subjects in 

two different sessions. In total, 4 finger-vein images were 

obtained from each finger of each subject. Thus, the dataset 

consists of 1440 images in total [18]. These images have high 

quality [15]. The dataset has a structure suitable for open-set 

and closed-set protocols. Thus, it can be used in both 

identification and verification applications. 

Images of the MMCBNU dataset were collected almost in a 

month from 100 subjects consisting of university students 

and professors who are from 20 different countries. 10 

samples were taken from the index, ring, and middle fingers 

of both hands of each subject [19]. The dataset consists of 

6000 images in total. Due to the diversity of the dataset and 

the abundance of finger-vein data, it seems to be suitable for 

identification and verification applications. 

FVUSM dataset was collected from the index and middle 

fingers of both hands of 123 subjects in two different 

sessions, where 83 subjects were male, and 40 subjects were 

female [20]. Six samples were collected in each session. 

Thus, 2952 images were collected in total in each session. As 

the authors stated, images of the first session were aimed to 

be used for registration, while images of the second session 

were planned to be used for test. Due to the diversity of the 

dataset and its sample amount, it is suitable for both 

identification and verification studies. Details about these 5 

most commonly used datasets are given in Table 1. 

 

Table 1. The overview of popular publicly available finger-vein datasets 

Dataset Total Image Total Subjects Image number per finger Image Format Image Resolution 

SDUMLA [16] 3816 106 6 .bmp 320x240 

HKPU [17] 6264 156 6 .bmp 513x256 

UTFVP [18] 1440 60 4 .png 672x380 

MMMCBNU [19] 6000 100 6 .bmp 640x480 

FVUSM [20] 5904 123 6 .jpg 640x480 
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3.  CONCEPTS 

In biometrics, systems may operate in two recognition 

modes, depending on the application context: either 

identification mode or verification mode [7]. Although these 

modes are similar to each other, they differ depending on 

their place of use and the intended security level. Moreover, 

the generic term recognition is used commonly for both due 

to not wishing to make a distinction between verification and 

identification [1]. In this section, the details of these two 

recognition modes will be examined to eliminate the 

inevitable ambiguity due to the joint usage of recognition 

terms for identification and verification in finger-vein 

biometrics literature. Furthermore, the protocols for 

verifying and identifying finger-vein datasets as well as 

performance evaluation metrics employed in the literature 

will be described. 

3.1.  Identification 

A biometric system operates in either identification mode or 

verification mode, depending on the context of the 

performed application [21]. The identification mode 

compares the image of the enrolled individual with the 

images stored in the database to find his identity. The 

recognition process is accomplished by finding a match after 

searching the whole database. Using a one-to-many (1:N) 

comparison, the identification mode establishes the enrolled 

individual's identity. In identification mode, the system 

searches for the closest match among the other data stored in 

the system. Therefore, the finger-vein data of someone who 

is not registered in the system is assigned to the closest 

compatible finger-vein data [22]. Thus, some decision errors 

can be made in the recognition process. The formation and 

operation of the identification mode on finger-vein data is 

given in Figure 1. 

In this figure, the identification process consists of two 

stages, which are the Enrollment Phase and the Query Phase. 

Finger-vein data are taken from the developed imaging 

platform and transmitted to the first step for quality control. 

After the quality assessment of the created dataset, the first 

part of the enrollment process is completed. In the second 

part, the data is preprocessed to extract biometric templates 

for storage. Thus, the enrollment process does not inherently 

involve learning. Since the identification structure can be 

evaluated as a multi-class classification problem, the dataset 

is split according to the applied protocol. Then, the used or 

proposed deep learning model is trained with this data. The 

deep learning model is ready to be used for the identification 

system and its performance is tested with the remaining 

finger-vein data allocated for test. In the query or test phase, 

the prediction result is obtained after 1:N matching by 

following these sequential steps: taking a query finger-vein 

image, performing quality control, applying preprocessing 

operations, and decision making using the developed model. 

The identification makes predictions based on the trained 

data belonging to individuals. 

3.2.  Verification 

The verification mode matches the image of the enrolled 

individual with a template of his name to adopt if the 

requested identity by the individual is true or false, using a 

one-to-one (1:1) comparison [14]. The trained models 

extract the attributes representing the identity of each subject 

and record them in the system. Thus, each individual 

registered in the system is kept in the system with the vein's 

attributes and his/her preliminary information such as 

identification number (ID) and username in the enrollment 

phase. When a new user wants to log in to the system, they 

first enter the required preliminary information like ID or 

username. Then, they provide their finger-vein data with a 

finger-vein imaging tool. The system uses this preliminary 

information to retrieve the biometric data from the database 

of the registered user who is trying to log in. Finally, the 

system compares the new finger-vein data with the retrieved 

data. The diagram scheme explaining the working principle 

of verification systems is given in Figure 2. 

In this figure, the verification process consists of three 

stages, which are the Enrollment Phase and the Query Phase. 

Firstly, the system takes images from a finger-vein imaging 

device. Then, it is checked whether the resulting finger-vein 

image is suitable for enrollment. Finger-vein images are 

preprocessed to be used by deep learning models or 

traditional methods. With the open-set protocol structure 

used for verification systems, finger-vein data are used to 

train the deep learning model. With the trained model, 

features of finger-vein classes are extracted and recorded in 

the database. In the verification section, the qualified finger-

vein data coming from the imaging system is pre-processed. 

Feature extraction is accomplished by using the deep 

learning model. During the login operation, the preliminary 

information requested from the new user and his/her finger-

vein attributes are compared by the system, and the distance 

to the new attribute data is calculated. Reliability is ensured 

by acceptance or rejection according to the threshold value 

given to the system, where the threshold assigns the security 

level of the application. 

3.3.  Protocols 

Biometric studies use different finger-vein datasets in the 

literature. Depending on the problem definition, different 

protocols are used to determine training and testing data on 

these datasets. There are two protocols used in the literature: 

closed-set protocol and open-set protocol. Due to the lack of 

huge, and publicly available finger-vein datasets, each finger 

sometimes can be considered a different class, as if it 

represents a different individual rather than a subject by these 

protocols. 

The closed-set protocol specifies how to split the dataset into 

training and testing datasets. In this protocol, no other classes 

come to the system other than the classes in the training 

dataset. Therefore, it is assumed that the identities of all 

classes are known for the designed system and the system is 

trained accordingly during the training phase. Therefore, it is 

expected that there will be no data other than the training 

class in the test dataset [23]. Thus, the closed-set protocol is 

widely needed in closed environments like factories and 

enterprises [24]. Therefore, the closed-set protocol can 

predict the identity of only classes that were used in the 

training phase. 
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Figure 1. Finger-vein identification system summary 

 
Figure 2. Finger-vein verification system summary 

 

 
Figure 3. Closed-set Protocol summary [23] 

The structure of the closed-set protocol is shown in Figure 3. 

For any finger-vein dataset, data belonging to each class 

should be reserved for being used in the training and testing 

phases for the closed-set protocol, since this protocol 

requires knowing whole class knowledge at the training time 

[25]. In the literature, various train and test data split rates 

are used for the sake of obtaining the best recognition 

performance. Thus, details about split rates and used samples 

among the whole dataset for training and testing phases 

should be reported in detail for reproducibility and fair 

comparisons. 
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Figure 4. Open-set Protocol summary [65]. 

The open-set protocol is widely used for real-world problems 

because of poor image quality or the possibility of intrusion 

attempts [24]. The open-set protocol specifies how to split 

the dataset into training and testing datasets. In this protocol, 

it is essential to accept the classes learned during the training 

phase and to reject classes other than trained ones. Shortly, 

it is assumed that the identities of all classes are not known 

for the designed system. The system is trained accordingly 

during the training phase, and some data other than the 

trained classes can be encountered in the test dataset for this 

protocol. With this acceptance, the success of the models in 

the literature is tested and compared [65]. 

The structure of the open-set protocol is shown in Figure 4. 

In the literature, various train and test data split rates are used 

for the sake of obtaining the best recognition performance. 

Thus, details about split rates and used samples among the 

whole dataset for training and testing phases should be 

reported in detail for reproducibility and fair comparisons. 

However, the employed protocol's details are often not 

provided [6]. Thus, it is generally not easy to compare the 

findings against the results in the literature, also it is even not 

easy to perform the same tests on the same data using the 

designated protocol. 

3.4.  Performance Metrics 

To evaluate the performance of any biometric system, it is 

important to define and use metrics. Thus, users can have a 

better user experience and judgment about the quality of the 

system. The performance of biometric systems is measured 

using different parameters and metrics depending on the 

operation mode. Depending on various purposes in different 

domains, biometric systems use identification or verification 

modes. These modes use closed-set or open-set protocols for 

the learning and evaluation phases. 

In the literature, datasets used in identification studies are 

divided into training and test datasets, and they are processed 

generally using a closed-set protocol. For these problems, it 

is important how accurately the system predicts the classes. 

Therefore, Accuracy is used as a performance metric, where 

it can be described as a ratio of correct predictions of the 

proposed deep learning model to the total number of 

predictions in the test dataset. The equation for the Accuracy 

metric is given in Equation 1. In addition, Correct 

Identification Rate (CIR) and Accuracy are used 

interchangeably for the performance evaluation of 

identification studies in the literature. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
        (1) 

Likewise, in studies on verification problems, datasets are 

divided into training and test sets and processed using 

generally an open-set protocol. The open-set protocol offers 

a compatible structure with real-world problems. With this 

structure, the system's responses, as a "YES" or "positive 

class" and "NO" or "negative class", are examined and the 

number of acceptances or rejections is used for performance 

metrics. Therefore, verification can be described as a binary 

classification problem and is evaluated with metrics that 

compare the predictions made with the proposed models 

with the actual values. These metrics are derived from True 

Positive (TP), False Positive (FP), True Negative (TN), and 

False Negative (FN). In the literature, model performance 

evaluations are made based on the Equal Error Rate (EER) 

value and the Detection Error Tradeoff (DET) curve 

calculated from these 4 base metrics. 

The DET curve shows the effectiveness of the models and 

the balance between false acceptance rates (FAR) and false 

rejection rates (FRR). The EER point is determined by the 

diagonal line drawn on this graph. Thus, the behavior of the 

system is examined in detail using different threshold values 

from the distance between vectors of the estimated and real 

values. 

Definitions of False Acceptance Rate (FAR) and False 

Rejection Rate (FRR) values to calculate EER are given in 

Equations 2 and Equation 3, respectively. FRR denotes the 

robustness of the matching algorithm and FAR denotes the 

strength of the matching algorithm. Depending on the 

security expectations of the application, FRR and FAR 

values can be regularized. For instance, the higher value of 

the FRR makes the application less convenient because more 

subjects are recognized incorrectly. To calculate these 

values, the distance or similarity between feature vectors is 

used. This similarity estimation is done over distance terms 

such as Euclidean Distance and Cosine Distance. The 

calculated distance value determines the status of the two 

vectors according to the determined threshold value. Vector 

values belonging to the same class are expected to be close 

and determined as genuine. On the contrary, vector values 

belonging to the different classes are expected to be far as 

much as possible and determined as impostors. These 

measurements are made for all vector pairs. 

𝐹𝐴𝑅(𝑡) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑚𝑝𝑜𝑠𝑡𝑒𝑟 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠
=

𝐹𝑃

𝐹𝑃+𝑇𝑁
       (2) 

𝐹𝐹𝑅(𝑡) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝑒𝑛𝑖𝑢𝑛𝑒 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠
=

𝐹𝑁

𝐹𝑁+𝑇𝑃
       (3) 

The FAR(t) and FRR(t) values as shown in Equations 2 and 

Equation 3 are calculated depending on the values of the 

determined threshold value t. The DET curve is drawn with 

these pairs obtained according to different threshold values. 

In these equations, FAR and FRR are represented as a 

function of t. Figure 5 shows the graph corresponding to the 

FAR and FRR pair obtained according to different threshold 

values. The intersection point with the drawn diagonal line 

indicates the Equal Error Rate (EER) value of the system. 
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Figure 5. DET Curve and EER point summary 

As a result of vector operations performed on the test dataset, 

distance values between vectors are calculated, and 

genuine/imposter decisions associated with these distances 

are made. In this process, a sample from each class in the test 

dataset is selected as a constant template data and compared 

with examples from the same class and other classes within 

the scope of intra-class and inter-class comparisons. These 

comparisons generate two types of similarity scores: 

Genuine Match Scores (GMS), derived from intra-class 

comparisons, and Impostor Match Scores (IMS), obtained 

from inter-class comparisons. Threshold values are selected 

at specified sensitivity levels, and genuine/imposter values 

are calculated for each threshold value. The distributions of 

genuine and impostor scores are computed based on the 

comparison results. Threshold values are applied to these 

distributions to determine decision boundaries, which affect 

the error rates such as FAR and FRR. The intersection 

amounts of these distributions contain information about the 

performance of the verification system. The number of 

necessary vector distance comparison operations for the 

calculation of GMS and IMS on a test set is given in Equation 

4 and Equation 5, respectively.  In these equations, NoGS 

represents the number of genuine scores and NoIS represents 

the number of imposter scores. Lastly, NoC in both equations 

denotes the number of classes, and NoI shows the number of 

images in a class. 

𝑁𝑜𝐺𝑆 = 𝑁𝑜𝐶 × (𝑁𝑜𝐼 − 1)         (4) 

𝑁𝑜𝐼𝑆 = 𝑁𝑜𝐶 × (𝑁𝑜𝐶 − 1) × (𝑁𝑜𝐼 − 1)        (5) 

4.  LITERATURE ANALYSIS 

Technological advances in computer graphics processing 

units (GPUs) have stimulated an increase in publications of 

deep learning-based finger-vein biometrics. However, most 

of these publications used different performance indices and 

did not have a common protocol [5]. Since used datasets are 

not large and comprehensive enough in terms of the number 

of subjects and samples, these studies conducted 

experiments on a different number of datasets, and they 

reported the best performances. In these studies, different 

experimental protocols have been used to achieve state-of-

the-art results. Moreover, disparate preprocessing and data 

augmentation methods have been utilized to achieve their 

best performance in these manuscripts without giving the 

details about the implementation [6]. However, while the 

same classification method is used, it is possible to obtain 

different performance results even using different 

hyperparameters [26]. Therefore, we focused on mostly the 

proposed methodologies and content of the reviewed 

articles, without denying their contributions to the literature 

by their achieved performance results in terms of 

benchmarking. 

Moreover, we have noticed that there is some confusion 

about the use of the definitions of recognition, identification, 

and verification interchangeably. As known, a biometric 

system essentially can operate in two modes [13]. These 

modes are namely verification and identification. 

Identification and verification, in other words, 

authentication, are the subsets of recognition. However, the 

generic term recognition can be used not to make a 

distinction between verification and identification modes [1]. 

The stated usage of recognition confuses the finger-vein 

literature. Manuscripts entitled as recognition may or may 

not suggest experiments related to either identification mode 

or verification mode. Thus, we searched for and reviewed 

manuscripts in the literature by considering this nuance.  

For identification, we reviewed 34 deep learning-based 

publications that use accuracy as a performance metric. In 

addition, Correct Identification Rate (CIR) and Accuracy are 

used interchangeably with the definitions made in the 

literature. For verification, we reviewed 29 deep learning-

based publications that evaluate obtained performance 

results using an Equal Error Rate (EER). For identification 

and verification, we reviewed performance measures from 

ISO/IEC 19795-1 [27]. Besides these performance measures, 

we gave also definitions of other measures that are defined 

to evaluate the performance of biometric systems more 

accurately for identification and verification. 

This section introduces the finger-vein recognition papers 

chronologically. In the summarized papers, neural networks 

for verification and identification are used just for 

classification. Some of these papers utilized shallow neural 

networks and have experienced the limited capability to 

extract venous features. Most of these papers suffered from 

a deficiency of the sufficient number of samples and subjects 

in publicly available finger-vein datasets. A comprehensive 

analysis of each paper has been given in detail by using 

performance metrics with critical discussions. 

4.1.  Identification 

In identification applications, a biometric system searches 

the stored templates of all the subjects in the system database 

to recognize a subject’s identity. Therefore, the system 

compares acquired sensor data using one-to-many matching, 

where CIR is used as an evaluation metric [28]. 
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In 2016, [29] explored the use of convolutional neural 

networks for finger-vein identification with a theoretical 

background of CNNs. This novel approach was the first 

attempt to apply CNN for finger-vein recognition. They 

proposed a four-layer CNN with fused convolutional-

subsampling architecture to achieve high accuracy on a 

custom dataset. They aimed to reduce preprocessing 

operations owing to the proposed structure. Furthermore, 

they experimented with different combinations of 

normalization and weight initialization methods to find the 

best average accuracy. They achieved 100% and 99.38% 

accuracy for different numbers of subjects and samples. 

They compared the performance of the proposed CNN 

method with existing solutions in recognition accuracy, and 

they demonstrated viability for finger-vein identification. 

Although the proposed approach enabled high performance 

with minimal preprocessing operations owing robustness of 

the CNN to noise and misalignment, this study has potential 

generalizability problem. Since they determined the optimal 

network architecture, input size and parameter settings 

empirically, it is hard to adapt these empirical settings to 

diverse finger-vein datasets without requiring similar 

optimization settings. 

In 2018, [30] proposed a finger-vein image quality 

assessment method using a lightweight CNN to reduce the 

errors and costs of manual annotation. They introduced an 

automatic labeling method to label vein images based on 

traditional image processing methods. By training 2 

networks, they evaluated the quality of the images of 

MMCBNU and SDUMLA datasets. They explained the 

process of finding the optimal CNN model by comparing the 

performance of different architectures. With the proposed 

lightweight model, they accurately identified low and high-

quality images and outperformed existing methods in 

distinguishing vein characteristics in terms of classification 

accuracy. Despite notable strength of automation of the 

labelling process with supporting superior performance, this 

study encounters critical limitations on test set’s quality 

assessment where around 71-74% accuracy was achieved on 

the test sets of MMCBNU and SDUMLA datasets. 

In 2018, [31] presented a deep learning-based method using 

a convolutional autoencoder (CAE) with a convolutional 

neural network. They applied a series of filters for 

preprocessing and trained a CAE to extract features from 

finger-vein images. They used extracted features to train a 

support vector machine classifier, and they explored the 

application of an autoencoder to efficiently compress data. 

Using convolutional autoencoders to learn features, they 

classified finger-vein images using convolutional neural 

networks. They achieved 99.16% recognition rate on 

FVUSM dataset. They highlighted the importance of the 

proposed methodology over other methods. However, the 

proposed method is computationally expensive and this 

study has concerns about the potential computational 

expense for large-scale applications. 

In 2018, [32] proposed a methodology that involves training 

a CNN on a large dataset to learn the discriminative features 

of the dataset’s subjects. They analyzed the effect of training 

strategies and image enhancement techniques on obtained 

accuracy on 4 different datasets namely SDUMLA, HKPU, 

UTFVP, and FVUSM. They also compared the accuracy of 

the CNN-based identification system with conventional 

methods such as Maximum Curvature (MC) and Repeated 

Line Tracking (RLT). They discussed the potential benefits 

of image enhancement methods in improving identification 

performance. They investigated the performance of the 

designed network across datasets, and they demonstrated 

high accuracy values exceeding 95% in 4 datasets. Using 

different training strategies, they achieved higher accuracy 

values compared to state-of-the-art comparison methods 

using SDUMLA and UTFVP datasets. This study 

emphasizes the limitations of existing recognition methods 

regarding low-quality finger-vein images. Moreover, it 

denotes the effect of finger rotation and translation on 

recognition performance. However, this study achieves 

stable and highly accurate performance despite variations in 

image quality and acquisition conditions across 4 datasets. In 

this study, the dependency of the network’s optimal 

performance on the availability of a sufficient number of 

training samples per subject is encountered as a limitation 

inherent to the CNN approach. 

In 2019, [33] presented a study on the use of CNNs for 

finger-vein-based identification. They designed four 

different CNN models empirically and compared model 

performances on SDUMLA, HKPU, FVUSM, and 

MMCBNU datasets. They provided insights into the 

behavior of designed models for each dataset based on loss 

versus number of epochs and accuracy versus number of 

epochs graphs. Without using any preprocessing operations 

or data augmentation, they avoided overfitting problems 

despite the limited number of samples per subject on these 

datasets using batch normalization and dropout mechanisms 

on their model architectures. On the HKPU dataset, they 

achieved 99.61% as the highest accuracy among all these 

datasets, and they noted that datasets with more classes 

require more training samples to achieve satisfactory 

performance. They used closed-set protocol, and they 

demonstrated the efficiency of CNN designs despite limited 

data. However, they have a limitation of translating the 

obtained high-performance results to real-world scenarios 

using open-set protocol.  

In 2019, [34] proposed a new filter generation method 

designed for finger-vein recognition on FVUSM, SDUMLA, 

and THU-FV2 datasets. They proposed a novel filter 

generation in the Principal Component Analysis Network 

(PCANet) using Canonical Correlation Analysis (CCA). 

They generated a novel filter to find the unique 

characteristics of vein images via the combination of the 

original image and vein line features. In this study, they 

analyzed the effect of the number of filters and the filter size 

on the obtained performance. Furthermore, they showed the 

robustness of the proposed method by variations in the 

number of training images per class and obtained higher 

accuracy values compared to PCANet and CCANet on each 

dataset. Lastly, compared their performances with the ones 

achieved for SDUMLA and FVUSM datasets in the 

literature. They demonstrated higher accuracy values by 

exceeding 97% for 2 datasets. Despite having a notable 

robustness to variations in the number of training images, the 

proposed model depends on the successful extraction of vein 

lines in the preprocessing step. 
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In 2019, [35] proposed a recognition scheme based on CNN 

using the curvature of finger-vein images. By using a 2-

dimensional Gaussian template, they calculated the 

curvature of finger-vein images, and they benefitted from the 

curvature gray images to recognize the identity of input 

images by training improved CNN. By utilizing curvature 

gray images as input, they trained an improved convolutional 

neural network to recognize the identity of the curvature 

image. They used an improved activation function to 

increase the network discrimination ability, and they adopted 

the intermediate value pooling method in the pooling layer. 

96.7% recognition rate using closed-set protocol and the 

experimental results on the used dataset using 5 different 

scenarios shows that the proposed scheme is effective and 

slightly better than existing schemes. 

In 2019, [36] presented a novel approach for finger-vein 

extraction and recognition using generative adversarial 

networks (GANs). With this approach, they improved the 

feature representation and generalization capacity of CNN. 

They addressed challenges related to feature extraction from 

low-contrast finger-vein images. By using joint distribution 

of vein images and pattern maps, they learned from the 

whole dataset as combined data rather than direct mapping. 

They conducted experiments on SDUMLA and THU-

FVFDT2 datasets and compared the results of their 

methodology with several conventional approaches such as 

Repeated Line Tracking (RLT), Maximum Curvature (MC), 

and Wide Line Detector (WLD). They achieved robust 

feature extraction and 98.52% recognition performance. 

However, they encountered instability associated with 

training GANs. 

In 2019, [37] explored the use of Capsule Network for 

finger-vein identification and the feature extraction 

capability of this network. They utilized Capsule Network 

for automatic feature extraction on UTFVP, MMCBNU, 

HKPU, and SDUMLA benchmark datasets, and they 

compared the proposed approach with CNN-based and 

LeNet-5 models in terms of accuracy. They proposed to use 

the Capsule Network to capture hierarchical relationships 

between features in an image. As a preprocessing operation, 

they used the Repeated Line Tracking algorithm to extract 

the edges of veins to improve recognition accuracy. They 

highlighted the challenges posed by limited finger-vein 

image samples. They achieved an average 95.5% accuracy 

on the benchmark sub-databases at 32x32 resolutions by 

utilizing the capability of ensuring translational and 

rotational invariance of the Capsule Network. With this 

study, they highlighted the importance of achieving high 

accuracy despite low image samples and image resolution 

for practical purposes. Rather than including evaluations 

against modern CNN backbones trained from scratch, the 

usage of specific custom models and LeNet-5 can be 

evaluated as a critical limitation for this study. 

In 2020, [38] presented a methodology for finger-vein 

identification using Merge CNN on FVUSM, SDUMLA, 

and THUFVDT2 datasets. By combining multiple identical 

CNNs with different input image qualities, Merge CNN 

unifies the outputs of these CNNs into a single layer. They 

evaluated the performance of the proposed system using 

accuracy on SDUMLA and FVUSM datasets, and their 

method outperformed other deep networks. They achieved 

96.75% for the FVUSM and 99.48% for the SDUMLA 

datasets using six and five images for training, respectively. 

They achieved 99.56% for the THU-FVFDT2 dataset. They 

proved the potential of Merge CNN in the field of biometrics 

for high-security personal recognition. However, the 

obtained performance significantly depended on the number 

of training images.  

In 2021, [39] proposed a novel image enhancement method 

for finger-vein recognition using convolutional neural 

networks (CNNs). Utilizing Contrast Limited Histogram 

Equalization (CLAHE), image sharpening, and gamma 

correction as preprocessing operations, they proposed to use 

of a convolutional neural network for feature extraction and 

classification on SDUMLA, FVUSM, UTFVP, and THU-

FVFDT datasets. They used transfer learning by modifying 

13 convolutional layers of VGG-16. They compared the 

performance of the proposed light-weight method with two 

commonly used finger-vein identification methods, RLT and 

MC, in terms of accuracy. They showed that their proposed 

approach outperforms both of them. Furthermore, they 

compared their method with other state-of-the-art methods in 

the literature and showed that their proposed method 

achieved better results in terms of accuracy by achieving 

99% on the experimented dataset. However, the obtained 

performance suffered from high variability and uncontrolled 

acquisition conditions radically. 

In 2021, [40] presented a deep neural network using 

bidirectional feature extraction and transfer learning for 

recognition on the FVUSM dataset. They captured finger-

vein features by constructing a new finger-vein dataset using 

opposite position information and adjusting the 

unidirectional dataset parameters. By concatenating the 

extracted features to form bidirectional features, they trained 

and classified Support Vector Machines (SVM) for 

recognition. They reached an accuracy of 99.67% for 

FVUSM and this is higher than the unidirectional 

recognition. In this study, they compared the obtained 

recognition performances of experiments on the 2 finger-

vein dataset, and they showed the proposed algorithm with 

bidirectional feature extraction achieves higher accuracy 

compared to unidirectional recognition. However, they need 

to process images in 2 orientations which cause additional 

computational costs compared to many state-of-the-art 

methods. 

In 2021, [41] proposed a lightweight recognition method 

based on Multi-Receptive Field Bilinear (MRFB) CNN with 

a Dimensional Interactive Attention Mechanism (DIAM). 

They used an attention mechanism to improve the network’s 

feature extraction capability. They evaluated the proposed 

model’s performance on FVUSM and SDUMLA datasets 

using accuracy and time. With the proposed approach, they 

reduced the number of parameters and calculations with the 

help of the MRFB CNN structure where depth-wise 

separable convolution separates the spatial and channel-wise 

convolutions. They enhanced the correlation between 

channels and spaces. They used this structure to obtain the 

second-order features of veins, which better distinguish 

veins with small differences between classifications. They 

demonstrated high accuracy values exceeding 99% in 2 
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datasets. The proposed method seems suitable for practical 

finger-vein recognition applications since it provides 

reduction in computational costs. 

In 2021, [42] proposed a new algorithm to address the 

challenges of traditional finger-vein recognition systems, 

which are related to robustness and generalization. They 

used a deep neural network to extract feature maps and used 

these maps to train a classifier. They utilized an advanced 

Mask-RCNN-based mask extraction algorithm to obtain 

accurate masks. Furthermore, they used a bidirectional 

traversing and center diffusion method for ROI extraction. 

They developed a Deep Generalization Label Finger-Vein 

(DGLFV) model, and they evaluated the performance of the 

proposed model on the SDUMLA dataset in terms of 

accuracy. They achieved an accuracy of 99.08% and their 

model outperformed existing state-of-the-art methods. The 

most notable strength of the proposed method can be the 

highly efficient recognition time since it is appropriate for 

practical real-world deployment. 

In 2021, [43] presented a new loss function for finger-vein 

verification on FVUSM, SDUMLA, and HKPU datasets. 

They combined softmax loss and arccosine center loss 

function to improve the discriminative ability of CNNs. They 

improved the recognition accuracy and reduced the inference 

time. They improved the feature learning ability, and their 

discriminative approach outperformed other state-of-the-art 

methods on both open-set and closed-set protocols. With the 

proposed loss function respectively for these datasets, they 

achieved accuracy performance as utmost 99.99%, 99.56%, 

and 99.60% for closed set and 99.79%, 99.25%, and 99.44% 

for open-set protocol. Despite having notable performance 

results, the proposed method is sensitive to finding the 

optimal weighting between the arccosine center loss and 

softmax loss.  

In 2022, [44] proposed a methodology to extract biometric 

features from finger-vein images using CNNs. They utilized 

preprocessing operations to enhance the edge of finger-vein 

images, and they used CNN to extract biometric information. 

They achieved a high accuracy rate of 99.10% and 98.10% 

for FVUSM and SDUMLA datasets, respectively. They 

highlighted the importance of the development of contactless 

recognition systems with stable and accurate performance 

for finger-vein-based applications. Despite robust 

performance even with environmental interference, the 

proposed method suffers from the complexity introduced by 

the multi-stage preprocessing pipeline for real-world 

applications. 

In 2022, [45] presented a new approach by dividing the 

finger-vein image into blocks and calculating a matrix after 

blocking and averaging for recognition. They discussed the 

need for larger datasets to improve recognition performance, 

and they utilized publicly available FVUSM and HKPU 

datasets for performance evaluation and comparison. They 

validated the robustness of the proposed method to noise and 

image rotation through experiments. They achieved the 

correct identification rate greater than 98% for both datasets. 

The notable strengths of the proposed method could be listed 

as its computational simplicity and computational efficiency. 

In 2022, [46] presented a new approach to finger-vein 

biometrics using deep learning and generative adversarial 

networks. Their approach combines a triplet loss function 

with a classifier GAN to improve the obtained performance 

on SDUMLA, HKPU, and FVUSM datasets. They aimed to 

expand the training data and improve the feature extraction 

ability of the CNN. They introduced a new loss function to 

prevent collapse during the training process. They also 

introduced a new distance metric that uses cosine distance 

instead of Euclidean distance to improve the feature 

extraction capability. Using open-set and closed-set 

protocols with different loss functions, they compared the 

performance of traditional data augmentation methods and 

the proposed generative adversarial network-based method. 

They achieved accuracy performance as utmost 99.66%, 

99.53%, and 99.29% using closed set protocol and 99.49%, 

94.10%, and 98.65% using open-set protocol for FVUSM, 

SDUMLA, and HKPU, respectively. However, the proposed 

method faces challenges in the open-set environment since it 

suffers from the current database sizes radically.  

In 2022, [47] presented a novel vision transformer-based 

capsule network on FVUSM, SDUMLA, MMCBNU, and 

HKPU datasets. The proposed method combines global and 

local attention to selectively focus on important finger-vein 

features. They processed finger-vein images by linearly 

embedding patches, and they used a transformer encoder to 

extract vein features. They used a capsule network for further 

training. With this study, they presented a more effective and 

more interpretable approach to understanding finger-vein 

images. By combining capsule network with the vision 

transformer architecture, they tried to avoid accuracy 

performance degradation due to low image quality, finger 

position deviation, and ambient lighting. They achieved 

utmost 98.68%,94.97%, 97.52%, and 95.61% accuracy for 

FVUSM, SDUMLA, MMCBNU, and HKPU, respectively. 

Lastly, a notable strength of the proposed method was the 

model's ability to perform well even with limited training 

data.  

In 2022, [48] explored the use of synthetic finger-vein 

images for network training to improve recognition 

accuracy. By synthesizing virtual finger-vein images and 

creating a dataset larger than real ones, they aimed to show 

the use of real and synthetic vein images for pre-training. 

They generated a virtual dataset with a larger number of 

subjects and samples. With the help of synthetic data, they 

reduced the required number of epochs and improved 

recognition accuracy for MMCBNU dataset. They evaluated 

the generated dataset’s effectiveness in pre-training a 

VGG16 model for recognition. With this study, they 

reflected the need for sufficient datasets by improving the 

recognition efficiency of the pre-trained model from 97.58% 

to 98.50%. However, this method suffers from data 

limitations despite using the synthesized data for pre-

training. 

In 2022, [49] proposed a deep learning tool for finger-vein 

recognition on the SDUMLA dataset where this tool includes 

several stages such as image acquisition, preprocessing, 

feature extraction, and parameter tuning. Firstly, they 

applied preprocessing operations to detect the region of 

interest. Then, they extracted features using the Deep 
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Stacked Auto Encoder (DSAE) classifier. Finally, they used 

the LSTM-DM tool, which is an LSTM-based decision-

making tool, to train the model and evaluate the recognition 

system. With the proposed model, they aimed to address 

challenges such as temperature differences and image quality 

variations. They compared the results of the proposed model 

with existing models in terms of accuracy, equal error rate 

(EER), and computation time (CT), and demonstrated their 

model’s superiority in terms of these 3 metrics on SDUMLA 

dataset. They achieved an effective outcome with 98.95% 

accuracy. 

In 2022, [50] proposed a novel approach using a 

convolutional neural network with a hybrid pooling 

mechanism. They used preprocessing operations to discard 

noise, shadows, and low-contrast before ROI extraction. The 

proposed network uses a hybrid pooling mechanism that 

combines max pooling and average pooling to extract 

discrete features from inter-class image samples. They 

presented a way of extracting discrete features despite low 

visual quality, and they evaluated the model on HKPU and 

FVUSM datasets using good and poor-quality images. They 

achieved utmost 93.18% accuracy on the HKPU and utmost 

97.84% accuracy on the FVUSM. However, the evaluation 

is limited to a closed-set scenario. Thus, it does not fully 

reflect the requirements of real-world open-set biometric 

verification systems. 

In 2022, [51] proposed a lightweight model with a 

Convolutional Block Attention Module (CBAM) for finger-

vein recognition. They embedded the module in the original 

network to infer the attention mapping according to 

independent dimensions where these two dimensions are 

channel and spatial order. They multiplied attention mapping 

into the input feature mapping with adaptive feature 

refinement. Furthermore, they evaluated model performance 

on HKPU and FVUSM datasets, and they achieved 100% 

recognition accuracy on both datasets. They achieved better 

performance than other methods in terms of accuracy and 

computational efficiency, owing to enhancing the flow of 

information in channels and spaces with minimal 

computation and without performance degradation. 

In 2022, [52] presented a shape-driven CNN with a light-

weight structure on 3 publicly available datasets. With the 

proposed approach, they achieved high accuracy with 

minimum memory consumption and minimum algorithm 

complexity. They highlighted the advantages of using 

rectangular filters and the effectiveness of the proposed 

networks for FVUSM, SDUMLA, and HKPU datasets. They 

emphasized the weaknesses of current deep learning models 

for finger-vein biometrics, and they proposed the use of 

rectangular filters to address these limitations with the 

proposed networks Rec-FFVN and Semi-PFVN. Notably, 

with the superior performance of Semi-PFVN, they achieved 

94.67%, 96.61%, and 93.05% identification performances 

for the listed datasets respectively. 

In 2023, [53] proposed to use multistage and multiscale 

residual attention networks (MMRAN) for finger-vein 

recognition on 5 different finger-vein datasets. Their model 

combines a fusion of residual attention block (FRAB) and 

multistage residual attention connection (MRAC) to adapt to 

the flaws of finger-vein images, such as low-resolution and 

low-image quality. The proposed model achieved 99.83%, 

99.75%, 99.29% recognition accuracy on MMCBNU, 

FVUSM, and HKPU datasets, respectively. Due to the low 

image quality and limited number of samples, the proposed 

approach could not outperform other models but still 

achieved high accuracy scores with fewer required 

parameters and faster recognition. Achieving high accuracy 

with significantly fewer parameters is the key strength of 

MMRAN. 

In 2023, [54] proposed a recognition network FGL-Net that 

fuses global and local features to improve recognition 

accuracy under changing displacement of finger poses. They 

presented a multi-branch network structure to learn finger-

vein features of FVUSM finger-vein dataset. They also 

provided a lightweight version of this network that uses 

knowledge distillation and feature map loss to improve 

generalization capacity.  Experimental results show that 

proposed networks outperform conventional methods and 

existing networks such as VGGNet, InceptionResNet, and 

MobileNetv3 on FVUSM. They achieved utmost 99.90% 

accuracy on FVUSM after completing extensive 

experiments such as ablation analysis using different 

networks and loss functions. The difficulty of aligning local 

features during extreme finger movements and the optimal 

weighting of different features are identified as main 

concerns for the obtained performance. 

In 2023, [55] presented a deep ensemble learning method for 

finger-vein identification. They combined multiple deep 

neural networks to improve the accuracy of identification 

performance on HKPU and FVUSM datasets using a single 

sample. They proposed to use a combination of CNNs and 

long short-term memory (LSTM) networks for feature 

extraction. The proposed method outperformed the existing 

state-of-the-art methods in terms of accuracy and 

demonstrated robustness to variations in finger-vein images 

due to factors such as rotation and translation. They focused 

on intrinsic characteristics of vein patterns for identification 

applications. They generated multiple feature maps from 

input images and trained multiple convolutional neural 

networks in parallel to obtain weak classifiers. By designing 

a shared learning scheme to enhance feature representation 

and learning speed, they proposed an outperforming solution 

for the single sample per person (SSPP) finger-vein 

recognition problem. They achieved 94.17% and 92.11% 

accuracy for FVUSM and HKPU datasets. The critical 

limitations of the proposed method can be listed as the 

computational complexity and resource demands. 

In 2023, [56] proposed a finger-vein recognition system 

using a CNN based on multi-directional local feature coding. 

They integrated manual feature extraction with automatic 

extraction to create a lightweight model with enhanced 

feature discrimination and improved recognition accuracy. 

They presented a lightweight model (LModel) and a feature 

integration model (FIModel) to extract shallow features and 

reduce network parameters. Using FVUSM and HKPU 

datasets, they evaluated system performance with accuracy. 

They achieved 99.13% and 99.38% accuracy for LModel 

and FIModel on FVUSM. They achieved 98.22% and 

98.58% accuracy for LModel and FIModel on HKPU. They 
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provided ablation experiments to analyze the impact of 

different components of their approach on recognition 

performance. They achieved satisfactory recognition 

performance with low hardware requirements. With this 

study, they provided a robust and efficient solution for 

finger-vein recognition where the proposed model has less 

computational intensity and stronger anti-noise resilience. A 

critical limitation noted for the proposed method is the lack 

of adaptability to varying input image dimensions. 

In 2023, [57] presented a novel multiscale feature bilinear 

fusion network (MSFBF-Net) to achieve high accuracy and 

address the shortcomings of previous methods in the 

literature. They proposed a lightweight network with 

multiple attention mechanisms (MAM) for recognition. 

They used a multiscale feature bilinear fusion network to 

extract features from different scales, and they fused them 

using a bilinear pooling layer.  Bilinear pooling was used to 

capture interactions between different features and improve 

the discriminative power of the features. Multiple attention 

mechanisms were used to improve the discriminative power 

of the features. They achieved state-of-the-art performance 

on FVUSM and SDUMLA public finger-vein datasets, with 

a high recognition accuracy of 99.90% and 99.82%, 

respectively. The proposed method addresses the problems 

of large models, many parameters, and long computation 

time in existing finger-vein recognition methods. It achieves 

significant accuracy despite reductions in computational 

complexity and recognition time. 

In 2023, [58] proposed a new approach to improve the 

accuracy of recognition while reducing the computation and 

training time. They used the attention mechanism to extract 

representative features of finger-vein images of FVUSM and 

HKPU datasets. The proposed lightweight convolutional 

attention model (LCAModel) consists of two main 

components: an attentional model (AModel) and a 

convolutional model (CModel). The AModel is 

implemented by a lightweight convolutional network (LCN) 

and a convolutional block attention module (CBAM) block. 

The LCN is used to extract features from the input image, 

and the CBAM block is used to enhance the important 

features. They compared the performance of the proposed 

method with existing neural network-based schemes in terms 

of accuracy and loss. Among the proposed modules, they 

achieved utmost 99.21% and 99.52% for HKPU and 

FVUSM, respectively. Their approach outperformed and 

achieved state-of-the-art accuracy levels since the attention 

mechanism improves generalization ability and feature 

representation capability with adaptive matching. However, 

separating the feature extraction network from the final 

classification layer adds additional complexity to the overall 

pipeline. 

In 2023, [59] presented a novel approach to capture long-

distance topology and local texture information for finger-

vein recognition. The proposed method involves using 

axially enhanced local attention blocks for feature 

amplification with a low-cost group convolution. They 

developed a lightweight model that achieves high accuracy 

at lower parameter scales on SDUMLA and HKPU datasets. 

They ensured recognition accuracy while generating more 

feature maps with fewer parameters. They achieved 94.50% 

accuracy on the SDUMLA and 97.86% accuracy on the 

HKPU dataset. 

In 2023, [60] presented a new method using a vision 

transformer model with a modified architecture and data 

augmentation techniques on SDUMLA and FVUSM 

datasets. They proposed this model to achieve comparable 

performance to fine-tuning pre-trained models despite small 

finger-vein datasets. They compared the performance of the 

vision transformer model trained from scratch with the 

corresponding pre-trained models. They also acknowledged 

some limitations of closed-set protocol, and they emphasized 

the need for the usage of open-set protocol.  

In 2023, [61] proposed a lightweight model architecture with 

a reduced number of model parameters and execution time. 

They transformed the model architecture into a simplified 

version via a function using an attention mechanism and 

residual model. They enhanced the model’s subtle vein 

feature extraction ability, and also they ensured consistency 

in feature extraction for translated vein images. They 

minimized intra-class differences, and they maximized inter-

class differences on FVUSM dataset. They achieved an 

accuracy of 99.82%. In this study, they highlighted the 

robustness of the proposed method against translation. 

In 2024, [62] introduced the Let-Net to overcome the 

limitations of CNN-based finger-vein identification. By 

using large kernels with an attention mechanism, Let-Net 

model captures both local and global features effectively, 

where this model utilizes hybrid depthwise convolution and 

residual connections. With a low cost of training time and 

low parameter number, they minimized intra-class 

differences, and they maximized inter-class differences on 

FVUSM dataset. They achieved an accuracy of 99.77%. 

Using ablation analysis, they confirmed the importance of an 

attention mechanism and large kernels for the proposed 

model to achieve effective identification performance. Since 

the proposed Let-Net model has a lightweight structure, they 

suggested deploying it on edge devices with limited memory 

and computational capacity. 

In 2024, [98] utilized image preprocessing techniques and 

deep learning models for finger-vein recognition. They used 

a closed-set identification protocol by evaluating the 

performance of various deep learning models on a fixed 

dataset where all individuals are known during training and 

testing. Their methodological contribution involves a suite 

of image preprocessing techniques, data augmentation, and 

evaluation of a diverse set of pre-trained CNN architectures 

including VGG16, VGG19, and ResNet101 through transfer 

learning. Performance was assessed using standard 

classification metrics such as accuracy, precision, recall, and 

F1-score. A notable strength of this approach is the usage of 

preprocessing variations and a wide range of modern CNN 

models, demonstrating the impact of data augmentation on 

generalization and achieving very high recognition 

accuracies. They achieved an accuracy of 99.9% with 

VGG16. However, a critical limitation highlighted by the 

study is computation cost for models like VGG16, VGG19, 

and ResNet101. 
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In 2024, [99] proposed a lightweight recognition algorithm 

that modifies the VGG19 architecture by reducing 

convolutional and fully connected layers, replacing some 

activation functions with Leaky ReLU, and introducing a 

multi-attention mechanism. The proposed algorithm is 

designed for small sample sizes, evaluating its performance 

on the FVUSM, and SDUMLA datasets. The methodological 

novelty lies in modifying the VGG19 network and using a 

multi-attention. The system was evaluated using a closed-set 

protocol. The primary evaluation metric reported was 

recognition accuracy. However, reliance on a single 

accuracy metric for performance evaluation is evaluated as a 

notable limitation. 

In 2024, [100] introduced a multiscale convolutional neural 

network (MCNet) for finger-vein recognition, evaluating its 

performance on the FVUSM, SDUMLA, and HKPU 

datasets. The methodological novelty of their work lies in the 

MFE module, which employs both rectangular and square 

convolution kernels. They used these kernels to enhance 

longer texture feature extraction, and also they used the CFA 

block, a cross-information fusion attention mechanism 

designed to combine spatial and channel information for 

improved local detail extraction. They used a closed-set 

protocol with evaluation metrics including recognition rates 

(accuracy), F1 score, and Equal Error Rate (EER). They 

achieved recognition rates of 99.86% on FVUSM, 99.11% 

on SDUMLA, and 99.15% on HKPU. Strengths of the 

MCNet include its ability to simultaneously enhance longer 

texture features and incorporate an attention mechanism in 

shallow layers to thoroughly explore local textual features. 

A potential limitation is high computation cost due to the 

complexity of the network architecture. 

Table 2. The best results obtained in studies conducted in the 

field of identification on publicly available finger-vein 

datasets 

Paper Dataset 
Performance 

(Accuracy) 
Year 

[63] FVUSM 98.10% 2021 

[32] HKPU 95.32% 2019 

[37] MMCBNU 100% 2019 

[37] SDUMLA 100% 2019 

[64] THU-FVFDT2 90% 2022 

[32] UTFVP 98.33% 2019 

 

4.2. Verification 

In verification applications, a biometric system validates the 

subject’s identity by comparing the acquired sensor data with 

stored data belonging to the subject in the system’s database. 

Therefore, the system compares biometric data using one-to-

one matching [28]. 

In 2017, [3] proposed a verification model that can extract 

and recover finger-vein features using limited a priori 

knowledge. This model uses a convolutional neural network 

to predict the probability of each pixel being background or 

foreground, and then uses this prediction to extract finger-

vein features. The proposed model exploits pixel-level 

correlations and nonlinear statistical dependencies through a 

hierarchical feature representation learned by a deep neural 

network. Additionally, it recovers missing finger-vein 

patterns in binary images using a fully convolutional 

network (FCN) structure trained on artificially corrupted 

image pairs and their ground truth counterparts. Verification 

was performed on newly generated images obtained by 

patches taken from the FVUSM and HKPU datasets. The 

evaluation was conducted under an open-set verification 

protocol, although the specific implementation details of the 

protocol are not clearly explained in the paper. EER 

performance values of 3.02% and 1.69% were obtained on 

these datasets. A key novelty of this approach lies in its 

automatic patch-level labeling scheme based on the fusion of 

multiple segmentation methods, which eliminates the need 

for manual annotation. However, a potential weakness is the 

reliance on baseline segmentation performance, particularly 

in ambiguous regions, which may lead to inaccuracies in 

CNN training and false vein recovery in the FCN stage. 

Nevertheless, this novel approach was one of the first 

attempts to apply CNN s for finger-vein recognition and 

demonstrated significant improvement in handling noise and 

corrupted data compared to traditional methods. 

In 2018, [23] proposed to expand the limited training data of 

MMCBNU, FVUSM, and SDUMLA datasets by using 

augmentation strategies. They used pre-trained models to 

improve model generalization on these publicly available 

datasets, rather than training a network from scratch. They 

built the FV-Net model by transplanting some layers from 

the VGGFace-Net model. Using open-set and closed-set 

protocols to assess the proposed model, they demonstrated 

the effectiveness of the model by comparing it with state-of-

the-art approaches. Using the closed-set protocol, they 

achieved 0.04%, 0.06%, and 0.46% EER for the MMCBNU, 

FVUSM, and SDUMLA datasets. For the open-set protocol, 

they achieved 0.30%, 0.76%, and 1.20% EER, respectively. 

A key methodological contribution is the design of the FV-

Net architecture, which leverages transfer learning and 

preserves spatial information from convolutional layers, 

coupled with a novel template-like matching strategy 

specifically designed to address the significant challenges 

posed by translation and rotation misalignment during 

acquisition. The study reports EER as the evaluation metric, 

which is appropriate for the verification task, and 

demonstrates state-of-the-art performance across all 

evaluated datasets compared to existing approaches. 

In 2018, [65] presented a lightweight two-stream 

convolutional network learning framework for verification 

on SDUMLA and MMCBNU datasets. This network 

integrated the original image and ROI to obtain higher and 

superior performance results. They used extracted ROI 

images to address the displacement problem in the finger-

vein images. With the proposed end-to-end framework, they 

solved the lack of finger-vein data, and they achieved high 

recognition performance. Even with the two-channel 

network, they showed the strong ability of the proposed 

network for inter-class feature extraction. By analyzing a 

two-channel network, two-stream network, and the joint 
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network performances, they achieved 0.1% and 0.47% EER 

on MMCBNU and SDUMLA datasets, respectively. The 

study evaluated the system's performance using a pair-wise 

comparison verification protocol and reported the EER, a 

standard and appropriate metric for the verification task. A 

key contribution is the use of a two-channel network and 

mini-ROI extraction to mitigate displacement effects, along 

with a selective two-stream architecture that dynamically 

adapts to the subject's data characteristics.  

In 2018, [66] introduced a finger-vein recognition method 

using semantic segmentation networks, which are U-Net, 

RefineNet, and SegNet, on the SDUMLA and UTFVP 

datasets. They released human-annotated ground-truth 

labels, and they presented semantic segmentation 

experiments on automatically generated labels and cross-

dataset training. They tried to investigate the minimal 

number of image samples needed to train the proposed 

networks. By comparing network performances, they 

emphasized the significance of network architectures in 

influencing the obtained EER value. Using varying numbers 

of generated vein image labels by the Maximum Curvature 

Method, they reported EER scores obtained for these 3 

networks on SDUMLA and UTFVP. They also analyzed the 

scores of cross-dataset training and improved the obtained 

performances for these datasets. The performance was 

evaluated using a standard verification protocol, following 

the FVC2004 guidelines, and key metrics including EER, 

FMR1000 (FMR), and ZeroFMR (ZFMR) were reported. A 

notable strength was that training networks with 

automatically generated labels significantly improved 

recognition accuracy compared to manual labels, while also 

eliminating the need for time-consuming manual annotation. 

The best CNN configurations also outperformed several 

traditional finger-vein recognition methods.  

In 2019, [67] proposed finger-vein verification based on 

stacked CNN and LSTM networks. The proposed method 

involves labeling image pixels as background and 

foreground pixels, generating sequences along different 

directions, and training stacked networks to form a 

complementary representation. With the proposed model, 

they tried to handle the spatial dependencies of finger-veins. 

They predicted the probability of each image pixel being a 

vein pixel or not. By using the proposed networks with 

supervised and unsupervised encoding, they achieved 0.58% 

and 0.62% EER scores respectively on the HKPU dataset. 

The evaluation was conducted under what effectively 

constitutes a closed-set verification protocol, as all test 

subjects were part of the original dataset, with training and 

validation subsets derived from the same population. A key 

novelty of the method is the combination of CNNs for local 

texture extraction and LSTMs for modeling long-range 

spatial dependencies by learning from directional sequences, 

followed by a supervised thresholding scheme to enhance 

inter-class separability. Strengths of the approach include its 

ability to capture complex spatial patterns beyond local 

regions, and the use of supervised encoding optimized 

directly for verification accuracy. However, a notable 

limitation is the reliance on initial pixel labeling generated 

by handcrafted segmentation techniques, which may 

introduce bias and affect downstream performance. 

In 2019, [68] presented an authentication method using CNN 

architectures and supervised discrete hashing. Using the 

triplet-based loss function and supervised discrete hashing, 

they achieved reputable performance while reducing the 

template size and enhancing matching speed. By comparing 

the performances of different CNN architectures such as 

VGG-16 and Siamese on the HKPU dataset, they highlighted 

the contribution and the superiority of the discrete hashing 

approach in terms of matching accuracy. They achieved as 

low as 0.0887% EER using independent test subjects for 

finger-vein matching. The method was evaluated on a two-

session public database using a standard verification 

protocol, generating genuine and impostor scores, and 

employing appropriate metrics such as ROC curves and 

EER. A methodological contribution lies in combining 

CNN-based feature learning—enhanced by triplet similarity 

loss and preprocessing methods like Gabor filters—with 

supervised discrete hashing (SDH) to reduce template size 

without sacrificing accuracy. A major strength of the method 

is its ability to shrink template size significantly (to 2000 

bits), providing practical advantages for storage and 

matching speed. However, a notable limitation is that their 

best-performing architecture, which outputs direct scores, 

could not be integrated with the hashing scheme, preventing 

template size reduction for that specific model. 

In 2019, [69] proposed a novel method to extract 

discriminative vein features. By using data augmentation in 

conjunction with a pre-trained-weights-based CNN, they 

tried to enhance the performance of the Siamese structure. 

Since an insufficient number of training data is a big issue 

for finger-vein verification, they adopted a heavy 

augmentation strategy, and they developed a pre-trained-

weights-based CNN architecture. They combined this 

structure with a modified contrastive loss function to achieve 

state-of-the-art performance in verification on MMCBNU, 

FVUSM, and SDUMLA. They achieved 0.08%, 0.11%, and 

0.75% EER scores on these datasets, respectively. The 

approach was evaluated using open-set experiments, and 

EER was reported as the primary performance metric, which 

is appropriate for the verification task. A key contribution 

was the design of a modified contrastive loss within the 

Siamese framework, paired with heavy data augmentation 

and pre-trained weights to address data scarcity and enhance 

discriminative learning. Additionally, a lightweight CNN 

was developed using knowledge distillation from the 

pretrained model to reduce model size and inference time for 

practical deployment. A limitation of the method is the 

reliance on manual ROI extraction, which the authors 

acknowledge. 

In 2019, [70] proposed a lightweight architecture for finger-

vein classification. They used fully convolutional generative 

adversarial network architectures for augmentation. The 

augmented synthetic images were used to improve the 

classification accuracy of the CNN. They designed a network 

to classify the images of the SDUMLA dataset. They 

compared the performance of different GAN-based 

augmentation methods, and they demonstrated the reliability 

and generalization ability of their method. In addition to 

classification, they evaluated the robustness of the CNN's 

feature extraction capability using a one-to-many 

verification protocol on the SDUMLA and HKPU datasets, 
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reporting EER, GAR, and ROC curves. They addressed the 

challenges faced by deep learning-based methods due to the 

lack of a sufficient amount of data, and they achieved 0.87% 

EER. The method also achieved 0.52% EER on the HKPU 

dataset, demonstrating improved generalization even to 

unseen data. A key strength of their approach is the 

significant performance boost obtained by integrating 

FCGAN-generated images into training. However, a notable 

limitation is the high training complexity, as a separate GAN 

instance must be trained for each finger-vein category. 

In 2019, [71] introduced a DenseNet-based finger-vein 

recognition method to address the issues caused by the 

misalignment of fingers on the imaging platform. Using 

densely connected convolutional networks with composite 

images, they proposed a method with high performance and 

robustness against noise owing to composite image usage. 

They highlighted the limitations of existing CNN-based 

approaches and hand-crafted feature-based methods. They 

obtained composite images by adding Gaussian random 

noise, and they obtained difference images by subtracting 

pixel values. They confirmed the robustness of composite 

images against noise using the SDUMLA and HKPU 

datasets. By using the shift matching method with a fine-

tuned DenseNet-161 model, they improved recognition 

performance. They achieved 0.33% and 2.35% EER on the 

HKPU and SDUMLA datasets, respectively. The 

experiments were conducted under an open-set evaluation 

protocol, where training and testing classes were disjoint, 

which is suitable for the verification task. A primary novelty 

of the study is the design of a 3-channel composite image 

that combines enrolled and input ROI images, enabling 

deeper network layers to contribute to verification, unlike 

earlier distance-based approaches. The integration of a shift 

matching technique further enhanced robustness against 

misalignment. While the method showed high accuracy and 

potential for embedded system deployment, a key limitation 

was its sensitivity to conditions such as severe shading, low 

brightness, or highly similar vein patterns. 

In 2019, [72] presented a method using a pre-trained CNN 

model and fine-tuning it on two different datasets. They used 

a CNN-based local descriptor to exploit learnable 

convolutional filters to overcome problems arising from the 

limited finger-vein images. They achieved competitive 

performance compared to state-of-the-art models. They 

selected learnable CNN filters using their appearances and 

responses, which resemble Gabor filters, based on 

observations and analysis. They used selected CNN filters to 

build a histogram while generating a competitive order 

image. Using the MMCBNU and SDUMLA datasets, they 

achieved 0.74% and 2.37% EER, respectively. The 

evaluation was conducted using a closed-set verification 

protocol on both datasets, and the performance was reported 

using EER and ROC curves. A key novelty of the approach 

is the design of the CNN competitive order (CNN-CO) 

descriptor, which applies a winner-take-all rule on selected 

convolutional filter responses, followed by a pyramidal 

histogram representation. A major strength of the method is 

its ability to extract discriminative features effectively in 

limited data environments, showing improvement over 

traditional local descriptors. 

In 2019, [73] presented an integration of a convolutional 

autoencoder with a support vector machine (SVM) for 

verification using the FVUSM and SDUMLA datasets. They 

used autoencoders to extract and learn vein features from 

images. They utilized SVM to classify the finger-vein based 

on the learned features. They achieved 0.12% and 0.21% 

EER for these datasets, respectively. The method was 

evaluated using a ten-fold cross-validation under an open-set 

verification protocol, reporting metrics including EER, FAR, 

FRR, and RR. Moreover, they analyzed the computational 

cost of the proposed method in terms of time, and they 

demonstrated the efficiency of the proposed approach. A 

major contribution is the use of a convolutional autoencoder 

(CAE) for unsupervised feature learning, enabling the 

extraction of compact and robust representations from 

finger-vein images, which are then classified by an SVM. A 

significant strength of the method is its ability to learn low-

dimensional, effective features even with limited training 

data, enhanced by data augmentation, leading to superior 

performance compared to many existing methods. They 

highlighted the success of the proposed method in finger-

vein verification. 

In 2020, [74] proposed a model using a modified conditional 

generative adversarial network to restore optically blurred 

finger-vein images. They tried to recognize the restored 

finger-vein images using a deep convolutional neural 

network. The proposed network maintains features by 

actively using residual blocks and feature concatenation. A 

key methodological contribution is the removal of dropout 

from the generator in the conditional GAN to ensure 

deterministic outputs, which is important for consistent 

biometric pattern restoration. Using the SDUMLA and 

HKPU datasets, they compared recognition error rates with 

and without optical and motion blur. The evaluation was 

conducted using an open-set, subject-disjoint two-fold cross-

validation protocol, and performance was measured using 

standard metrics including EER and ROC curves, which are 

appropriate for the verification task. They achieved up to 

4.290% and 2.465% EER for these datasets, respectively. 

They also compared the required number of parameters and 

processing time for the models. A notable strength of their 

approach is its effectiveness in restoring optically blurred 

images and improving recognition accuracy across various 

CNN architectures, even under different blur intensities.  

In 2020, [75] tried to improve recognition performance using 

a deep convolutional neural network via texture images and 

shape images. They analyzed class activation maps from 

shape and texture images, and they demonstrated the effect 

of extracted features on recognition. They proposed to 

enhance recognition performance by using score-level fusion 

of simultaneous texture images and shape images. They 

extracted vein regions using shape images, but they realized 

that texture images include background regions besides vein 

regions. Furthermore, they compared the performance of 

different CNN architectures and found that DenseNet-161 

provides higher recognition performance. They used the 

SDUMLA and HKPU datasets. They achieved 1.65% and 

0.05% EER for these datasets, respectively. The evaluation 

was conducted under an open-set protocol with subject-

disjoint training and testing sets, and performance was 

assessed using EER and ROC curves, which are appropriate 
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metrics for the verification task. A key methodological 

contribution is the score-level fusion of two DenseNet-161 

networks to leverage the complementary strengths of each 

modality. The proposed approach demonstrates state-of-the-

art performance on both datasets. 

In 2020, [76] proposed a vein verification system using a 

CNN in combination with an autoencoder. They investigated 

the effectiveness of a cascaded network to discriminate inter-

class features using a supervised CNN and an unsupervised 

autoencoder structure. They used DenseNet-161 as the 

backbone CNN and trained it using the SDUMLA and 

HKPU datasets. They achieved 0.009% and 0.189% EER for 

these datasets, respectively. They also used ResNeXt-101 as 

the backbone CNN and trained it using these datasets. They 

achieved 0.085% and 0.439% EER for these datasets, 

respectively. The evaluation was performed under an open-

set verification protocol, using standard metrics such as 

ROC, EER, which are appropriate for the verification task. 

A key novelty of the study is the proposed cascaded 

architecture, which integrates a supervised CNN for feature 

extraction with an unsupervised densely-connected 

convolutional autoencoder (DCCAE) to refine 

representations. A major strength of the method is its 

significant performance improvement over baseline CNNs 

and prior state-of-the-art methods across various vein 

modalities, including finger, palm, and dorsal veins 

In 2020, [77] investigated the use of transfer learning for vein 

verification while addressing limitations arising from an 

insufficient number of vein images. By using different 

training strategies while utilizing transfer learning via the 

Densenet-161 architecture, they achieved high-performance 

results and demonstrated potential advancements for vein 

recognition. They used the SDUMLA and HKPU datasets. 

They achieved 0.41% and 0.006% EER for these datasets, 

respectively. They confirmed the advantage of modifying 

state-of-the-art CNN models rather than training from 

scratch by building custom models to boost the obtained 

recognition performance. The evaluation was conducted 

under an open-set verification protocol with subject-disjoint 

training and testing, using standard metrics such as EER and 

ROC, which are suitable for the verification task. A key 

methodological contribution is the addition of a custom 

embedder layer to the Densenet-161 architecture, and 

Siamese network training strategies to be explored for 

learning discriminative vein features. A major strength of the 

approach is demonstrating significantly improves 

performance, outperforming prior deep learning methods on 

finger, palm, and dorsal vein datasets. 

In 2020, [78] proposed to integrate a fully convolutional 

neural network with a conditional random field to segment 

finger-vein texture accurately. They used residual recurrent 

convolution to capture complex vein structures without any 

missing. Due to environmental factors and user behavior, 

they faced some problems in image quality for segmentation. 

They explored different segmentation methods using 

conventional techniques and deep learning-based 

approaches on the SDUMLA, MMCBNU, and HKPU 

datasets. They compared the performance of the proposed 

model with U-Net and its variants. They achieved 0.085%, 

5.827%, and 0.364% EER for these datasets, respectively. 

The evaluation was conducted using a closed-set verification 

protocol, and results were reported using EER, which are 

appropriate for the task. A notable strength of the proposed 

method is its ability to connect discontinuous veins and 

detect weak vessels, resulting in superior segmentation and 

verification performance across all datasets. 

In 2020, [79] presented a new finger-vein recognition 

approach using a lightweight CNN with a center loss 

function and dynamic regularization. This approach was 

evaluated on the MMCBNU and FVUSM datasets and 

outperformed other popular loss functions. The proposed 

loss function avoided overfitting and tried to improve EER 

performance. They achieved 0.586% and 1.417% EER for 

these datasets, respectively. They used the center loss 

function to distinguish inter-class and intra-class distances. 

They used dynamic regularization to avoid overfitting 

problems and to optimize convergence. The evaluation was 

conducted under a closed-set protocol, and performance was 

assessed using multiple metrics including EER, Area Under 

the Curve (AUC), Precision-Recall (PR) curves, and 

Cumulative Match Characteristic (CMC) curves, which are 

suitable for both verification and identification tasks. A key 

methodological contribution is the joint use of center loss 

and softmax loss within a dynamic regularization 

framework, which aims to minimize intra-class variance 

while maximizing inter-class separation, enhancing feature 

discriminability and convergence speed. 

In 2021, [80] proposed an end-to-end deep convolutional 

neural network on the SDUMLA and MMCBNU datasets. 

The proposed approach consists of two modules for the 

extraction of intrinsic and extrinsic features. The intrinsic 

feature learning module uses an autoencoder network, and 

the extrinsic feature learning module utilizes a Siamese 

network. The intrinsic module estimates intra-class 

expectations to capture stable patterns, while the extrinsic 

module focuses on learning inter-class discriminative 

features. With these modules, the proposed network achieves 

0.47% and 0.1% Equal Error Rates for the SDUMLA and 

MMCBNU datasets. The evaluation was conducted under a 

closed-set verification protocol, and EER was used as the 

primary metric, which is appropriate for biometric 

verification tasks. A notable strength of the model is its 

robustness to intra-class variations and inter-class 

similarities, demonstrated by an ablation study confirming 

the contribution of the intrinsic feature learning module. 

In 2021, [81] proposed a novel method using the triplet loss 

function to examine similarities between images of different 

fingers of the same subject using four publicly available 

datasets. They utilized SqNet, LCNN, and ResNet network 

architectures, and they used 2-fold cross-validation for 

experimental evaluation. They compared the recognition 

performance of the proposed method with conventional 

methods using the SDUMLA, HKPU, and UTFVP datasets. 

They also compared different training configurations of the 

proposed methods to achieve better verification 

performance. They achieved up to 2.7%, 3.7%, and 2.5% 

EER for these datasets using SqNet, respectively. The 

evaluation followed an open-set protocol with subject-

disjoint 2-fold cross-validation, and EER was used as the 

primary metric, which is appropriate for score-based 
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biometric systems. A key methodological contribution is the 

integration of hard triplet online selection with triplet loss to 

improve learning, along with the exploration of various CNN 

architectures. Strengths of the approach include its strong 

verification performance and its ability to uncover novel 

intra-subject similarities not reported in earlier studies. 

In 2021, [82] used a fusion loss function and data 

augmentation for deep learning-based finger-vein 

recognition. Despite insufficient training images, they 

achieved feature generalization by combining classification 

loss and metric learning loss on the FVUSM, MMCBNU, 

and HKPU datasets. They used different network 

architectures like ResNet-18 and ResNet-34 for feature 

extraction, and they compared the obtained verification 

performance using different numbers of training and testing 

samples. They utilized data augmentation, and they 

compared the performances of these datasets using different 

augmentation schemes. With intensive experiments taking 

into account loss function design, data augmentation, and 

network selection, they achieved 0.48%, 0.21%, and 1.90% 

EER, respectively. Their evaluation followed an open-set 

verification protocol, using a metric such as EER, which is 

appropriate for biometric verification. A major strength of 

the approach is its strong generalization capability, even in 

cross-database scenarios, as well as the practical feasibility 

demonstrated by a real-time system prototype. However, the 

model remains sensitive to large intra-class variations such 

as pose or lighting, and to high inter-class similarity, which 

can lead to false rejections and acceptances. 

In 2021, [83] proposed a novel architecture for 

authentication to address problems related to low image 

contrast. On the MMCBNU, SDUMLA, and FVUSM 

datasets, they used a joint attention mechanism with 

generalized mean pooling to improve feature representation 

while reducing the dimensionality of feature maps. They 

achieved superior performance compared to existing state-

of-the-art methods. They achieved 0.08%, 0.35%, and 0.34% 

EER, respectively. The method was evaluated under a 

subject-independent open-set verification protocol, using 

appropriate metrics such as EER, FAR, and FRR. The key 

innovation of the proposed JAFVNet architecture lies in its 

Joint Attention (JA) module, which integrates spatial and 

channel attention mechanisms with positional encoding 

using factorized 1D pooling. A strength of the approach is 

the ability of the JA module to extract fine-grained features, 

as confirmed through visualizations, and the overall strong 

performance across datasets. However, limitations include 

the trade-off between recognition performance and resource 

demands, as well as the need for more efficient search 

strategies for large-scale user databases and improved 

generalization via cross-validation. 

In 2022, [84] addressed the challenges of extracting features 

from vein images. They proposed a new loss function to 

extract discriminative features from these images to increase 

performance. They compared the performance of the 

proposed loss function, which is dynamic margin softmax 

loss, with existing loss functions. They confirmed that the 

proposed loss maximizes inter-class distances and minimizes 

intra-class distances. Using five different finger-vein 

datasets—SDUMLA, HKPU, MMCBNU, THU-FVFDT3, 

and FVUSM—they achieved 0.31%, 1.59%, 1.43%, 0.39%, 

and 0.81% EER, respectively. The evaluation was conducted 

under an open-set verification protocol, using standard 

metrics including EER, FAR, and FRR, which are 

appropriate for biometric verification tasks. A notable 

strength is the consistent performance improvement over 

conventional fixed-margin losses, demonstrating enhanced 

feature discrimination across multiple datasets. 

In 2023, [85] proposed an authentication method based on a 

Siamese network with a self-attention mechanism. They 

used a Siamese network with self-attention to extract 

features from the SDUMLA, FVUSM, and MMCBNU 

datasets. They improved the obtained performance using the 

self-attention mechanism despite the low image quality, 

along with the lightweight structure of the Siamese network. 

Furthermore, they achieved high performance compared to 

other network architectures such as VGG16 and ResNet. The 

achieved EER values for these datasets are 0.0059%, 

0.0019%, and 0.0012%, respectively. The method was 

evaluated under an open-set verification protocol using 

pairwise image comparisons, and performance was assessed 

with a standard metric including EER, which is appropriate 

for this task. The core methodological novelty lies in 

integrating a Global Context Network for capturing global 

features and employing a multi-scale fusion strategy to 

enhance feature diversity, particularly from low-quality 

inputs. This is further complemented by a Self-Attention 

Convolution module that refines the learned features. 

In 2022, [86] proposed a framework to increase 

generalization while training a model with limited image 

data. Using a vein extraction network via a U-Net 

architecture with a local descriptor model, they avoided 

suffering from data dependency. They aimed to map a raw 

image onto a target domain. By reducing differences 

between data distributions, they aimed to increase 

generalization. The achieved EER values for the used 

datasets—SDUMLA, MMCBNU, FVUSM, HKPU, and 

UTFVP—are 3.37%, 0.05%, 0.89%, 0.70%, and 0.14%, 

respectively. The proposed system was evaluated using an 

open-set verification protocol and standard metrics such as 

ROC curves and EER, which are appropriate for the 

verification task. A major strength of this approach is its 

universality and retraining-free design, allowing for effective 

cross-dataset deployment without additional tuning or 

retraining. However, the method shows some limitations 

such as degraded performance on certain datasets and in 

cross-session evaluations. 

In 2022, [87] focused on the issues related to blurred finger-

vein images and tried to restore scattering, motion, and 

optical blurred images to decrease the EER value. They used 

an encoder, decoder, residual blocks, and feature 

concatenation without using a pooling mechanism to avoid 

feature loss. Their primary contribution is the design of 

RMOBF-Net, a restoration network specifically developed 

for motion and optical blur correction in the finger-vein 

domain. Using the SDUMLA and HKPU datasets, they 

implemented the proposed method and conducted an 

ablation analysis. They achieved 4.290–5.779% and 2.465–

6.663% EER values for these datasets, respectively. The 

evaluation followed a twofold cross-validation scheme under 
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an open-set verification protocol, with EER used as the 

primary performance metric, which is suitable for the task. 

However, the study notes that recognition accuracy on 

restored images remains lower than with original unblurred 

images, especially under severe blur conditions, due to 

difficulty in distinguishing genuine and imposter matches. 

In 2022, [88] explored the effect of the usage of the Vision 

Transformer for finger-vein verification. They proposed a 

novel model FVT using conditional position embedding, a 

weight-shared expanded multilayer perceptron, a local-

information-enhanced feedforward network, and an 

expansion-less mechanism. These custom modules were 

integrated into the ViT architecture to better capture finger-

vein-specific features such as dynamic position codes, local 

texture information, and multiscale vein patterns. The model 

was evaluated under a subject-independent closed-set 

verification protocol on 9 different publicly available 

datasets, and they conducted authentication experiments and 

demonstrated the effect of each mechanism through ablation 

analysis. A standard metric such as EER was used for 

performance evaluation. They achieved a weighted average 

EER of 1.77%, and obtained state-of-the-art performance 

with a 1.50% EER on the SDUMLA dataset. 

In 2022, [89] proposed a model to decrease memory 

consumption and address channel expansion of feature maps. 

They introduced a sparsified densely connected network 

(SC-SDCN) architecture with a novel connection cropping 

strategy to facilitate smaller model volumes and enable 

efficient feature aggregation with reduced memory 

overhead. Thus, they presented a model with faster 

convergence using FVUSM and MMCBNU datasets within 

an open-set evaluation protocol since connected blocks have 

a symmetrical structure. They also replaced standard 

convolutions with depth-wise separable convolutions to 

maintain a lightweight design, and incorporated an additive 

angular margin penalty (AAMP) loss function to enhance 

feature discrimination. They explored different experiments 

using different network architectures, training strategies, loss 

functions, and datasets. A key strength of their approach is 

the superior performance achieved even with limited training 

samples. However, the model size increases exponentially 

with the number of sparsified dense blocks, and deeper 

networks beyond two such blocks did not yield further 

performance gains, indicating limitations in scalability. They 

achieved 0.01% and 0.45% EER using MMCBNU and 

FVUSM datasets, respectively. 

In 2023, [90] proposed a lightweight Siamese Gabor 

Residual Network (SGRN) for finger-vein verification. Built 

upon a Siamese framework with twin, parameter-sharing 

branches, the model incorporates ResNet blocks to maintain 

high verification accuracy while significantly reducing 

model parameter size and computational cost. A core 

innovation of the SGRN lies in the integration of Gabor 

orientation filters into the convolutional layers, allowing the 

model to better capture directional and scale-invariant vein 

features. Compared to existing networks like DenseNet-161 

and ResNet18, the proposed network demonstrated better 

performance with fewer model parameters. They achieved 

0.52% and 0.50% EER scores using MMCBNU and 

FVUSM, respectively. However, the study notes challenges 

in selecting optimal scale parameters for the Gabor filters 

and potential bias arising from equally spaced directional 

orientations. 

In 2023, [91] proposed a model for finger-vein feature 

extraction that leverages both spatial and frequency domains. 

These modules collaboratively extract and integrate vein 

features using channel and spatial attention mechanisms, 

improving discriminability while maintaining a lightweight 

model structure. The network is evaluated under a subject-

independent verification protocol, where training and test 

sets include images from distinct fingers, ensuring 

generalization. They conducted extensive experiments on 

nine publicly available datasets, achieving 0.18%, 1.18%, 

and 0.20% EER scores on MMCBNU, SDUMLA, and 

FVUSM, respectively. Compared to baseline models, 

FVFSNet achieves competitive accuracy with fewer 

parameters and reduced computational complexity.  

In 2024, [92] introduced a finger-vein recognition model 

using DenseNet with a channel attention mechanism and 

hybrid pooling mechanism. Using preprocessing operations 

like ROI extraction and adaptive filtering, they tried to 

increase the obtained performance on FVUSM, HKPU, 

UTFVP, and MMCBNU datasets. A robust preprocessing 

pipeline was implemented to enhance vein patterns from 

degraded images before feature extraction. Using ablation 

analysis, they compared the performance of the proposed 

network with the existing structures. They demonstrated the 

superiority of their network in terms of EER for some 

datasets. Evaluation was performed under the verification 

setting using standard metrics such as Recognition 

Accuracy, EER, and ROC curves, which are suitable for 

balancing security and usability. They achieved remarkably 

lower EER for these datasets as 0.03%, 1.81%, 0.43%, and 

1.80%, respectively, demonstrating strong generalization 

and robustness of SE-DenseNet-HP across different datasets. 

In 2025, [97] introduced GLA-FD, a Global-Local Attention 

model based on Feature Decoupling, specifically designed 

for finger-vein recognition in security-critical applications 

such as online payment systems. The model’s primary 

innovation lies in the integration of two core modules. The 

Feature Decoupling and Reconstruction Module (FDRM) 

separates background and texture information to generate 

enhanced vein maps. In parallel, the Global-Local Attention 

Module (GLAM) captures both global and local features to 

mitigate the effects of image translation artifacts. The 

proposed system was evaluated on six publicly available 

datasets under a closed-set protocol, where both training and 

testing samples were drawn from the same subjects. 

Performance was assessed using CIR and EER, which are 

standard metrics for identification and verification tasks. The 

GLA-FD model achieved an EER of 0.04% on the FVUSM 

dataset and demonstrated similarly strong results across the 

remaining datasets.  
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Table 3. The best results obtained in studies conducted in the 

field of verification on publicly available finger-vein datasets 

Paper Dataset 
Performance 

(EER) 
Year 

[93] FVUSM 0.091% 2021 

[75] HKPU 0.05% 2020 

[93] MMCBNU 0.09% 2021 

[94] SDUMLA 0.025% 2020 

[36] THU-FVFDT2 1.12% 2019 

[95] UTFVP 0.06% 2019 

 

5.  SUGGESTIONS AGAINST FLAWS IN 

PERFORMANCE EVALUATION 

The performance of finger-vein recognition systems is 

evaluated by commonly used recognition metrics, and the 

performance results are compared against the ones reported 

in the literature on the same datasets. However, it is easy to 

observe common evaluation flaws in some of the 

publications related to finger-vein recognition, as seen for 

other authentication systems [96]. In this study, we list some 

suggestions against biases and errors in performance 

evaluation:  

1) Common experimental protocols should be used 

and the details regarding employed protocols must be 

provided to enable comparison of the new results against the 

ones in the literature. 

2) Rather than using a single metric, many other 

metrics should be used and provided to avoid incomplete 

performance reporting, since direct comparisons based on a 

single parameter or a metric do not show the whole 

performance better than the other. 

3) Whole steps and details of experiments should be 

provided for reproducible works. Any augmentation, any 

preprocessing, or details of any other operations should not 

be missed. 

4) Due to the black box structure of deep learning 

systems, it is easy to make misleading comparisons and to 

have different interpretations of performance results. Thus, 

ablation analyses should be provided for new network 

proposals. Also, performance results should be reported with 

model hyperparameters. 

5) Not all publications use the same datasets and report 

the same performance metrics. Thus, performance results 

should not be compared to be consistent if they do not utilize 

the same datasets and metrics. 

6) Essentially, authors should provide all publication 

materials available, including datasets and source code, 

using GitHub for reproducible works. 

6.  CHALLENGES AND OPPORTUNITIES 

The existing challenges and opportunities in finger-vein 

biometrics can be listed as follows to help researchers: First, 

a dataset with a huge number of samples could be released 

either by designing an imaging system or by generating it via 

software artificially to increase generalizability for 

supervised learning. Since the limitation of obtained 

performance arises from a lack of a huge dataset, this study 

would help to train deep neural networks by datasets with a 

sufficient number of subjects and samples. Moreover, rather 

than using slight differences in convolutional neural network 

architectures for finger-vein recognition, natural language 

processing-oriented architectures should be utilized such as 

attention structure and transformers because slight changes 

in architectural design or ensemble models do not have a 

considerable effect on generalizability. Second, most of the 

studies in the literature did not evaluate the proposed 

methodology using a common protocol, and they even did 

not explain their experimental protocol clearly. Also, they 

select generally one to four of the publicly available datasets 

for their study, since the remaining datasets did not have 

good performance results. Therefore, writing manuscripts 

with evaluations of whole available datasets on previously 

proposed methods could be more inclusive and 

comprehensive. Third, due to the misconception that arises 

from the nuance about the titles of the studies in the 

literature, the content of some of the released studies does 

not match the title. Paradoxically, although the difference 

between recognition and identification and also between 

recognition and verification may seem a nuance, it matters 

greatly. So, studies on identification and verification should 

not be confused. The title of upcoming publications on 

finger-vein biometrics should be more precise. Lastly, 

explainable artificial intelligence (XAI) concepts should be 

integrated into finger-vein publications to provide 

interpretability and explainability. XAI interpretations using 

libraries such as SHAP and LIME should be included as an 

additional section in all studies. The glass box structure for 

deep learning-oriented recognition algorithms should be 

promoted. Thus, the enlarged gap between interpretability 

and what is intended by deep learning models can be closed. 

7.  CONCLUSION 

In this study, distinguished 68 articles on deep learning-

based finger-vein biometrics have been reviewed. The main 

purpose of writing this review is to create a readable 

synthesis of the novel deep learning-based resources 

available in the literature for finger-vein recognition. Recent 

studies in finger-vein recognition using deep learning 

techniques on publicly available datasets have been analyzed 

systematically. The examined articles were clustered into 2 

categories, namely identification and verification. Rather 

than just presenting performance analysis, this paper 

analyzed the selected manuscripts for each category. 

Moreover, performance metrics for these categories were 

given in detail. According to biometric literature, the term 

'biometric recognition' is clarified in this paper as an 

umbrella concept that includes both biometric identification 

and biometric verification. Several challenges have been 

identified from the finger-vein literature, including feature 

processing and model interpretability. Regarding faced 
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problems and challenges in the literature, this study 

highlighted the need for test protocol and comparability 

without extending the scope of the study by adding 

insignificant details about finger-vein. The importance of 

providing employed experimental protocol and details were 

stated for reproducible and comparable results on the same 

datasets. To achieve a comparable study, the publicly 

available implementation of applied processes like image 

enhancement and data augmentation should be explained 

succinctly. Furthermore, the outputs of these operations 

should be downloadable for the sake of reproducible and 

interpretable research. This study argues that future studies 

should have applied a common and clearly defined 

experimental protocol by eliminating the uncertainty caused 

by the lack of protocol in this area. Thus, the evaluation of 

the findings will be facilitated, and erroneous evaluations 

and comparisons will be prevented. In short, this study can 

be used as a starting point to update the accumulated 

knowledge and generate a guideline on deep learning-based 

finger-vein biometrics. 
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