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Abstract  

Today, the demand for electrical energy is constantly increasing, primarily due to the advances in the industrial sector. This increase 

in demand has made wind energy a prominent option in the search for alternative energy sources due to its low investment costs and 

environmental friendliness. However, accurate forecasting methods are needed due to the variability of wind energy production 

affected by meteorological data. Including additional parameters besides the existing meteorological data could help improve the 

accuracy of these forecasts. This study explores the impact of the particulate matter (PM10) parameter on wind energy prediction 

through the employment of an artificial neural network (ANN) model. The comparison of prediction results based on Mean Absolute 

Percentage Error (MAPE) and Root Mean Square Error (RMSE) demonstrates that, when it comes to the daily wind power prediction 

of the PM10 parameter, the prediction model based on the artificial neural network (ANN) makes a significant contribution. 
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1. Introduction 

 

The escalating global demand for energy has given rise to a plethora of challenges, including the depletion of natural resources and the 

onset of climate change (Zhang et al., 2023). Among the plethora of promising renewable energy sources, wind energy has garnered 

significant attention due to its renewability, environmental friendliness, minimal environmental impact, and abundance of resources 

(Xiao et al., 2017; Zhao et al., 2019). According to the Global Wind Energy Council (GWEC), the worldwide installed capacity of 

wind energy is projected to reach 117 GW in 2023, and the aggregate capacity is anticipated to attain 1 TW. Furthermore, it is predicted 

that the global installed wind energy capacity will exceed 143 GW by 2030 (https://gWec.Net, 10.2.2025). However, it should be noted 

that the variability of wind energy is a consequence of various factors, including wind speed, wind direction, and geographical 

considerations. Additionally, the integration of wind energy into the grid poses significant challenges to the safe and stable operation 

of the grid (Farah et al., 2022). Consequently, the accurate forecasting of wind energy generation is imperative for effective planning 

of diverse energy resources and enhancing energy utilization (Li et al., 2023). Figure 1 shows the global trend in wind energy capacity 

installation between 2015 and 2023.  

 

 
Figure 1. The installed capacity of global wind power plants 

 

Concurrently with the augmentation of the global installed capacity of wind energy, Turkey has also experienced an escalation in the 

capacity of wind power plants (WPPs). According to the February 2024 report on installed capacity released by the Turkish Electricity 

Transmission Corporation (TEİAŞ), Turkey's total wind energy capacity stands at 11.9 GW (Teiaş, 2025). Figure 2 shows the evolution 

of wind energy's installed capacity in Turkey from 2015 to 2023. 

 

 
Figure 2. Installed capacity of wind power plants in Turkey 

 

In reviewing similar studies in the literature, the input data, prediction intervals, validation and prediction models, and prediction results 

are compared for each forecast. Guo et al., an offshore wind farm in China with a nominal power of 202 MW is used. Hourly data is 

selected from 12 October 2017 to 31 January 2018, and the hourly output power of each wind turbine is recorded. Wind speed and 

wind direction are selected as inputs. The proposed prediction model uses the Wavelet Neural Network (WNN) model. As a result of 

the prediction, the mean absolute error (MAE), mean squared error (MSE), and RMSE values of 23.7%, 32.4%, and 23.2%, 

respectively, are obtained (Guo et al., 2022). Du et al., 10-minute data is taken from four wind farms in Galicia. Out of 1500 samples, 

1200 are used as a training set, and 300 are used as a prediction set. The prediction model proposed in this study is the Empirical Mode 

Decomposition (CEEMD)-Multi-Objective Sine Cosine Algorithm (MOSCA)-WNN hybrid prediction model. This study has resulted 

in the emergence of a new hybrid forecasting model that employs the Multi-objective Moth Flame Optimization (MOMFO) algorithm 

for multi-step wind energy forecasting (Du et al., 2019). 

 

Li et al., wind speed, temperature, humidity, pressure, and wind direction are used as input data. In this study, 15 minutes of data is 

collected. The proposed forecasting model is the Improved Aquila Optimization Algorithm (IAO) -Long Short Term Memory 

Algorithm (LSTM) hybrid model. In order to improve the prediction accuracy of the models, separate analyses are performed for the 

spring, summer, autumn, and winter seasons (Li et al., 2022).  Abdoos., the following data is selected for use as the input data: wind 
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speed, wind direction, and historical power data. The proposed prediction model is the Extreme Learning Machine Algorithm (ELM) 

prediction model. As a result of the comparison with ANN, Support Vector Machine Algorithm (SVM), and WNN prediction models 

on 22 January, 12 April, 18 August, and 27 November, the Normalized Root Mean Square Error (MMSE) and normalized Absolute 

Error (MAE) on 22 January is found to be 5.7053 and 3.9153, respectively. 5.7053 and 3.9153 on 22 January, 5.8785 and 4.0780 on 

12 April, 3.2788 and 1.8947 on 18 August, 7.1851 and 4.4352 on 27 November. As a result of the 4-day comparison, the ELM forecast 

model has the best forecast accuracy compared to other forecast models (Abdoos, 2016).  

 

Liao et al, historical power data, wind speed, wind direction, temperature, air density, and pressure are selected as input data. The data 

is recorded at 10-minute intervals between 28 July and 5 October 2019. The proposed prediction model is selected as Attention 

Network-LSTM. When the proposed prediction model is compared with other models, the coefficient of determination (R²), RMSE, 

and MAE are 0.9898, 0.4184, and 0.2871, respectively. It is seen that the proposed prediction model has a better prediction effect on 

the temporal components (Liao et al., 2023). Wang et al., wind speed, wind turbine operating frequency, generator torque, generator 

current, and historical power data are taken as input parameters. The bidirectional LSTM-Autoregressive Integrated Moving Average 

Model (ARIMA) hybrid model is selected as the proposed forecasting model. As a result of comparing the proposed prediction models 

with other models, MSE, MAE, MAPE, and RMSE results of 12.332, 2.677, 1.74, and 3.511, respectively, are obtained (Wang et al., 

2023).  

 

Wang et al.,, a wind farm with an installed capacity of 337 MW in the northeast region of China is selected. Wind direction, wind 

speed, temperature, pressure, and air density between 2014 and 2018 are selected as input data. The data set is selected as a 60% 

training set, a 20% validation, and a 20% test set. The proposed prediction model is selected as the Multi-modal Multi-tasking Spatio-

Temporal Attention Network (M2STAN). The proposed prediction model gave better results compared to other prediction models. 

Meng et al., historical power data, wind speed, and wind direction are selected as input data. It is validated with data with 10-minute 

sampling points between 1-15 January 2018. The first 10 days is selected as the training set and the last 5 days as the test set. The 

proposed forecasting model is an algorithm consisting of a Swarm Intelligence (SI), Particle Swarm Optimization (PSO), and Gated 

Recurrent Unit (GRU) hybrid forecasting model. Compared to other forecasting models, the proposed model validates its effectiveness 

in solving the learning problem for wind energy forecasting of newly constructed wind farms without sufficient data (Meng et al., 

2022). 

 

Ding et al.,, the proposed prediction model is selected as the CEEMD-Whale Optimization Algorithm (WOA)-Kernel Extreme 

Learning Machine (KELM) hybrid prediction model. When the proposed prediction model is compared with other models, the RMSE, 

MAE, and MAPE values are 0.4305, 0.2911, and 6.66, respectively (Ding et al., 2022). Jiang & Liu, the data sampling interval is 10 

minutes, and 4199 data sets are used as the training set, and 1800 data sets are used as the test set. The proposed forecast model is a 

Batch Empirical Mode Decomposition (BEMD)-PSO-LSTM hybrid forecast model (Jiang & Liu, 2023). 

 

Yamaçlı, LSTM-based time series forecasting algorithm adapted with different sampling and clustering options has been implemented 

to address the problem of forecasting the power generated from wind energy systems. Firstly, wind speed prediction is performed with 

the algorithm, and the results obtained are presented with different error metrics. In all case studies, the highest MSE was 0.3923 and 

the highest normalized RMSE was 0.6264. When all the results are analyzed, it can be seen that the effect of clustering decreases when 

the complexity of the inputs increases (Yamaçlı, 2025). Öztürk et al. analysed the wind potential and installed power plant power of 

the provinces of the Central Anatolia Region. The estimation of wind energy production in the Kırşehir region of Central Anatolia 

between 2024 and 2028 is the subject of this study. In the forecasting study, the artificial neural network (ANN) model, which is 

extensively utilised in the extant literature for wind power forecasting, was employed. In order to evaluate the performance of the 

proposed prediction model, the OMYH value was realised as 6.46% in the wind power forecast for 2023 (Öztürk et al., 2025). 

 

Symbols and Abbreviations 
ANN Artificial Neural Network 

PM10   Particulate Matter   

MAPE Mean Absolute Percentage Error 

RMSE Root Mean Square Error 

GWEC Global Wind Energy Council 

WPPs    Wind Power Plants 

TEİAŞ  

WNN  

MAE 

MSE 

CEEMD 

MOSCA 

MOMFO 

IAO 

LSTM 

ELM 

SVM 

nRMSE 

Turkish Electricity Transmission Corporation 

Wavelet Neural Network 

Mean Absolute Error  

Mean Squared Error  

Complementary Ensemble Empirical Mode Decomposition 

Multi-Objective Sine Cosine Algorithm  

Multi-Objective Moth Flame Optimization  

Improved Aquila Optimization Algorithm 

Long Short-Term Memory Algorithm  

Extreme Learning Machine Algorithm  

Support Vector Machine Algorithm  

Normalised Root Mean Square Error  
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nMAE 

ARIMA 

M2STAN 

SI 

PSO 

GRU 

WOA 

KELM  

BEMD 

XOR 

R2  

Normalised Absolute Error  

Autoregressive Integrated Moving Average Model  

Multi-modal Multitasking Spatio-Temporal Attention Network  

Swarm Intelligence 

Particle Swarm Optimization 

Gated Recurrent Unit  

Whale Optimization Algorithm  

Kernel Extreme Learning Machine  

Batch Empirical Mode Decomposition  

Exclusive OR  

Coefficient of Determination 

 

2. Material and Method 

 

This chapter delineates the primary methodologies employed to accomplish the objective of this research, as outlined in the 

introduction. The prediction of wind power from wind turbines can be made using improved forecasting models to achieve higher 

accuracy and reliability, thus reducing the overall cost of the system. The artificial neural network forecasting method is utilized to 

ensure the acquisition of precise results and the power available to the electricity sector. 

 

2.1. Artificial neural networks 

 

Modern artificial intelligence did not formally emerge until 1956. Artificial intelligence is coined at a conference at Dartmouth College 

in Hanover, New Hampshire, in 1956. Shaping the existence of artificial intelligence is not so easy. Between 1974 and 1980, known 

as the "AI winter," many publications criticizing this process are published. After the publication, state support for artificial intelligence 

decreased. The decline in this field revived after the British state competed with the Japanese in 1980. In other words, according to Dr 

Robert Hecht-Nielsen, the first commercial developer of the artificial neural network, "an artificial neural network is a computing 

system consisting of simple interrelated elements that process information by generating a mobile response to external inputs  (Caudill, 

1987). According to Teuvo Kohonen, "Artificial neural networks are a progressive arrangement of a large number of basic elements 

connected in parallel, interacting with real-world objects in the same way as the biological nervous system (Kohonen, 1987). 

 

The first studies on artificial intelligence ia conducted by McCulloch and Pitts, who studied the physiology of artificial neural networks 

and propositions using Turing's model. Functions only have "and" and "or" logical expressions, and it is stated that artificial neural 

cells would acquire the ability to learn with neuron logic. The work of scientists such as Hebb, Minsky, Edmonds, McCarthy, Shannon, 

and Rochester pioneered subsequent ANN research. Newell and Simon presented their work proving the first theory and their Physical 

Symbol Conjecture is the starting point for those working with human-independent intelligence systems (Saraç, 2004). Figure 3 shows 

the history of the development of ANNs. Change in the installed wind energy capacity in Turkey between 2015 and 2023. 

 

McCulloch/Pitts

1943 1949 1955 1959 1969 1972 1974 1986

Hebb Newell/Simon Rosenblatt Minsky/Papert Kohonen Werbos
Parker/Werbos

Rumelhart/McLeland

Neurological science Engineering applications Forecast
 

Figure 3. Development history of artificial neural networks 

 

In their 1969 book "Perceptron," Papert and Minsky showed that single-layer artificial neural networks could not solve simple problems 

such as exclusive OR (XOR). This event led to the disruption of ANN's work. However, thanks to the research of scientists such as 

Hoppfield, Amari, Anderson, Arbib, Fukushima, Grossberg, Kohonen, Little, Malsburg, Broomhead, Lowe, Parker, and Werbos, ANN 

has developed and reached its current form. The Back Propagation Algorithm, developed by Rumelhart and McClelland for multilayer 

networks, is used by Parker and Werbos in 1986 to solve the XOR problem. Beginning in the 1990s, ANN research gained momentum. 

With the development of various fast-learning algorithms, it moved from theoretical and laboratory studies and started to be widely 

used in solving problems encountered in daily life. Just as there are nerve cells in biological neural networks, there are artificial neural 

cells in artificial neural networks. In engineering science, these artificial neural cells are also called process elements. In Figure 4, each 

process element has five essential components: inputs, weights, summation functions, activation functions, and outputs (Öztemel, 

2006). 
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Figure 4. Artificial neural cell structure 

 

Once the initial weight values are determined, each piece of information (xi) coming from the cells in the input layer is multiplied by 

the weight value (wi) of its respective connection and the total net input (s) value of each cell in the hidden layer is found with the help 

of the aggregate function. The aggregation function that generates the net input can be any aggregation operation, such as summing, 

averaging, or taking the largest or smallest input values multiplied by the weight values, depending on the network structure used. 

There is no formula for finding the most appropriate type of aggregation function for a problem. The combining function to be used is 

usually found by trial and error. A simple aggregation function that performs addition gives in Equation 1. 

 

                                                                                                     𝑠 = ∑ 𝑥𝑖𝑤𝑖                                                                                                             (1) 

Artificial neural networks are systems created by connecting artificial neural cells in layers. The objective of such networks is to 

facilitate the resolution of intricate problems through emulation of the human brain's capacity for learning and rapid decision-making 

under diverse conditions, employing models that are simplified (Koç et al., 2004). The structural composition of an artificial neural 

network is as follows: it consists of three layers - input, hidden, and output. The input layer contains neurons that receive initial data 

from input factors. These neurons do not perform any processing on the input values; rather, they transmit them to the next layer. The 

output layer, in turn, consists of neurons that carry out the outputs or pass them on to another network (Anderson & McNeill, 1992). 

The intermediate layer, known as the 'hidden layer,' is positioned between the input and output layers. This is responsible for performing 

complex mathematical calculations and transferring data (Ray et al., 2023). In contrast to the input and output layers, which comprise 

a single layer, the hidden layer can comprise multiple layers. The neural network depicted in Figure 5 is comprised of one input layer, 

one hidden layer, and one output layer. 

 

Input Layer Hidden Layer Output Layer

Input 1

Input 2

Input 3

Output

 
Figure 5. Artificial neural network 

 

In this study, an ANN model with 4 input layers, one hidden layer, and one output layer is used for daily wind energy power forecasting. 

In the structure of ANN, a single hidden layer with 5 neurons and a sigmoid activation function is used because it is easy to calculate 

the derivative by compressing the inputs between 0 and 1. The trial-and-error method was adopted to determine the number of neurons 

in the hidden layer. The feed-forward neural network structure is favored in this research due to its ability to predict results and its 

effectiveness in tasks such as pattern recognition, visual recognition, and time series prediction. In the context of feed-forward neural 

networks, processing elements are generally arranged in layers. The transmission of signals occurs in a unidirectional manner from the 

input layer to the output layer through connections. In a feed-forward neural network, the cells are organized in layers, and the outputs 

of the cells in each layer are passed as input to the next layer with weights. The input layer conveys the information received from the 

external environment directly to the cells in the hidden layer without undergoing any modification. The information is processed in the 

hidden and output layers, and the final output of the network is obtained. 

 

2.2. Description of the dataset 

 

A real wind power plant dataset is used for forecasting using the artificial neural network method. The data set includes temperature, 

historical power data, wind direction, wind speed, and PM10 data as inputs from 01.06.2021 to 31.08.2021. Particulate matter with 

aerodynamic diameters less than 10 µm is called PM10. Aerodynamic diameter involves transporting and collecting particulate matter 

(Dubey & Pervez, 2008). PM10 Today, PM10 parameters can be detected with the help of fixed stations or portable measurement 
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devices (Karakoç & Ekercin, 2024). The PM10 data used in the study is obtained from the air quality monitoring station of the Northern 

Central Anatolia Clean Air Center Directorate of the Ministry of Environment, Urbanization, and Climate Change.  

 

In the data set utilized for the ANN prediction model, 80% of the data is allocated to the training set, 10% to the validation set, and 

10% to the test set. The training set is responsible for training the proposed prediction model. The validation set, in turn, is employed 

to assess the efficacy of each parameter during the training period. The test set tests the parameters after the learning process is 

completed. The proportions chosen can be influenced by the dataset's size, the task's complexity, and the amount of training, validation, 

and test set data. To build an effective model, one must have enough training data, and to accurately evaluate performance, one must 

have enough validation and test data (Ağbulut et al., 2021). 

 

2.3. Evaluation indexes 

 

The root mean square error provides information about the short-term performance of forecasting models. It is imperative to note that 

the RMSE value is always positive, and it is therefore considered optimal for the value to be close to zero. RMSE is calculated using 

Equation 2 (Teke et al., 2015). 

                                                                      𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑄𝑖

𝑛

𝑖=1
− Ǭ𝑖)                                                                                                                (2) 

 

MAPE in percentage terms is a metric used to assess the accuracy of a model's predicted values by calculating the average distance 

between the predicted values and their true values. The presence of outliers, such as MAE, is not a concern in this context, as the 

absolute value is utilized in the calculation. As both MAE and RMSE have values ranging from zero to positive infinity, this method 

can analyze the model's performance by scaling the predicted values relative to the true value. MAPE is calculated using Equation 3 

(Lever et al., 2016). 

 

                                                                           𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑄𝑖 − Ǭ𝑖

𝑄𝑖

|
𝑛

𝑖=1
                                                                                                             (3) 

 

In this study, Ǫi denotes the actual wind power at time i, Ǭi denotes the predicted wind power at time i, and n denotes the total number 

of predictions. 

 

3. Simulation Results 

 

In this study, two data sets is created for daily power forecasting. In Dataset-1, temperature, wind direction, historical power data, and 

PM10 are input parameters. In Dataset 2, wind speed, wind direction, historical power data, and temperature are input parameters. 

ANN-based prediction models are constructed for the training, testing and validation data sets for Data Sets 1 and 2. RMSE and MAPE 

are used as error evaluation indices to facilitate a comparison of the prediction results. The power output estimation results for the 

training set with Dataset-1 are shown in Figure 6. According to the simulation results, the error values for the training set, RMSE, and 

MAPE are 25.64 MW and 16.01%, respectively.  

 

 
Figure 6. Power output estimation results for the training set of datasets 1 

 

After the model training using dataset 1, the power output prediction results obtained on the validation set are visually presented in 

Figure 7. The prediction performance obtained is an important indicator to evaluate the overall performance of the model on the 

validation data. In this context, the error metrics calculated for the validation set are 34.27 MW and 13.59% for RMSE and MAPE, 

respectively.  
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Figure 7. Power output estimation results for the validation set of datasets 1 

 

The evaluation of the power output predictions obtained as a result of the model training using Dataset-1 on the test data is presented 

in Figure 8. According to the error metrics used to quantitatively evaluate the prediction performance, the RMSE calculated for the test 

set is 74.69 MW and the MAPE is 14.27%.  

 

 
Figure 8. Power output estimation results for the test set of datasets 1 

 

The power output estimation results for the training set with dataset 2 are shown in Figure 9. According to the estimation results, the 

error values for the training set RMSE and MAPE are 36.74 MW and 19.29%, respectively.  

 

 
Figure 9. Power output estimation results for the training set of datasets 2 

 

The power output prediction performance of the model developed using Dataset-2 on the validation set is visually presented in Figure 

10. As can be seen from the figure, there is a certain correlation between the predicted power output values and the actual measurement 

data, but some deviations are observed. The predictive performance of the model on the validation data is quantitatively evaluated with 

commonly used error measures. In this context, the RMSE value was calculated as 90.43 MW and the MAPE value as 17.84%. 
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Figure 10. Power output estimation results for the validation set of datasets 2 

 

The power output estimation results for the test set with dataset 2 are shown in Figure 11. According to the estimation results, the error 

values for the test set RMSE and MAPE are 142.89 MW and 20.36%, respectively.  

 

 
Figure 11. Power output estimation results for the training set of datasets 2 

 

Actual and predicted RES output powers for all data sets are shown in Figure 12. According to the estimated power values in data set 

1 RMSE and MAPE, the error values are 22.13 MW and 15.61%, respectively. In dataset 2, the error values according to the estimated 

power values RMSE and MAPE are 33.87 MW and 19.25%, respectively. In line with these results, the ANN-based prediction model 

developed using Dataset-1 gave better results than the prediction model developed using Dataset-2. It is concluded that the PM10 input 

parameter used in Dataset-1 increases the prediction accuracy of RES power output. 

 

 
Figure 12. Actual and predicted RES output powers for all data 
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Table 1 gives the MAPE and RMSE values obtained from the ANN prediction model using datasets 1 and 2. 

 

Table 1. MAPE and RMSE values for the datasets 

Dataset/ Evaluation Index Mape (%) RMSE(MW) 

Data set-1 training 16.01 25.64 

Data set-2 training 19.29 36.74 

Data set-1 validation 

Data set-2 validation 

Data set-1 test                                                              

Data set-2 test 

Data set-1 all 

Data set-2 all 

13.59 

17.84 

14.27 

20.36 

15.61 

19.25 

34.27 

90.43 

74.69 

142.89 

22.13 

33.87 

 

4. Conclusion 

 

Wind energy is an essential renewable energy source, but its sensitivity to meteorological factors poses a significant challenge for 

power systems. To address this inherent problem in wind power systems, accurate estimation of RES power is of great importance. 

This study performs a comprehensive analysis using two datasets covering meteorological parameters and WPP power generation. The 

primary objective of the present study is to undertake a comprehensive evaluation of the impact of the PM10 parameter on the 

forecasting of wind power. An artificial neural network model is applied using the generated datasets. As a result of this estimation, 

the Data Set 1 RMSE value was 22.13 MW and the MAPE value was 15.61%. For data set 2, the RMSE value was 33.87 MW and the 

MAPE value was 19.25%. It is observed that including the PM10 parameter in the ANN model significantly contributed to improving 

the prediction accuracy. Future research could investigate the impact of other air pollution parameters on RES power forecasting and 

seasonal variations of the particulate matter parameter in combination with the refined hybrid model.  
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