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Abstract: Bearing failures represent the most prevalent fault type in electrical machines, potentially leading to catastrophic 

consequences if not detected early. Conventional detection methods primarily rely on thermal, acoustic, and vibration sensors. 

Traditional vibration-based techniques have gained widespread adoption due to their stable and straightforward signal-processing 

capabilities. However, these approaches require direct motor mounting, introducing economic, temporal, and safety inefficiencies. This 

study presents the first investigation of contactless radar-based detection of bearing faults according to the authors' knowledge. The 

research employs the absolute value of complex signals derived from quadrature signals recorded by a 24 GHz radar transceiver as the 

vibration signal. Various defects like corrosion, improper oil levels, and scratches were deliberately introduced to the inner race, outer 

race, and balls of bearings, establishing 16 distinct fault classes. Classification performance was evaluated using both time-domain 

statistical features and frequency-domain PSD features. Multiple machine learning algorithms were applied to both approaches, 

consistently achieving accuracy rates exceeding 98%. This study validates the potential of radar-based systems for bearing fault 

diagnosis and introduces a novel paradigm for contactless bearing fault detection comprising radar signal data from 880 experiments. 

The results demonstrate that radar technology offers a promising alternative to traditional contact-requiring methods, enabling 

efficient and reliable bearing fault classification through non-invasive vibration detection. 
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1. Introduction 
Bearings are critical components in mechanical systems 

that minimize friction between moving parts, thereby 

reducing energy loss and increasing load-bearing 

capacity. These elements significantly enhance the 

efficiency and durability of systems by supporting 

rotational or linear motion through rolling elements 

positioned between inner and outer rings. The 

importance of bearings is further emphasized by their 

role in optimizing machine performance and reducing 

maintenance costs. Considering that approximately 40-

50% of mechanical failures in rotating machinery stem 

from bearing faults, monitoring and maintaining these 

components plays a vital role (Zhang et al., 2020). 

Bearing failures typically result from factors such as 

inadequate lubrication, contamination, improper 

installation, overloading, and material fatigue (Brito et 

al., 2022). These failures can manifest in various forms, 

including wear, fatigue cracks, corrosion, and surface 

damage. 

Bearing fault detection utilizes various data types, each 

enabling distinct approaches with inherent advantages 

and disadvantages. Vibration analysis, owing to its high 

sensitivity and broad applicability, is prevalent for early 

fault detection (Qiao et al., 2020; Zhang et al., 2020; 

Mueller et al., 2023). However, limitations include the 

criticality of sensor placement and susceptibility to noise 

interference. Acoustic emission, leveraging its capacity to 

capture high-frequency signals, offers advantages in early 

micro-crack detection, but remains susceptible to 

ambient noise (Pacheco-Cherrez et al., 2022; Glowacz et 

al., 2025). Current-based methods, exploiting existing 

motor current sensors, preclude the need for 

supplementary hardware; however, sensitivity can 

diminish in low-speed applications (Kao et al., 2018; 

Sabir et al., 2019). Thermal imaging, facilitating non-

contact measurement of bearing temperature variations, 

necessitates expensive equipment and may exhibit 

reduced efficacy in incipient fault stages (Lopez-Perez 

and Antonino-Daviu, 2017; Mehta et al., 2021). Each 

approach contributes significantly to bearing fault 

detection within specific application scenarios and 

diverse industrial settings. 

The detection of bearing faults has seen significant 

advancements in signal processing approaches and 

methods over time. Initially, in the earlier decades, basic 

frequency analysis techniques such as time-domain 

analyses and the Fast Fourier Transform (FFT) were 

employed. As the field progressed, the 1980s witnessed 
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the development and widespread adoption of envelope 

analysis techniques. Moving into the 1990s, more 

sophisticated signal processing and artificial intelligence 

methods, including wavelet analysis and neural 

networks, began to be utilized. In the subsequent years, 

adaptive signal processing techniques like Empirical 

Mode Decomposition (EMD) and the Hilbert-Huang 

Transform gained prominence (Akar et al., 2015). 

Recently, deep learning-based approaches have become 

increasingly prevalent. For instance, research by (Zhu et 

al., 2023) demonstrated the effectiveness of deep 

learning in bearing fault detection. Emerging trends in 

this area include multi-sensor fusion, transfer learning, 

and novel deep network architectures. The advantages of 

these methods include noise suppression capabilities, 

early fault detection, and automatic feature extraction. 

In the field of bearing fault diagnosis, both synthetic and 

experimental data play crucial roles in the development 

and validation of diagnostic algorithms. Synthetic data, as 

utilized in various studies, allows researchers to simulate 

a wide range of fault conditions, providing a controlled 

environment to test the efficacy of machine learning 

models (Liu et al., 2020). Experimental data, such as that 

from the Case Western Reserve University Bearing Data 

Center, offers real-world insights and is instrumental in 

validating these models under practical conditions 

(Smith and Randall, 2015). The primary equipment used 

in these studies includes vibration sensors like 

accelerometers and acoustic emission sensors, which are 

essential for capturing the subtle signals indicative of 

bearing faults (Karabacak and Özmen, 2022; Ertarğın et 

al., 2023; Ercire and Ünsal, 2024; Kilic and Acar, 2024). 

However, contact-based sensors face challenges such as 

potential misalignment and the introduction of noise due 

to physical attachment. Non-contact measurement 

methods, such as laser-based ones, offer a compelling 

alternative by eliminating these issues, enabling accurate 

measurements even in challenging-to-access areas. 

Moreover, radar-based detection systems provide 

significant advantages over both laser and infrared 

systems. While laser and infrared technologies are 

effective in controlled environments, radar technology 

excels in harsh industrial conditions where dust, fog, 

vapors, and temperature variations can compromise 

measurement accuracy (Acar et al., 2021). Radar systems 

can penetrate protective covers and operate under 

various lighting conditions, providing measurements 

over longer distances and through obstructions. Unlike 

laser systems that require direct line-of-sight and careful 

surface preparation, radar sensors leverage the Doppler 

effect for direct velocity measurements while being 

resistant to electromagnetic interference. Additionally, a 

single radar sensor can simultaneously monitor multiple 

points, capturing not only vibration but also velocity, 

position, and structural deformation across various 

frequency bands. These capabilities make radar-based 

systems a more versatile and cost-effective solution for 

continuous monitoring in industrial applications where 

accessibility and environmental resilience are critical 

concerns. 

In this study, we present significant contributions to the 

field of bearing fault diagnosis through the development 

of a comprehensive dataset specifically focused on 

bearing faults. A total of 880 data samples were 

generated, encompassing a diverse range of fault types. 

The experiments were conducted using bearings that 

were deliberately aged or deformed to simulate realistic 

fault conditions. Notably, the data were collected using a 

radar-based non-contact measurement system, marking 

the creation of the first dataset in the literature that 

encompasses bearing faults detected via radar 

technology. This pioneering dataset not only provides a 

valuable resource for future research but also 

demonstrates, for the first time, that bearing faults can be 

classified with very high accuracy using radar-based 

methods. This advancement opens new avenues for non-

invasive and precise fault diagnosis in industrial 

applications. The subsequent sections of this paper will 

detail the dataset creation process, methodologies 

employed, and the results obtained, thereby elucidating 

the significance of this novel approach in the context of 

bearing fault diagnosis and its potential implications for 

industrial maintenance practices. 

 

2. Materials and Methods 
2.1. Radar-Based Vibration Estimation 

The motion detection capability of continuous wave 

radars represents a fascinating phenomenon with 

diverse application domains in electrical engineering. 

The Doppler principle underpins a spectrum of 

applications, creating a methodological continuum that 

spans from detecting high-velocity objects like vehicles 

and aircraft to the subtle monitoring of vital physiological 

parameters—pulse rates and respiratory patterns—

through the minute movements of the chest wall. 

In these systems, a high-frequency RF signal generated 

via an oscillator is typically amplified through a power 

amplifier before radiating toward the target through an 

appropriate antenna. A portion of the oscillator signal, 

diverted immediately before the amplification stage, is 

mixed with the reflected signal through a mixer. The 

resulting low-frequency signal fundamentally represents 

the differential between transmitted and received 

signals. This low-frequency component encapsulates the 

target's motion information and enables target 

displacement determination after subsequent processing. 

Modern systems incorporate quadrature receiver 

sections to circumvent the inherent null point issue 

(Seflek et al., 2020) due to the trigonometric approaches 

to extract target displacement information. These radar 

configurations contain two mixer stages that combine the 

return signal with signals phase-shifted by 90 degrees 

from each other, thereby providing two baseband signals 

with a 90-degree phase difference. The fundamental 

block diagram of these IQ-demodulated radar structures 

is illustrated in Figure 1. 
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Figure 1. Block scheme of an IQ-demodulated radar. 

 
The baseband signals 𝑏𝐼(𝑡) and 𝑏𝑄(𝑡) provided by the IQ-

demodulated radar structure can be expressed in 

sinusoidal forms as shown in equations 1 and 2, 

following elementary DC signal elimination processes. 

These orthogonal components constitute the 

fundamental representation of the target's motion 

characteristics. 

𝑏𝐼(𝑡) = cos (
4𝜋𝑑0

𝜆𝑐
+

4𝜋𝑥(𝑡)

𝜆𝑐
) = cos(𝜃) (1) 

𝑏𝑄(𝑡) = sin (
4𝜋𝑑0

𝜆𝑐
+

4𝜋𝑥(𝑡)

𝜆𝑐
) = sin(𝜃) (2) 

In this context, 𝜆𝑐  represents the operational wavelength 

of the radar, 𝑑0 denotes the static distance between the 

radar and the target, and 𝑥(𝑡) signifies the target's 

displacement over time. The equations presented in 

equation 1.a and equation 1.b should theoretically 

incorporate residual phase noise terms. However, due to 

common source utilization, these terms become 

negligible (Gu et al., 2017) resulting in phase information 

𝜃 being directly proportional to 𝑑0 + 𝑥(𝑡). 

Among the numerous methodologies proposed for phase 

information extraction, Differential Arctangent Cross 

Multiplication (DACM), Extended-DACM, Arctangent 

Demodulation (AD), and Complex Signal Demodulation 

(CSD) approaches predominate in practical applications. 

This study focuses on the CSD approach due to its 

superior immunity against high DC noise interference 

(Acar, 2024). This methodology utilizes the baseband 

signals as real and imaginary components of a complex 

signal. Following the Fourier transformation applied to 

this complex-valued signal, the frequency spectrum of 

the displacement signal is obtained. This spectrum can 

effectively substitute the vibration spectra traditionally 

employed in bearing fault diagnostics. The processes of 

complex signal formation and frequency spectrum 

generation are delineated in equation 3 and equation 4, 

respectively. 

𝑐[𝑛] = 𝑏𝐼[𝑛] + 𝑗𝑏𝑄[𝑛] = 𝑒
𝑗(

4𝜋𝑑0
𝜆𝑐

+
4𝜋𝑥[𝑛]

𝜆𝑐
)
 (3) 

𝐶[𝑘] =
1

𝑁
∑ 𝑐[𝑛] 𝑒−𝑗2𝜋𝑘𝑛/𝑁

𝑁−1

𝑛=0

 (4) 

Within this framework, 𝑐[𝑛] denotes the complex-valued 

signal, 𝐶[𝑘] represents the spectral information 

corresponding to the vibration, and 𝑁 indicates the 

number of frequency points representing the spectrum. 

2.2. Bearing Aging/Deforming Procedure 

Bearing failures constitute the majority of motor failures 

occurring in industrial facilities. Different bearing models 

are employed based on varying load and operating 

conditions. This study focuses on 6205ZZ model bearings 

used in three-phase 1.1kW asynchronous motors. To 

simulate common bearing failures, bearing components 

(balls, cage, and outer rings) were supplied by ANADOLU 

RULMAN İMALAT SANAYİ VE TİCARET A.Ş. (ART). As 

part of the study, 16 bearings were prepared, including 

15 defective bearings and a healthy bearing, to analyze 

three different failure types specified in Figure 2.  
Lubricant Failures (LF): This bearing failure occurs due 

to the gradual reduction or performance degradation of 

lubricant within the bearing over time. During assembly, 

the ART company constructed the bearings with three 

different lubricant quantities (25%, 50%, and 75%) 

instead of the standard lubricant amount typically 

applied to a standard bearing. 

Corrosion: Corrosions on the bearings occur with 

exposure to moisture or water under operating 

conditions. In this study, bearing components (balls, 

rings, and cages) were immersed in a laboratory-

prepared aggressive acidic solution for a specific 

duration. After removal, we cleaned the components with 

alcohol and subjected them to ultrasonic cleaning. Thus, 

we have created three different corrosion damages: ball 

corrosion, ring corrosion, and cage corrosion. 

 
Figure 2. Prepared bearing types. 
 

Ball Corrosion (BC-X): This type of failure occurs when all 

or some of the nine balls in a bearing are corroded. We 

have created different damage levels with varying 

numbers of corroded balls (3, 5, and 7) in each bearing. 

When assembling the bearings, some were corroded balls 

(Figure 3.b), and the rest were solid balls (Figure 3.c). 

The corroded balls were positioned adjacently (BC-3, BC-

5, BC-7) or in a dispersed pattern (BC-5-dispersed). 

REF Bearing 
Fault 

Lubricant 
Failure 

LF-25 

LF-50 

LF-75 

Corrosion 

Ball 
Corrosion 

BC-3 

BC-5 

BC-5-
disparsed 

BC-7 

Cage 
Corrosion 

CC-1 

CC-2 

Outer Rings 
Corrosion 

ORC-15 

ORC-30 

ORC-45 

Excessive 
Loads 

EL-15 

EL-30 

EL-45 
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Figure 3. (a) The fabricated ball-corrosion specimen (BC-

5), (b) corroded balls, (c) solid balls. 

 

Outer Ring Corrosion (ORC-X): This failure originates 

from localized corrosion on the bearing's outer ring. We 

developed corrosion regions with distinct angular widths 

(15°, 30°, and 45°) on the interior surfaces of the outer 

rings. In Figure 4.a, the green-marked area represents the 

surface before acidic solution exposure, while the red-

marked area indicates the surface following acidic 

solution treatment. As an outer ring defect, Figure 4.b is a 

magnified view of Figure 4.a to better illustrate the ORC-

15 fault. 
 

 
 

Figure 4. The fabricated outer-ring-corrosion specimen 

(ORC-15). 

 

Cage Corrosion (CC-X): The wear of the cage surrounding 

the bearing balls causes these types of failures. We 

fabricated two distinct levels of failures with varying 

times the cages were immersed in the acidic solution. 

Figure 5 show cages of healthy and corroded specimens. 
 

 
 

Figure 5. The cages of (a) healthy and (b, c) corroded 

specimens. 

 

Excessive Load Failures (ELF-X): Wear damage occurs on 

the outer ring or ball surfaces due to excessive loads. We 

created three levels of damage by creating wear along 

different angles (15°, 30°, and 45°) on the ball path on the 

inner surface of the outer ring. In Figure 6.a, the part 

marked in green is the surface image where there is no 

wear, and the part marked in red is the surface image 

where there is wear. In Figure 6.b, the yellow arrow 

shows the close-up view of the ball-wear paths. 

Following the laboratory creation of these failure 

mechanisms, the ART assembled the bearings through 

their standard bearing assembly protocols. 
 

 
 

Figure 6. The created wear damage on the outer ring. 

 

2.3. Experimental Setup and Data Acquisition 
This study utilizes an experimental setup developed by 

Piritech to monitor bearing faults. The setup contains a 

single asynchronous motor coupled with a magnetic 

powder brake to load the motor. The setup also 

integrates a motor driver and a magnetic powder brake 

driver to control the rotational speed and load levels.  

We have executed 55 experiments and stored the data for 

each bearing fault class. The motor operated at eleven 

equally spaced speed levels between 500 and 1500 rpm, 

and each speed level included five uniformly distributed 

load settings from 0 to 2.5 Nm. We have replaced the 

motor’s bearing with an appropriately deformed one for 

each class.  

We employed a straightforward Raspberry Pi–based 

hardware system to collect the radar data. We 

transmitted a 24.125 GHz signal toward the motor using 

the RFspace KLC5 transceiver and gathered the resulting 

low-frequency return signals. We then digitized the 

analog baseband signals at a 10 kHz sampling rate with 

the MCC118 device from Measurement Computing 

Corporation, saving them to an SD card through the 

Raspberry Pi. Our data set consists of 880 recordings 

distributed across 16 fault classes, and each recording 

contains 300,000 rows with two columns corresponding 

to the in-phase (I) and quadrature (Q) signals (Acar and 

Cetinkal, 2025). Figure 7 illustrates the experimental 

setup. 
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Figure 7. The experimental setup. 

2.4. Data Processing 

The discrete baseband signals recorded in the time 

domain constitute the dataset utilized in this research. By 

integrating these signals through complex signal 

demodulation techniques, we can effectively capture the 

micro-displacements of the target. This displacement 

signal, originating from motor vibrations, reflects the 

motor's oscillatory behavior in the time domain. The 

discrete signal, comprising 300,000 samples, is 

excessively lengthy for direct input into a classifier, 

necessitating additional feature extraction processes 

before implementation in machine learning algorithms. 

In this investigation, we executed feature extraction 

procedures in both temporal and frequency domains and 

conducted comparative analyses of the resultant 

outcomes. 

2.4.1. Time-domain feature extraction 

Engineers frequently analyze statistical characteristics of 

time-domain recordings when classifying bearing faults 

through vibration signals. Our research leverages 12 

proven statistical features (Nayana and Geethanjali, 

2017) extracted from the time domain. We first segment 

the input signal using sliding windows of length 𝐿 with an 

overlap ratio 𝑂. We then apply all feature extraction 

techniques to these segments. We calculate the average 

of features across all segments to create the final feature 

representation. Figure 8 illustrates this extraction 

process clearly. 
 

 
 

Figure 8. Time-domain feature extraction scheme. 
 
Mean Absolute Value (MAV): This feature provides the 

mean of absolute values of samples within the segment 

and is calculated as shown in equation 5. 
 

𝑀𝐴𝑉 =
1

𝐿
∑ |𝑥[𝑛]|

𝐿

𝑛=1

 (5) 

 

Energy (E): This feature represents the segment's energy 

and is calculated as given in equation 6. 

𝐸 = ∑ 𝑥[𝑛]2

𝐿

𝑛=1

 (6) 

 

Waveform Length (WL): This feature corresponds to the 

sum of absolute differences between consecutive 

samples. It represents the sum of absolute first-order 

derivatives, providing information about the signal's 

roughness, rate of change, and frequency characteristics 

for discrete signals. WL is calculated as shown in 

equation 7. 
 

𝑊𝐿 = ∑ |𝑥[𝑛] − 𝑥[𝑛 − 1]|

𝐿

𝑛=1

 (7) 

 

Willison Amplitude (WA): This feature compares the 

difference between consecutive samples against a 

threshold value and counts instances where this 

difference exceeds the threshold. WA is calculated using 

equation 8 and 9. 
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𝑊𝐴 = ∑ 𝑓|𝑥[𝑛] − 𝑥[𝑛 + 1]|

𝐿

𝑛=1

 (8) 

𝑓(𝑥) = {
1 𝑖𝑓 𝑥 ≥ 𝜀

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (9) 

 

Zero Crossing (ZC): This feature determines the number 

of zero crossings within the segment. The expression in 

equation 10 identifies a zero crossing when consecutive 

values have different signs. To reject low-amplitude 

oscillations around zero, one can additionally check 

whether the difference between two samples exceeds a 

threshold value using the expression provided in 

equation 11. 
 

𝑍𝐶 = ∑(𝑥[𝑛] × 𝑥[𝑛 + 1]) < 0

𝐿

𝑛=1

 (10) 

(|𝑥[𝑛] − 𝑥[𝑛 + 1]|) > 𝜀 (11) 
 

Slope Sign Change (SSC): This feature calculates the 

number of slope sign changes in the segment, effectively 

identifying points where the signal direction changes. 

These slope sign changes can be determined as shown in 

equation 12. To exclude minor fluctuations, one can only 

count instances where the difference between 

consecutive samples exceeds a threshold value, using the 

condition specified in equation 11. 
 

𝑆𝑆𝐶 = ∑((𝑥[𝑛 + 1] − 𝑥[𝑛]) × (𝑥[𝑛] − 𝑥[𝑛 − 1])) < 0

𝐿

𝑛=1

 (12) 

 

Root Mean Square (RMS): This feature calculates the 

square root of the mean square of the segment as given in 

equation 13. 
 

𝑅𝑀𝑆 = √
1

𝐿
∑ 𝑥[𝑛]2

𝐿

𝑛=1

 (13) 

 

Mean (µ): This feature calculates the average of the 

segment as given in equation 14. 
 

𝑀𝑒𝑎𝑛 = µ =
1

𝐿
∑ 𝑥[𝑛]

𝐿

𝑛=1

 (14) 

 

Variance (𝜎2): This feature calculates the squared 
deviations from the mean value. The average of the 
squared deviations gives variance. The variance value for 
each segment is calculated as given in equation 15. 
 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜎2 =
1

𝐿
∑(𝑥[𝑛] − µ)2

𝐿

𝑛=1

 (15) 

 

Standard Deviation (STD): This feature calculates the 

square root of the variance as in equation 16. 
 

𝑆𝑇𝐷 = 𝜎 = √
1

𝐿
∑(𝑥[𝑛] − µ)2

𝐿

𝑛=1

 (16) 

 

Skewness (SKW): This property is a measure of the 

symmetry of a distribution. It is zero for symmetric 

distribution. In an unsymmetric distribution, the sign of 

the skewness value can be positive or negative, 

depending on whether it is skewed to the right or left. 

The skewness of a segment is calculated as given in 

equation 17. 
 

𝑆𝐾𝑊 =

1
𝐿

∑ (𝑥[𝑛] − µ)3𝐿
𝑛=1

𝜎3  (17) 

 

Kurtosis (KURT): This feature measures the sharpness or 

flatness of a distribution. The KURT value of a segment as 

shown in equation 18, provides a quantitative 

assessment of the signal's distribution shape relative to a 

normal distribution. 
 

𝐾𝑈𝑅𝑇 =

1
𝐿

∑ (𝑥[𝑛] − µ)4𝐿
𝑛=1

𝜎4  (18) 

 

2.4.2. Power spectral density estimation 
Power spectral density is a vital engineering tool that 

shows how power is distributed across frequency 

components. Engineers typically use two main 

approaches to calculate this density. For simple linear 

systems, parametric methods work well because they're 

easier to model. However, non-parametric methods like 

the Welch technique prove more effective where 

modeling becomes challenging. 

The Welch method offers a practical Fourier-based 

approach to Power Spectral Density (PSD) estimation. 

The signal is first divided into equal-length segments, 

making a notable tradeoff: longer segments give better 

frequency resolution, while shorter ones provide better 

time resolution. By overlapping these segments, the 

number of segments is increased without changing their 

length. Then, the Fourier transform is applied to the 

segments after windowing to minimize the spectral 

leakage. Each segment's periodogram 𝑃𝑚(𝑓) is then 

calculated by squaring its Fourier transform as given in 

equation 19. 
 

𝑃𝑚(𝑓) ≅
1

𝐾
|∑ 𝑥𝑚(𝑘)𝑒

−𝑗2𝜋𝑓𝑘
𝐾

𝐾−1

𝑘=0

|

2

 (19) 

 

Here, 𝐾 represents the length of the Fourier transform, 

while 𝑥𝑚(𝑘) denotes the mth segment weighted by a 

window function 𝑤(𝑘). To achieve a specific overlap 

ratio, we perform a shift-and-window operation on the 

signal 𝑥(𝑘) by sliding 𝑅 samples at a time, as illustrated 

in equation 20. This sliding window approach allows us 

to maintain consistent overlap between adjacent 

segments while processing the entire signal. 

 

𝑥𝑚(𝑘) ≅ 𝑤(𝑘)𝑥(𝑘 + 𝑚𝑅),  
    (𝑘 = 0,1,2, … , 𝐾 − 1, 𝑚 = 0,1,2, … , 𝑀 − 1) 

(20) 

 

The PSD of the entire signal is estimated by averaging the 

periodograms of all segments, as shown in equation 21. 

This averaging process helps reduce variance in the 

spectral estimate and produces a more reliable 

representation of the signal's frequency characteristics. 
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𝑃𝑊𝑒𝑙𝑐ℎ(𝑓)  =
1

𝑀
∑ 𝑃𝑚(𝑓)

𝑀−1

𝑚=0

 (21) 

 

2.4.3. Machine learning classifiers and 
hyperparameters 
In this study, we have employed traditional machine 

learning approaches to classify bearing faults. We tested 

K-Nearest Neighbors (KNN), Decision Tree (DT), Support 

Vector Machine (SVM), Linear Discriminant (LD), and 

several ensemble approaches with various parameters. 

Table 1 presents the optimal parameters for the best-

performing methods, highlighting the configuration that 

delivered superior classification accuracy in our bearing 

fault diagnosis system. 
 
Table 1. The ML methods and selected parameters 

Method Parameters 

SVM 

Kernel function: linear, quadratic, 
cubic 

box constraint level: 1 
multiclass meth.: one vs one 

KNN 
# of neighbors: 1 

distance metric: Euclidean 
distance weight: equal 

DT 
Max. # of splits: 100 

split criterion: Gini diversity index 

LD 
Preset: Linear discriminant 

covariance structure: full 

Subspace 
Discriminant 

Ensemble method: Subspace 
learner type: Discriminant 

# of learners:30 
subspace dimension:65 

Subspace KNN 

Ensemble method: Subspace 
learner type: nearest neighbors 

# of learners:30 
subspace dimension:65 

 

2.5. Performance Evaluation Metrics 
When evaluating classification performance, we must 

understand how accurately a model identifies positive 

class examples and under what conditions it makes 

errors. In this context, True Positive (TP) indicates when 

a model correctly classifies a genuinely positive example 

as positive, demonstrating successful detection of target 

class instances. Conversely, False Positive (FP) occurs 

when the model incorrectly labels a non-positive 

example as positive. Finally, a False Negative (FN) 

happens when the model assigns a positive example to a 

negative or different class, showing that it missed 

detecting a positive case it should have captured. 

Using these values as shown in equations 22-25, it is 

common to employ Accuracy, Recall, Precision, and F1-

score metrics to assess classification performance. These 

metrics provide complementary insights into different 

aspects of the model's effectiveness in correctly 

identifying and distinguishing between classes. 
 

Accuracy = ( TPs) / (All predictions) (22) 

Prec. = TP / (TP + FP) (23) 

Rec. = TP / (TP + FN) (24) 

F1-score = 2 x (Prec. x Rec.) / (Prec. + Rec.) (25) 

In multi-class applications, these metrics are calculated 

on a per-class basis. In this study, we have presented the 

average of class-specific metrics to evaluate overall 

model performance. We also assess performance through 

additional practical considerations like training speed, 

prediction speed, and model size. 

 

3. Results and Discussion 
This section presents the classification results obtained 

by applying machine learning approaches to features 

extracted from time-domain analysis and frequency-

domain PSD. The performances of different classifiers 

with these distinct feature sets to diagnose bearing faults 

are compared. 

3.1. PSD-Based Approach 
Table 2 presents the performance of various ML 

approaches with PSD inputs for both validation and test 

data sets. The performances of the methods are 

compared through accuracy, precision, recall, and F1 

score.

 
Table 2. Classification performance of ML classifiers with PSD input 

ML Meth. 

Validation Test 

Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1 Score 

(%) 

Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1 Score 

(%) 

LD 98.9 98.9 98.9 98.9 97.7 97.8 97.7 97.7 

Sub. KNN 98.6 98.6 98.6 98.6 98.9 98.9 98.9 98.9 

Sub. Disc. 98.5 98.5 98.5 98.5 97.7 97.8 97.7 97.7 

Quad. SVM 95.3 95.5 95.3 95.4 94.3 94.5 94.3 94.4 

DT 85.5 86.2 85.5 85.8 90.9 91.2 90.9 91.1 

KNN 76.9 79.3 76.9 78.1 84.1 85.3 84.1 84.7 

 
According to Table 2 the LD model demonstrates 

superior performance with 98.86% accuracy on the 

validation set, while the Subspace KNN model excels on 

the test set with 98.86% accuracy. The Subspace 

Discriminant model also shows consistently high 

performance on both validation (98.48%) and test 

(97.73%) sets. A quick assessment based on accuracy 

clearly distinguishes these three methods from others. 

The SVM algorithm exhibits moderate-to-high 

performance with accuracy rates of 95.33% and 94.32% 

on validation and test sets respectively, approaching the 

performance of the top three methods. DT and KNN 
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algorithms show comparatively lower performance; 

however, their higher accuracy rates on test sets versus 

validation sets indicate good generalization capabilities 

without overfitting issues. 

The proximity of precision, recall, and F1 scores to 

accuracy values across all models suggests a balanced 

performance distribution among classes. Ensemble 

methods (Subspace KNN and Subspace Discriminant) 

outperforming standard algorithms demonstrate their 

effectiveness in complex classification problems. 

Similar performance across methods necessitates 

additional application-specific selection criteria to 

determine the optimal approach. Prediction speed, 

training duration, and model size are the further metrics 

for real-time applications. Table 3 compares these 

methods in terms of testing speed, training duration, and 

model size. 
 

Table 3 Prediction speed, training time, and model size 

of the models with PSD inputs 
 

ML Meth. 

Prediction 

Speed 

(obs/sec) 

Training 

Time 

(sec) 

Model 

size 

LD 2700 8.62 332 kB 

Sub. KNN 550 176.2 13 MB 

Sub. Disc. 700 168.1 3 MB 

Quad. SVM 840 57.3 3 MB 

DT 6600 15.52 55 kB 

KNN 3000 119.3 838 kB 

 

Table 3 reveals that the DT algorithm possesses the 

highest prediction speed, processing 6600 observations 

per second with just a 15.52-second training period. It 

also stands out as the most compact model at only 55 kB. 

KNN and LD algorithms also show impressive prediction 

speeds, processing 3000 and 2700 observations per 

second, respectively. The LD model trains fastest at 8.62 

seconds and maintains a compact 332 kB size. 

In contrast, the Subspace KNN algorithm exhibits the 

lowest prediction performance at 550 observations per 

second and requires the longest training time at 176.2 

seconds. It also demands the largest model size of 13 MB. 

SVM and Subspace Discriminant models show moderate 

prediction speeds and model sizes. 

When evaluating classification metrics and 

computational performance parameters together, the LD 

algorithm offers the optimal balance. It achieves high 

classification performance (98.86% validation and 

97.73% test accuracy) while demonstrating superior 

computational efficiency with 2700 observations 

processed per second, 8.62-second training time, and 

compact 332 kB size. Although the Subspace KNN model 

provides the highest test accuracy (98.86%), its low 

prediction speed (550 obs/sec), extended training time 

(176.2 seconds), and large model size (13 MB) create 

computational resource disadvantages. Despite having 

the fastest prediction performance (6600 obs/sec) and 

smallest model size (55 kB), The DT algorithm shows 

lower classification performance among other models. 

3.2 Time-domain features-based approach 

This section presents the experimental results of 

classifying bearing faults utilizing features extracted in 

the time domain. The features are extracted from the 

segments with duration of 1 second and an overlap ratio 

of 25%. Table 4 demonstrates the performance 

capabilities of the previously dis cussed machine learning 

methodologies with time-domain features. 

 

Table 4 Classification performance of ML classifiers with time-domain features 

ML Meth. 

Validation Test 

Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1 Score 

(%) 

Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1 Score 

(%) 

LD 97.9 98.0 97.9 97.8 98.9 99.1 99.0 99.0 

Sub. KNN 72.5 72.2 72.5 72.3 60.2 65.7 60.8 61.5 

Sub. Disc. 98.4 98.4 98.4 98.3 100.0 100.0 100.0 100.0 

Lin. SVM 99.9 99.9 99.9 99.9 100.0 100.0 100.0 100.0 

DT 97.0 97.1 97.0 97.0 97.7 98.2 97.7 97.8 

KNN 99.5 99.5 99.5 99.5 100.0 100.0 100.0 100.0 
 

Upon examining the results in the validation and test sets 

presented in Table 5, the SVM algorithm demonstrates 

superior performance with an accuracy rate of 99.9% in 

the validation and 100% in the test sets. Similarly, KNN 

and Subspace Discriminant algorithms achieved 100% 

accuracy in the test set. LD and DT algorithms provide 

satisfactory test results with accuracy rates of 98.9% and 

97.7%, respectively. The Subspace KNN algorithm, 

however, shows significantly lower performance with a 

test accuracy of 60.2%. To evaluate the computational 

performances, Table 5 provides the prediction speed, 

training duration, and model size of the methods 

operated with time-domain features. 

According to Table 5, the Linear Discriminant algorithm 

stands out with a training duration of 3.1 seconds and a 

prediction speed of 18,000 observations/second. The DT 

algorithm also demonstrates efficient performance with a 

training duration of 13.5 seconds and a prediction speed 

of 13,000 observations/second. The SVM algorithm has 

the lowest prediction speed at 960 observations/second. 

In terms of model size, LD (11 kB) and DT (19 kB) offer 

the most compact models, while Subspace KNN (2 MB) 

exhibits the highest storage requirement. 
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Table 5. Prediction speed, training time, and model size 

of the models with time-domain features 
 

ML Meth. 

Prediction 

Speed 

(obs/sec) 

Training 

Time 

(sec) 

Model size 

LD 18000 3.1 11 kB 

Sub. KNN 1500 64.3 2 MB 

Sub. Disc. 1800 61.1 215 kB 

Lin. SVM  960 44.7 760 kB 

DT 13000 13.5 19 kB 

KNN 14000 50.7 98 kB 

 

When considering Table 4 and Table 5 together, the 

performance-efficiency balance of the algorithms 

becomes more evident. Although SVM, KNN, and 

Subspace Discriminant algorithms demonstrate superior 

classification performance, they exhibit different 

computational efficiency profiles. The Linear 

Discriminant algorithm presents a remarkable balance 

with 98.9% test accuracy, the fastest training duration, 

high prediction speed, and minimal model size. These 

characteristics make the LD algorithm preferable in 

resource-constrained environments or real-time 

applications. The Subspace KNN algorithm, when used 

with time-domain features, is considered the most 

disadvantageous option in terms of both performance 

and efficiency. 

3.3. Overall Evaluation  

Table 2 and  

Table 4 confirm that radar-based systems can effectively 

diagnose bearing faults through vibration detection. The 

Linear Discriminant algorithm becomes the most 

efficient method across both approaches while 

maintaining high classification accuracy. Subspace 

Discriminant performs nearly as well as SVM in terms of 

both classification accuracy and computational efficiency. 

Despite their computational advantages, DT and KNN 

algorithms demonstrate significantly lower classification 

performance in the PSD-based approach than other 

methods. The Subspace KNN approach performed 

particularly poorly when using time-domain features. 

Although the conventional PSD-based approach achieves 

high accuracy across various algorithms, it presents 

disadvantages in training duration, prediction speed, and 

model size compared to time-domain methods. This 

efficiency gap primarily stems from the dimensional 

difference: PSD methods utilize 129 features 

(representing frequency points across the spectrum), 

while time-domain approaches require only 12 features. 

Figure 9 provides a co mparative summary of all 

methods, evaluating classification performance based on 

validation accuracy and computational efficiency based 

on prediction speed. 

 

 

 
 

Figure 9 The overall comparison of the methods. 

 

4.Conclusion 
This study presents an innovative approach for radar-

based diagnosis of bearing failures. Our research 

demonstrates that a 24 GHz radar system offers a non-

contact detection of the bearing faults. Within the scope 

of this work, we have deliberately induced various 

defects in the inner race, outer race, and rolling elements 

of bearings. Corrosion, dust contamination, improper 

lubrication levels, and scratches are artificially generated 

with different severity levels and classified using a radar-

based system. 

PSD estimation and time-domain features with machine 

learning methodologies enabled the classification of 

these diverse bearing faults with accuracy exceeding 

98%. These findings substantiate the capability of radar-

based diagnostic techniques to differentiate various 

damage types in bearing components, offering a robust 

alternative to conventional contact-requiring methods. 

Our investigation has contributed to the literature by 

providing radar signal data from 880 experiments 

encompassing 16 distinct classes. This dataset 

constitutes a valuable resource for future research 

endeavors. This pioneering study presents a new 

paradigm for non-contact fault diagnosis in bearing 

maintenance and monitoring processes. 

Future research directions should examine the impact of 

different radar operating frequencies on performance, 
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optimization of detection distance, and system reliability 

under various environmental conditions. Additionally, 

integration with real-time monitoring systems and 

algorithms for detecting more complex fault types will 

contribute to advancements in this field. 
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