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Abstract: Bearing failures represent the most prevalent fault type in electrical machines, potentially leading to catastrophic
consequences if not detected early. Conventional detection methods primarily rely on thermal, acoustic, and vibration sensors.
Traditional vibration-based techniques have gained widespread adoption due to their stable and straightforward signal-processing
capabilities. However, these approaches require direct motor mounting, introducing economic, temporal, and safety inefficiencies. This
study presents the first investigation of contactless radar-based detection of bearing faults according to the authors' knowledge. The
research employs the absolute value of complex signals derived from quadrature signals recorded by a 24 GHz radar transceiver as the
vibration signal. Various defects like corrosion, improper oil levels, and scratches were deliberately introduced to the inner race, outer
race, and balls of bearings, establishing 16 distinct fault classes. Classification performance was evaluated using both time-domain
statistical features and frequency-domain PSD features. Multiple machine learning algorithms were applied to both approaches,
consistently achieving accuracy rates exceeding 98%. This study validates the potential of radar-based systems for bearing fault
diagnosis and introduces a novel paradigm for contactless bearing fault detection comprising radar signal data from 880 experiments.
The results demonstrate that radar technology offers a promising alternative to traditional contact-requiring methods, enabling
efficient and reliable bearing fault classification through non-invasive vibration detection.
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1. Introduction

Bearings are critical components in mechanical systems
that minimize friction between moving parts, thereby
reducing energy loss and increasing load-bearing
capacity. These elements significantly enhance the
efficiency and durability of systems by supporting
rotational or linear motion through rolling elements
positioned between rings. The
importance of bearings is further emphasized by their
role in optimizing machine performance and reducing
maintenance costs. Considering that approximately 40-
50% of mechanical failures in rotating machinery stem
from bearing faults, monitoring and maintaining these
components plays a vital role (Zhang et al, 2020a).
Bearing failures typically result from factors such as
inadequate
installation, overloading, and material fatigue (Brito et

inner and outer

lubrication, contamination, improper
al,, 2022). These failures can manifest in various forms,
including wear, fatigue cracks, corrosion, and surface
damage.

Bearing fault detection utilizes various data types, each
enabling distinct approaches with inherent advantages
and disadvantages. Vibration analysis, owing to its high

sensitivity and broad applicability, is prevalent for early

fault detection (Qiao et al, 2020; Zhang et al., 2020b;
Mueller et al, 2023). However, limitations include the
criticality of sensor placement and susceptibility to noise
interference. Acoustic emission, leveraging its capacity to
capture high-frequency signals, offers advantages in early
micro-crack detection, but remains susceptible to
ambient noise (Pacheco-Cherrez et al.,, 2022; Glowacz et
al., 2025). Current-based methods, exploiting existing
motor current need for

sensors, preclude the

supplementary hardware; however, sensitivity can
diminish in low-speed applications (Kao et al, 2018;
Sabir et al, 2019). Thermal imaging, facilitating non-
contact measurement of bearing temperature variations,
necessitates expensive equipment and may exhibit
reduced efficacy in incipient fault stages (Lopez-Perez
and Antonino-Daviu, 2017; Mehta et al, 2021). Each
approach contributes significantly to bearing fault
detection within specific application scenarios and
diverse industrial settings.

The detection of bearing faults has seen significant
advancements in signal processing approaches and
methods over time. Initially, in the earlier decades, basic
frequency analysis techniques such as time-domain
analyses and the Fast Fourier Transform (FFT) were
employed. As the field progressed, the 1980s witnessed
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the development and widespread adoption of envelope
analysis techniques. Moving into the 1990s, more
sophisticated signal processing and artificial intelligence
methods, including wavelet analysis
networks, began to be utilized. In the subsequent years,
adaptive signal processing techniques like Empirical
Mode Decomposition (EMD) and the Hilbert-Huang
Transform gained prominence (Akar et al, 2015).
Recently, deep learning-based approaches have become
increasingly prevalent. For instance, research by (Zhu et
al, 2023) demonstrated the effectiveness of deep
learning in bearing fault detection. Emerging trends in
this area include multi-sensor fusion, transfer learning,
and novel deep network architectures. The advantages of
these methods include noise suppression capabilities,
early fault detection, and automatic feature extraction.

In the field of bearing fault diagnosis, both synthetic and
experimental data play crucial roles in the development
and validation of diagnostic algorithms. Synthetic data, as
utilized in various studies, allows researchers to simulate

and neural

a wide range of fault conditions, providing a controlled
environment to test the efficacy of machine learning
models (Liu et al,, 2020). Experimental data, such as that
from the Case Western Reserve University Bearing Data
Center, offers real-world insights and is instrumental in
validating these models under practical conditions
(Smith and Randall, 2015). The primary equipment used
in these studies includes vibration sensors like
accelerometers and acoustic emission sensors, which are
essential for capturing the subtle signals indicative of
bearing faults (Karabacak and Ozmen, 2022; Ertargin et
al,, 2023; Ercire and Unsal, 2024; Kilic and Acar, 2024).
However, contact-based sensors face challenges such as
potential misalignment and the introduction of noise due
to physical
methods, such as laser-based ones, offer a compelling
alternative by eliminating these issues, enabling accurate
measurements even in challenging-to-access areas.
Moreover, radar-based detection systems provide
significant advantages over both laser and infrared
systems. While laser and infrared technologies are
effective in controlled environments, radar technology

excels in harsh industrial conditions where dust, fog,

attachment. Non-contact measurement

vapors, and temperature variations can compromise
measurement accuracy (Acar et al, 2021). Radar systems
can penetrate protective covers and operate under
various lighting conditions, providing measurements
over longer distances and through obstructions. Unlike
laser systems that require direct line-of-sight and careful
surface preparation, radar sensors leverage the Doppler
effect for direct velocity measurements while being
resistant to electromagnetic interference. Additionally, a
single radar sensor can simultaneously monitor multiple
points, capturing not only vibration but also velocity,
position, and structural deformation across various
frequency bands. These capabilities make radar-based
systems a more versatile and cost-effective solution for
continuous monitoring in industrial applications where

accessibility and environmental resilience are critical
concerns.

In this study, we present significant contributions to the
field of bearing fault diagnosis through the development
of a comprehensive dataset specifically focused on
bearing faults. A total of 880 data samples were
generated, encompassing a diverse range of fault types.
The experiments were conducted using bearings that
were deliberately aged or deformed to simulate realistic
fault conditions. Notably, the data were collected using a
radar-based non-contact measurement system, marking
the creation of the first dataset in the literature that
encompasses bearing faults detected via radar
technology. This pioneering dataset not only provides a
valuable resource for future research but also
demonstrates, for the first time, that bearing faults can be
classified with very high accuracy using radar-based
methods. This advancement opens new avenues for non-
invasive and precise fault diagnosis in industrial
applications. The subsequent sections of this paper will
detail the dataset creation process, methodologies
employed, and the results obtained, thereby elucidating
the significance of this novel approach in the context of
bearing fault diagnosis and its potential implications for

industrial maintenance practices.

2. Materials and Methods

2.1. Radar-Based Vibration Estimation

The motion detection capability of continuous wave
radars represents a fascinating phenomenon with
diverse application domains in electrical engineering.
The Doppler principle underpins a spectrum of
applications, creating a methodological continuum that
spans from detecting high-velocity objects like vehicles
and aircraft to the subtle monitoring of vital physiological
parameters—pulse rates and respiratory patterns—
through the minute movements of the chest wall.

In these systems, a high-frequency RF signal generated
via an oscillator is typically amplified through a power
amplifier before radiating toward the target through an
appropriate antenna. A portion of the oscillator signal,
diverted immediately before the amplification stage, is
mixed with the reflected signal through a mixer. The
resulting low-frequency signal fundamentally represents
the differential between transmitted and received
signals. This low-frequency component encapsulates the
target's motion information and enables target
displacement determination after subsequent processing.
Modern systems
sections to circumvent the inherent null point issue
(Seflek et al,, 2020) due to the trigonometric approaches
to extract target displacement information. These radar
configurations contain two mixer stages that combine the

incorporate quadrature receiver

return signal with signals phase-shifted by 90 degrees
from each other, thereby providing two baseband signals
with a 90-degree phase difference. The fundamental
block diagram of these IQ-demodulated radar structures
is illustrated in Figure 1.
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Figure 1. Block scheme of an 1Q-demodulated radar.

The baseband signals b;(t) and by (t) provided by the IQ-
demodulated radar structure can be expressed in
sinusoidal forms as shown in equations 1 and 2,
following elementary DC signal elimination processes.
These  orthogonal components
fundamental representation of the target's motion

constitute  the

characteristics.
4ntd Anx(t

b,(t) = cos % + mx(t) = cos(0) (9]
Ae Ae
4md 4 t

by (t) = sin [ —— O _ sinco) @)
A¢ A¢

In this context, 1, represents the operational wavelength
of the radar, d, denotes the static distance between the
radar and the target, and x(t) signifies the target's
displacement over time. The equations presented in
equation l.a and equation 1.b should theoretically
incorporate residual phase noise terms. However, due to
common utilization,
negligible (Gu et al,, 2017) resulting in phase information
0 being directly proportional to dy + x(t).

Among the numerous methodologies proposed for phase
information extraction, Differential Arctangent Cross
Multiplication (DACM), Extended-DACM, Arctangent
Demodulation (AD), and Complex Signal Demodulation

source these terms become

(CSD) approaches predominate in practical applications.
This study focuses on the CSD approach due to its
superior immunity against high DC noise interference
(Acar, 2024). This methodology utilizes the baseband
signals as real and imaginary components of a complex
signal. Following the Fourier transformation applied to
this complex-valued signal, the frequency spectrum of
the displacement signal is obtained. This spectrum can
effectively substitute the vibration spectra traditionally
employed in bearing fault diagnostics. The processes of
complex signal formation and frequency spectrum
generation are delineated in equation 3 and equation 4,

respectively.
(4md,  4mx([n]
cln) = ] + jboln] = /L 5 ()
=
Clll = " cln] ez )
n=0

Within this framework, c[n] denotes the complex-valued
signal, C[k] represents the spectral
corresponding to the vibration, and N indicates the
number of frequency points representing the spectrum.
2.2. Bearing Aging/Deforming Procedure

Bearing failures constitute the majority of motor failures
occurring in industrial facilities. Different bearing models
are employed based on varying load and operating
conditions. This study focuses on 6205ZZ model bearings
used in three-phase 1.1kW asynchronous motors. To
simulate common bearing failures, bearing components
(balls, cage, and outer rings) were supplied by ANADOLU
RULMAN IMALAT SANAYI VE TICARET A.S. (ART). As
part of the study, 16 bearings were prepared, including
15 defective bearings and a healthy bearing, to analyze
three different failure types specified in Figure 2.
Lubricant Failures (LF): This bearing failure occurs due
to the gradual reduction or performance degradation of
lubricant within the bearing over time. During assembly,
the ART company constructed the bearings with three
different lubricant quantities (25%, 50%, and 75%)
instead of the standard lubricant amount typically
applied to a standard bearing.

Corrosion: Corrosions on the bearings occur with

information

exposure to moisture or water under operating
conditions. In this study, bearing components (balls,
rings, and cages) were immersed in a laboratory-
prepared aggressive acidic solution for a specific
duration. After removal, we cleaned the components with
alcohol and subjected them to ultrasonic cleaning. Thus,
we have created three different corrosion damages: ball
corrosion, ring corrosion, and cage corrosion.

Fault
I L
Lubricant Excessive
Failure Loads
I ! 1
LF-25 Ball Cage Outer Ring EL15
Corrosion Corrosion Corrosion
=2

BC-3
BC-5
BC-7

Corrosion

LF-50

LF-75

ORC-30 EL-45
ORC-45

| S
disparsed

Figure 2. Prepared bearing types.

Ball Corrosion (BC-X): This type of failure occurs when all
or some of the nine balls in a bearing are corroded. We
have created different damage levels with varying
numbers of corroded balls (3, 5, and 7) in each bearing.
When assembling the bearings, some were corroded balls
(Figure 3.b), and the rest were solid balls (Figure 3.c).
The corroded balls were positioned adjacently (BC-3, BC-
5, BC-7) or in a dispersed pattern (BC-5-dispersed).
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Figure 3. (a) The fabricated ball-corrosion specimen (BC-
5), (b) corroded balls, (c) solid balls.

Outer Ring Corrosion (ORC-X): This failure originates
from localized corrosion on the bearing's outer ring. We
developed corrosion regions with distinct angular widths
(15°, 30° and 45°) on the interior surfaces of the outer
rings. In Figure 4.3, the green-marked area represents the
surface before acidic solution exposure, while the red-
marked area indicates the surface following acidic
solution treatment. As an outer ring defect, Figure 4.b is a
magnified view of Figure 4.a to better illustrate the ORC-
15 fault.

Figure 4. The fabricated outer-ring-corrosion specimen
(ORC-15).

Cage Corrosion (CC-X): The wear of the cage surrounding
the bearing balls causes these types of failures. We
fabricated two distinct levels of failures with varying
times the cages were immersed in the acidic solution.
Figure 5 show cages of healthy and corroded specimens.

(c)

Figure 5. The cages of (a) healthy and (b, ¢) corroded
specimens.

Excessive Load Failures (ELF-X): Wear damage occurs on
the outer ring or ball surfaces due to excessive loads. We
created three levels of damage by creating wear along
different angles (15°, 30°, and 45°) on the ball path on the
inner surface of the outer ring. In Figure 6.a, the part
marked in green is the surface image where there is no
wear, and the part marked in red is the surface image
where there is wear. In Figure 6.b, the yellow arrow
shows the close-up view of the ball-wear paths.

Following the laboratory creation of these failure
mechanisms, the ART assembled the bearings through
their standard bearing assembly protocols.

Figure 6. The created wear damage on the outer ring.

2.3. Experimental Setup and Data Acquisition

This study utilizes an experimental setup developed by
Piritech to monitor bearing faults. The setup contains a
single asynchronous motor coupled with a magnetic
powder brake to load the motor. The setup also
integrates a motor driver and a magnetic powder brake
driver to control the rotational speed and load levels.

We have executed 55 experiments and stored the data for
each bearing fault class. The motor operated at eleven
equally spaced speed levels between 500 and 1500 rpm,
and each speed level included five uniformly distributed
load settings from 0 to 2.5 Nm. We have replaced the
motor’s bearing with an appropriately deformed one for
each class.

We employed a straightforward Raspberry Pi-based
hardware system to collect the radar data. We
transmitted a 24.125 GHz signal toward the motor using
the RFspace KLC5 transceiver and gathered the resulting
low-frequency return signals. We then digitized the
analog baseband signals at a 10 kHz sampling rate with
the MCC118 device from Measurement Computing
Corporation, saving them to an SD card through the
Raspberry Pi. Our data set consists of 880 recordings
distributed across 16 fault classes, and each recording
contains 300,000 rows with two columns corresponding
to the in-phase (I) and quadrature (Q) signals (Acar and
Cetinkal, 2025). Figure 7 illustrates the experimental
setup.
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Figure 7. The experimental setup.

2.4. Data Processing

The discrete baseband signals recorded in the time
domain constitute the dataset utilized in this research. By
integrating these through complex signal
demodulation techniques, we can effectively capture the
micro-displacements of the target. This displacement
signal, originating from motor vibrations, reflects the
motor's oscillatory behavior in the time domain. The
discrete signal, comprising 300.000 samples, is
excessively lengthy for direct input into a classifier,
necessitating additional feature extraction processes
before implementation in machine learning algorithms.
In this investigation, we executed feature extraction
procedures in both temporal and frequency domains and

signals

conducted comparative analyses of the resultant
outcomes.

2.4.1. Time-domain feature extraction

Engineers frequently analyze statistical characteristics of
time-domain recordings when classifying bearing faults
through vibration signals. Our research leverages 12
proven statistical features (Nayana and Geethanjali,
2017) extracted from the time domain. We first segment
the input signal using sliding windows of length L with an
overlap ratio 0. We then apply all feature extraction
techniques to these segments. We calculate the average
of features across all segments to create the final feature
representation. Figure 8 illustrates this extraction

process clearly.

!

segmenting by an
overlap ratio

segment

O:overlap ratio
L:window length
R:number of sliding samples
I: humber of segments
R=L(1-O)
I1=N-OL/R

Figure 8. Time-domain feature extraction scheme.

Mean Absolute Value (MAV): This feature provides the
mean of absolute values of samples within the segment
and is calculated as shown in equation 5.

L
MAV = %Zl lx[n]| (5)

Energy (E): This feature represents the segment's energy
and is calculated as given in equation 6.

L
E=) x[n]? (6)

Waveform Length (WL): This feature corresponds to the
sum of absolute differences between consecutive
samples. It represents the sum of absolute first-order

s[nj=x[1+IR:L+IR]

fli,1:12]

feature extraction

segment
feature

f1:0,1:12]

all segment
features

averaging

fv[1:12]=mean(f{1:1,1:12])

feature vector

derivatives, providing information about the signal's
roughness, rate of change, and frequency characteristics
for discrete signals. WL is calculated as shown in
equation 7.

L
WL = Z |x[n] — x[n — 1]| (7)
n=1

Willison Amplitude (WA): This feature compares the
difference between consecutive samples against a
threshold value and counts instances where this
difference exceeds the threshold. WA is calculated using
equation 8 and 9.
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L
WA = Zﬂx[n] —x[n+1]| (8)
n=1
_(lifx=>¢
fo) = {0 otherwise} ©)

Zero Crossing (ZC): This feature determines the number
of zero crossings within the segment. The expression in
equation 10 identifies a zero crossing when consecutive
values have different signs. To reject low-amplitude
oscillations around zero, one can additionally check
whether the difference between two samples exceeds a
threshold value using the expression provided in
equation 11.

L
ZC= ) (x[n] xx[n+1]) <0 (10)
(Jx[n] = x[n+1]D) > ¢ (11

Slope Sign Change (SSC): This feature calculates the
number of slope sign changes in the segment, effectively
identifying points where the signal direction changes.
These slope sign changes can be determined as shown in
equation 12. To exclude minor fluctuations, one can only
instances where the difference between
consecutive samples exceeds a threshold value, using the
condition specified in equation 11.

count

L
SSC = Z((x[n +1] —x[n) x (x[n] =x[n—1])) <0 (12)

Root Mean Square (RMS): This feature calculates the
square root of the mean square of the segment as given in
equation 13.

(13)

Mean (p): This feature calculates the average of the
segment as given in equation 14.

L

1
Mean = p = 22 x[n]

n=1

(14)

Variance (0?): This feature calculates the squared
deviations from the mean value. The average of the
squared deviations gives variance. The variance value for
each segment is calculated as given in equation 15.

L
Variance = g% = %Z(x[n] - ? (15)

n=1

Standard Deviation (STD): This feature calculates the
square root of the variance as in equation 16.

(16)

Skewness (SKW): This property is a measure of the
symmetry of a distribution. It is zero for symmetric

distribution. In an unsymmetric distribution, the sign of
the skewness value can be positive or negative,
depending on whether it is skewed to the right or left.
The skewness of a segment is calculated as given in
equation 17.

L3k Gln] — wy?

g3

SKW = (17)
Kurtosis (KURT): This feature measures the sharpness or
flatness of a distribution. The KURT value of a segment as
shown in equation 18, provides a quantitative
assessment of the signal's distribution shape relative to a
normal distribution.

I3k Galn] - *

o

KURT = (18)

2.4.2. Power spectral density estimation
Power spectral density is a vital engineering tool that

shows how power is distributed across frequency
components. Engineers typically use two main
approaches to calculate this density. For simple linear
systems, parametric methods work well because they're
easier to model. However, non-parametric methods like
the Welch technique prove more effective where
modeling becomes challenging.

The Welch method offers a practical Fourier-based
approach to Power Spectral Density (PSD) estimation.
The signal is first divided into equal-length segments,
making a notable tradeoff: longer segments give better
frequency resolution, while shorter ones provide better
time resolution. By overlapping these segments, the
number of segments is increased without changing their
length. Then, the Fourier transform is applied to the
segments after windowing to minimize the spectral
leakage. Each segment's periodogram P, (f) is then
calculated by squaring its Fourier transform as given in
equation 19.

K-1 2

—j2nfk
Z xm(k)e” K

k=0

Pulh) = (19)

Here, K represents the length of the Fourier transform,
while x,,(k) denotes the mth segment weighted by a
window function w(k). To achieve a specific overlap
ratio, we perform a shift-and-window operation on the
signal x(k) by sliding R samples at a time, as illustrated
in equation 20. This sliding window approach allows us
to maintain consistent overlap between adjacent
segments while processing the entire signal.

X (k) = w(k)x(k + mR), (20)
k=012,.,K-1m=012,..,.M-1)

The PSD of the entire signal is estimated by averaging the
periodograms of all segments, as shown in equation 21.
This averaging process helps reduce variance in the
spectral
representation of the signal's frequency characteristics.

estimate and produces a more reliable
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M-1
1
Pweien () =37 Y Puf) (21
m=0

2.4.3. Machine classifiers and

hyperparameters
In this study, we have employed traditional machine

learning approaches to classify bearing faults. We tested
K-Nearest Neighbors (KNN), Decision Tree (DT), Support
Vector Machine (SVM), Linear Discriminant (LD), and
several ensemble approaches with various parameters.
Table 1 presents the optimal parameters for the best-
performing methods, highlighting the configuration that
delivered superior classification accuracy in our bearing

learning

fault diagnosis system.

Table 1. The ML methods and selected parameters
Method

Parameters
Kernel function: linear, quadratic,
cubic
box constraint level: 1
multiclass meth.: one vs one
# of neighbors: 1
distance metric: Euclidean
distance weight: equal
Max. # of splits: 100
split criterion: Gini diversity index
Preset: Linear discriminant
covariance structure: full
Ensemble method: Subspace
learner type: Discriminant
# of learners:30
subspace dimension:65
Ensemble method: Subspace
learner type: nearest neighbors
# of learners:30
subspace dimension:65

SVM

KNN

DT

LD

Subspace
Discriminant

Subspace KNN

2.5. Performance Evaluation Metrics
When evaluating classification performance, we must

understand how accurately a model identifies positive
class examples and under what conditions it makes
errors. In this context, True Positive (TP) indicates when
a model correctly classifies a genuinely positive example

as positive, demonstrating successful detection of target
class instances. Conversely, False Positive (FP) occurs
when the model incorrectly labels a non-positive
example as positive. Finally, a False Negative (FN)
happens when the model assigns a positive example to a
negative or different class, showing that it missed
detecting a positive case it should have captured.

Using these values as shown in equations 22-25, it is
common to employ Accuracy, Recall, Precision, and F1-
score metrics to assess classification performance. These
metrics provide complementary insights into different
aspects of the model's effectiveness in correctly
identifying and distinguishing between classes.

Accuracy = (X TPs) / (All predictions) (22)
Prec. = TP /(TP + FP) (23)
Rec. = TP /(TP + FN) (24)
F1-score = 2 x (Prec. x Rec.) / (Prec. + Rec.) (25)

In multi-class applications, these metrics are calculated
on a per-class basis. In this study, we have presented the
average of class-specific metrics to evaluate overall
model performance. We also assess performance through
additional practical considerations like training speed,
prediction speed, and model size.

3. Results and Discussion
This section presents the classification results obtained

by applying machine learning approaches to features
extracted from time-domain analysis and frequency-
domain PSD. The performances of different classifiers
with these distinct feature sets to diagnose bearing faults
are compared.

3.1. PSD-Based Approach

Table 2 presents the performance of various ML
approaches with PSD inputs for both validation and test
data sets. The performances of the methods are
compared through accuracy, precision, recall, and F1
score.

Table 2. Classification performance of ML classifiers with PSD input

Validation Test

ML Meth. Accuracy  Precision Recall (%) F1 Score Accuracy  Precision Recall (%) F1 Score

(%) (%) (%) (%) (%) (%)
LD 98.9 98.9 98.9 98.9 97.7 97.8 97.7 97.7
Sub. KNN 98.6 98.6 98.6 98.6 98.9 98.9 98.9 98.9
Sub. Disc. 98.5 98.5 98.5 98.5 97.7 97.8 97.7 97.7
Quad. SVM 95.3 95.5 95.3 95.4 94.3 94.5 94.3 94.4
DT 85.5 86.2 85.5 85.8 90.9 91.2 90.9 91.1
KNN 76.9 79.3 76.9 78.1 84.1 85.3 84.1 84.7

According to Table 2 the LD model demonstrates
superior performance with 98.86% accuracy on the
validation set, while the Subspace KNN model excels on
the test set with 98.86% accuracy. The Subspace
Discriminant model also consistently high
performance on both validation (98.48%) and test

shows

(97.73%) sets. A quick assessment based on accuracy
clearly distinguishes these three methods from others.

The SVM exhibits
performance with accuracy rates of 95.33% and 94.32%
on validation and test sets respectively, approaching the
performance of the top three methods. DT and KNN

algorithm moderate-to-high
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algorithms show comparatively lower performance;
however, their higher accuracy rates on test sets versus
validation sets indicate good generalization capabilities
without overfitting issues.

The proximity of precision, recall, and F1 scores to
accuracy values across all models suggests a balanced
performance distribution among classes. Ensemble
methods (Subspace KNN and Subspace Discriminant)
outperforming standard algorithms demonstrate their
effectiveness in complex classification problems.

Similar methods necessitates

performance across

additional selection criteria to
determine the optimal approach. Prediction speed,
training duration, and model size are the further metrics
for real-time applications. Table 3 compares these
methods in terms of testing speed, training duration, and

model size.

application-specific

Table 3 Prediction speed, training time, and model size
of the models with PSD inputs

Prediction Training
ML Meth. Speed Time M?del

(obs/sec) (sec) size
LD 2700 8.62 332KkB
Sub. KNN 550 176.2 13 MB
Sub. Disc. 700 168.1 3 MB
Quad. SVM 840 57.3 3 MB
DT 6600 15.52 55 kB
KNN 3000 119.3 838 kB

Table 3 reveals that the DT algorithm possesses the
highest prediction speed, processing 6600 observations
per second with just a 15.52-second training period. It
also stands out as the most compact model at only 55 kB.

KNN and LD algorithms also show impressive prediction
speeds, processing 3000 and 2700 observations per
second, respectively. The LD model trains fastest at 8.62
seconds and maintains a compact 332 kB size.

In contrast, the Subspace KNN algorithm exhibits the
lowest prediction performance at 550 observations per
second and requires the longest training time at 176.2
seconds. It also demands the largest model size of 13 MB.
SVM and Subspace Discriminant models show moderate
prediction speeds and model sizes.

When
computational performance parameters together, the LD
algorithm offers the optimal balance. It achieves high
classification performance (98.86%
97.73% test accuracy) while demonstrating superior
computational efficiency with 2700
processed per second, 8.62-second training time, and
compact 332 kB size. Although the Subspace KNN model
provides the highest test accuracy (98.86%), its low
prediction speed (550 obs/sec), extended training time
(176.2 seconds), and large model size (13 MB) create
computational resource disadvantages. Despite having
the fastest prediction performance (6600 obs/sec) and
smallest model size (55 kB), The DT algorithm shows
lower classification performance among other models.
3.2 Time-domain features-based approach

This section presents the experimental results of

evaluating classification metrics and

validation and

observations

classifying bearing faults utilizing features extracted in
the time domain. The features are extracted from the
segments with duration of 1 second and an overlap ratio
of 25%. Table 4 demonstrates the performance
capabilities of the previously dis cussed machine learning
methodologies with time-domain features.

Table 4 Classification performance of ML classifiers with time-domain features

Validation Test
ML Meth. Accuracy  Precision Recall (%) F1 Score Accuracy  Precision Recall (%) F1 Score
(%) (%) (%) (%) (%) (%)
LD 97.9 98.0 97.9 97.8 98.9 99.1 99.0 99.0
Sub. KNN 72.5 72.2 72.5 72.3 60.2 65.7 60.8 61.5
Sub. Disc. 98.4 98.4 98.4 98.3 100.0 100.0 100.0 100.0
Lin. SVM 99.9 99.9 99.9 99.9 100.0 100.0 100.0 100.0
DT 97.0 97.1 97.0 97.0 97.7 98.2 97.7 97.8
KNN 99.5 99.5 99.5 99.5 100.0 100.0 100.0 100.0

Upon examining the results in the validation and test sets
presented in Table 5, the SVM algorithm demonstrates
superior performance with an accuracy rate of 99.9% in
the validation and 100% in the test sets. Similarly, KNN
and Subspace Discriminant algorithms achieved 100%
accuracy in the test set. LD and DT algorithms provide
satisfactory test results with accuracy rates of 98.9% and
97.7%, respectively. The Subspace KNN algorithm,
however, shows significantly lower performance with a
test accuracy of 60.2%. To evaluate the computational
performances, Table 5 provides the prediction speed,
training duration, and model size of the methods

operated with time-domain features.

According to Table 5, the Linear Discriminant algorithm
stands out with a training duration of 3.1 seconds and a
prediction speed of 18,000 observations/second. The DT
algorithm also demonstrates efficient performance with a
training duration of 13.5 seconds and a prediction speed
of 13,000 observations/second. The SVM algorithm has
the lowest prediction speed at 960 observations/second.
In terms of model size, LD (11 kB) and DT (19 kB) offer
the most compact models, while Subspace KNN (2 MB)
exhibits the highest storage requirement.
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Table 5. Prediction speed, training time, and model size
of the models with time-domain features

Prediction Training
ML Meth. Speed Time Model size
(obs/sec) (sec)
LD 18000 3.1 11 kB
Sub. KNN 1500 64.3 2 MB
Sub. Disc. 1800 61.1 215kB
Lin. SVM 960 447 760 kB
DT 13000 13.5 19 kB
KNN 14000 50.7 98 kB

When considering Table 4 and Table 5 together, the
performance-efficiency balance of the algorithms
becomes more evident. Although SVM, KNN, and
Subspace Discriminant algorithms demonstrate superior
performance, they exhibit different
computational  efficiency  profiles. =~ The  Linear
Discriminant algorithm presents a remarkable balance
with 98.9% test accuracy, the fastest training duration,
high prediction speed, and minimal model size. These
characteristics make the LD algorithm preferable in

classification

resource-constrained environments or real-time
applications. The Subspace KNN algorithm, when used
with time-domain features, is considered the most

disadvantageous option in terms of both performance

Val. Accuracy (%)

Sub. Disc.

LD Sub. KNN

I PSD-based  mmmmE Time-domain

Figure 9 The overall comparison of the methods.

4.Conclusion

This study presents an innovative approach for radar-
based diagnosis of bearing failures. Our research
demonstrates that a 24 GHz radar system offers a non-
contact detection of the bearing faults. Within the scope
of this work, we have deliberately induced various
defects in the inner race, outer race, and rolling elements
of bearings. Corrosion, dust contamination, improper
lubrication levels, and scratches are artificially generated
with different severity levels and classified using a radar-
based system.

PSD estimation and time-domain features with machine
learning methodologies enabled the classification of
these diverse bearing faults with accuracy exceeding
98%. These findings substantiate the capability of radar-

and efficiency.

3.3. Overall Evaluation

Table 2 and Table 4 confirm that radar-based systems
can effectively diagnose bearing faults through vibration
detection. The Linear Discriminant algorithm becomes
the most efficient method across both approaches while
maintaining high classification accuracy. Subspace
Discriminant performs nearly as well as SVM in terms of
both classification accuracy and computational efficiency.
Despite their computational advantages, DT and KNN
algorithms demonstrate significantly lower classification
performance in the PSD-based approach than other
methods. The Subspace KNN approach performed
particularly poorly when using time-domain features.
Although the conventional PSD-based approach achieves
high accuracy across various algorithms, it presents
disadvantages in training duration, prediction speed, and
model size compared to time-domain methods. This
efficiency gap primarily stems from the dimensional
difference: PSD methods utilize 129 features
(representing frequency points across the spectrum),
while time-domain approaches require only 12 features.
Figure 9 provides a co mparative summary of all
methods, evaluating classification performance based on
validation accuracy and computational efficiency based
on prediction speed.
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based diagnostic techniques to differentiate various
damage types in bearing components, offering a robust
alternative to conventional contact-requiring methods.
Our investigation has contributed to the literature by
providing radar signal data from 880 experiments
encompassing 16 distinct classes. This dataset
constitutes a valuable resource for future research
endeavors. This pioneering study presents a new
paradigm for non-contact fault diagnosis in bearing
maintenance and monitoring processes.

Future research directions should examine the impact of
different radar operating frequencies on performance,
optimization of detection distance, and system reliability
under various environmental conditions. Additionally,
integration with real-time monitoring systems and
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algorithms for detecting more complex fault types will
contribute to advancements in this field.
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