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This study introduces the Tanimoto Contrast Approach (TCA), a novel objective method for determining 

criterion weights in Multi-Criteria Decision-Making (MCDM) problems. Built on the internal–external 

dispersion logic of the CRITIC method, TCA replaces Pearson correlation with Tanimoto similarity to 

capture both linear and non-linear relationships, enabling a more comprehensive evaluation of inter-

criterion contrasts and similarities. The method was tested using the 2024 Global Innovation Index data 

from selected seven countries. Sensitivity analysis revealed that TCA maintains ranking stability under 

varying conditions, while comparative analysis showed strong correlation with ENTROPY, SVP, and 

MEREC methods, confirming its reliability and credibility. In addition, simulation analysis based on ten 

different decision matrix scenarios demonstrated that TCA produces high average variance and 

consistent, homogeneous weight distributions evidence of its robustness and stability. TCA’s advantages 

include distribution free applicability, insensitivity to zero or negative values, scale independence, and 

effectiveness with large datasets. Moreover, its comparative performance against widely used objective 

weighting methods such as ENTROPY, CRITIC, SD, SVP, MEREC, and LOPCOW has been 

thoroughly discussed. In conclusion, TCA offers contrast-based, decision-maker-independent weighting 

framework that generates meaningful, balanced, and sensitive results. Its integration into MCDM 

applications provides a valuable contribution to the advancement of objective weighting techniques. 
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1. INTRODUCTION 

Criterion weighting is a critical component in Multi-Criteria Decision Making (MCDM), as it defines the 

relative importance of each criterion, effectively structuring decision-making processes (Ecer, 2020; Thakkar, 

2021). Objective weighting methods, rooted in data-driven analysis, mitigate subjectivity and enhance 

consistency, contrasting with subjective approaches prone to bias (Baş, 2021; Zardari et al., 2014). Thus, 

advancing innovative objective weighting techniques is vital to accurately model criterion interdependencies 

and improve decision-making precision (Bircan, 2020; Demir et al., 2021). 

In this context, this study introduces a novel analytical framework, the Tanimoto Contrast Approach (TCA), 

which determines criterion weights by scrutinizing spatial contrasts among criteria and leveraging Tanimoto 

similarity. The assessment of contrast in TCA adopts a methodology analogous to that of the CRITIC method, 
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albeit with notable divergences. CRITIC is utilized as the foundational framework owing to its established 

reliability in quantifying criterion contrasts (Ecer, 2020). Furthermore, Tanimoto similarity is integrated into 

the approach due to its efficacy in accurately and consistently capturing the relationships between variables 

(Sharma & Lal, 2011; Chung et al., 2019). By incorporating Tanimoto similarity, the proposed methodology 

facilitates the development of diverse algorithms and models grounded in both distances (contrasts) and 

similarities (Surendran et al., 2025). 

The primary motivation behind the proposed method is to assess sensitivity through sensitivity analysis at an 

ideal level, to evaluate credible and reliable results through comparative analysis, and to measure robustness 

and stability through simulation analysis. Another aim of the study is to highlight the advantages of the 

proposed method. Furthermore, there has been no study in the existing MCDM literature that uses Tanimoto 

similarity in determining criterion weights. In this context, the proposed method integrates Tanimoto similarity 

based on the CRITIC technique and is the first study to apply this approach in criterion weighting. This study 

makes a significant contribution to the MCDM literature, particularly in the areas of criterion weighting and 

Tanimoto similarity. In the materials and methods section of the study, various objective criterion weighting 

methods are first explained, followed by a detailed description of how Tanimoto similarity is applied and the 

advantages of the proposed method. Finally, the findings are discussed, and the results of the study are 

summarized and concluded. 

2. MATERIAL AND METHOD 

2.1. Some Objective Criteria Weighting Methods and Their Characteristics 

Subjective weight coefficients are frequently determined by the decision-makers' personal experiences and 

judgments, thus reflecting inherent individual biases. Consequently, these coefficients can vary substantially 

among different decision-makers (Baş, 2021). Typically, these weights are assigned based on expert opinions. 

However, relying exclusively on expert evaluations may introduce biases and inaccuracies into the decision-

making process (Bircan, 2020). Conversely, objective methods disregard the subjective inconsistencies and 

uncertainties present in decision-makers' inputs. These methods employ mathematical models and utilize data 

derived from the decision matrix to ascertain the criterion weights. Essentially, objective weighting techniques 

prioritize the inherent structural properties of the data during the evaluation process (Demir et al., 2021). 

In the realm of MCDM, a variety of objective weighting methodologies are employed, including CRITIC 

(Criteria Importance Through Inter-criteria Correlation) (Dhara et al., 2022; Momena et al., 2024), ENTROPY 

(Eligüzel & Eligüzel, 2024; Wang et al., 2023), SVP (Statistical Variance Procedure) (Tayalı & Timor, 2017; 

Nasser et al., 2019), SD (Standard Deviation) (Baydaş, et al., 2024; Mukhametzyanov, 2021), MEREC 

(Method Based on Removal Effects of Criteria) (Yazdi et al., 2025; Sehgal et al., 2025), and LOPCOW 

(Logarithmic Percentage Change-driven Objective Weighting) (Durdu, 2025; Yasin et al., 2025). The CRITIC 

method, notably, operates on the principle of leveraging the inherent information within a system. A 

fundamental tenet of CRITIC is that a criterion's significance is directly proportional to its variability or 
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distinctiveness in relation to other criteria (Diakoulaki et al., 1995). Consequently, CRITIC places a strong 

emphasis on the interrelationships among criteria. The methodology involves analyzing correlations between 

criteria to identify any inconsistencies or contradictions (Ulutaş & Topal, 2020). These are subsequently 

addressed by applying weights derived from the standard deviation, thereby facilitating the computation of 

appropriate weights for each criterion (Ecer, 2020). The process commences with the construction of a decision 

matrix, followed by the normalization of its constituent values (Aydemir, 2025). Upon completion of the 

normalization, the correlations between the criteria are evaluated to determine their respective weights (Sleem 

et al., 2023). 

The ENTROPY methodology offers a structured and impartial framework for ascertaining the relative 

significance of criteria within decision-making processes. This technique commences with the development of 

a decision matrix, succeeded by the calculation of normalized values (Ayçin, 2019). Subsequently, the 

ENTROPY metric is employed to evaluate the degree of indeterminacy or irregularity associated with each 

criterion, thereby quantifying the informational content it contributes (Dinçer, 2019). This approach utilizes 

the standardized values and the derived ENTROPY metric. The said metric is determined by the ratio of the 

negative sum of the product of each criterion’s standardized value and the natural logarithm of that 

standardized value to the natural logarithm of the number of alternatives (Ulutaş & Topal, 2020). This approach 

augments objectivity in weight assignment, empowering decision-makers to conduct more equitable and 

evidence-based assessments (Baş, 2021). 

The SD technique determines criterion weights by quantifying the dispersion of each criterion's values relative 

to its arithmetic mean (Öztel & Alp, 2020). Initially, the decision matrix undergoes normalization to achieve 

data standardization. Subsequently, the standard deviation for each criterion is calculated, and these values are 

then utilized to derive the corresponding weights (Uludağ & Doğan, 2021). 

Conversely, the SVP methodology establishes criterion weights by computing the variance of each criterion 

based on the data within the decision matrix (Dinçer, 2019). Given the criteria exhibiting higher variance are 

assigned greater weights, reflecting their amplified influence on the overall decision-making framework (Öztel 

& Alp, 2020). 

The LOPCOW employs a multifaceted approach to ascertain optimal weights, while simultaneously striving 

to mitigate disparities between the most and least influential criteria (Keleş, 2023). This methodology also 

accounts for the interrelationships among criteria. Initially, a decision matrix is constructed, and its values are 

subsequently normalized. Following this, the mean squared value, expressed as a percentage of the standard 

deviation for each criterion, is computed to minimize the impact of variations in data scale. This process 

culminates in the calculation of weight coefficients for each criterion (Ecer & Pamucar, 2022). 

The MEREC initiates its process, analogous to other weighting methodologies, with the creation and 

normalization of a decision matrix. Subsequently, the aggregate performance indices of decision alternatives 
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are calculated utilizing a framework grounded in natural logarithmic functions. Following this, these 

performance indices are refined by factoring in the contribution of each decision alternative, with iterative 

recalculations performed employing the natural logarithm (Keshavarz-Ghorabaee, et al., 2021). In the 

concluding stage of the methodology, criterion weight coefficients are derived by quantifying the removal 

effect of each criterion, specifically through the summation of absolute deviations. Furthermore, as the 

influence of a criterion on decision alternatives escalates, its corresponding weight coefficient also increases, 

thereby ensuring a more representative and reflective weighting paradigm (Popović et al., 2022). 

2.2. Tanimoto Similarity 

Tanimoto similarity is a statistical measure that numerically expresses the similarity between two sets. It is 

commonly used to assess the overlap and differences between sets, especially in binary data, where the 

presence or absence of a feature is represented by 1 or 0, respectively (Lipkus, 1999). This measure plays a 

critical role in various fields such as information retrieval (Zainudin & Nurjana, 2018; Thiel et al., 2014), 

recommendation systems (Selvi & Sivasankar, 2018; Vivek et al., 2018), bioinformatics (Mulia et al., 2018), 

and data mining (Anastasiu & Karypis, 2017; Paulose et al., 2018). 

Tanimoto similarity can be calculated in two forms: set-based and vector-based. In the set-based Tanimoto 

similarity, the similarity between two sets is calculated by dividing the number of common elements (the 

intersection count) by the difference between the union count of the two sets and the intersection count, as 

shown in Equation 1. In the vector-based Tanimoto similarity, the similarity between two sequences or sets is 

measured by the ratio of the sum of the products of corresponding quantities in different sets to the difference 

between the sum of the squares of the individual quantities in each set, as demonstrated in Equation 2 (Bajusz 

et al., 2015). 

𝑃: {𝑝1, 𝑝2, 𝑝3 … . . 𝑝𝑛 }: First cluster, 𝑄{𝑞1, 𝑞2, 𝑞3 … . . 𝑞𝑛 }: Second cluster, 𝑃 ∩ 𝑄: The intersection of sets 𝑃 and 

𝑄, |𝑃|: The cardinality of set 𝑃, |𝑄|: The cardinality of set 𝑄.  

 𝑇(𝑃, 𝑄) =
𝑃 ∩ 𝑄

|𝑃| + |𝑄| − 𝑃 ∩ 𝑄
 (1) 

 
𝑇(𝑃, 𝑄) =

𝑃. 𝑄

‖𝑃‖2 + ‖𝑄‖2 − 𝑃 ∗ 𝑄
=

∑ (𝑃𝑖 ∗,𝑛
𝑖=1 𝑄𝑖) 

(√(∑ (𝑛
𝑖=1 𝑃𝑗)

2))

2

+ (√(∑ (𝑛
𝑖=1 𝑄𝑗)

2))

2

− ∑ (𝑃𝑖 ∗,𝑛
𝑖=1 𝑄𝑖) 

 
(2) 

Tanimoto similarity is metric offers several advantages over other similarity methods. First, Tanimoto 

similarity allows for the evaluation of common components between data points not only in terms of directional 

similarity but also considering magnitude differences (Zhang et al., 2015). For example, while cosine similarity 

measures the similarity between two vectors based on the angle between them (Mana & Sasipraba, 2021). 

Tanimoto similarity provides a more comprehensive comparison by considering both the intersection and the 
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union of sets (Surendran et al., 2025). This characteristic ensures more accurate and reliable measurements, 

particularly in large datasets. 

Another significant advantage of Tanimoto similarity is its ability to work with both binary data and vectors 

containing continuous variables (Bero et al., 2018). While methods like cosine similarity typically perform 

better with continuous vectors, and Jaccard similarity is mainly useful for set-based analysis (Zahrotun, 2016), 

Tanimoto similarity combines the strengths of both methods, making it applicable to both categorical and 

numerical data. In contrast to cosine similarity, which focuses only on the direction of vectors and disregards 

magnitude differences, Tanimoto similarity accounts for both direction and magnitude, offering a more holistic 

similarity analysis. This is especially beneficial when working with weighted vectors, as Tanimoto similarity 

allows for more accurate evaluations (Kryszkiewicz, 2013). Compared to Jaccard similarity, Tanimoto 

similarity is particularly stronger when working with continuous variables (Sankara et al., 2011). While Jaccard 

measures the proportion of common elements between sets, relying solely on presence/absence information, it 

can fall short in vector-based calculations (Kryszkiewicz, 2013). Tanimoto similarity, however, is compatible 

with numerical data and works effectively with both binary and continuous variables, giving it a broader range 

of applicability. 

Euclidean distance, which measures the direct distance between two data points, is sensitive to different 

measurement scales (Dokmanic et al., 2015) and may not provide meaningful results in high-dimensional 

datasets. Tanimoto similarity, however, focuses on the density of shared components between datasets or 

vectors rather than direct distance, making it a more reliable comparison method in high-dimensional data 

(Lasek & Mei, 2019). It can produce more meaningful results, especially in large data analysis and compound 

similarity assessments, when compared to Euclidean distance. 

Mahalanobis distance, which takes correlations between variables into account when calculating similarity 

(Iglesias & Kastner, 2013) requires high computational costs and may not be efficient with large datasets. 

Tanimoto similarity, on the other hand, offers a more scalable approach as it is based directly on the intersection 

and union of components, providing a faster and more effective similarity measure, especially in large-scale 

machine learning and bioinformatics applications (Baldi & Benz, 2008). 

Minkowski distance, a general form of Euclidean distance that can be customized with different parameters 

(Xu et al., 2019), still compares vector magnitudes directly and does not consider the intersection-union 

relationship Tanimoto similarity, by considering both the distance between data points and the degree of 

overlap, provides more reliable results in object-based similarity analysis. Additionally, Tanimoto similarity 

offers scalability advantages when applied to large datasets, enabling efficient computations. The intersection 

and union-based calculation method ensures that similarity analysis can be performed without accuracy loss, 

even in datasets with numerous variables. Furthermore, Tanimoto similarity is more robust to noise. While 

other similarity metrics may show significant differences when there are minor deviations or missing data in a 
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dataset, Tanimoto similarity provides a more stable measure, making it a valuable tool in biological data 

analysis (Mellor et al., 2019), chemical compound comparisons (Ma et al., 2011) and document similarity 

calculations. In conclusion, Tanimoto similarity stands out as a more flexible, comprehensive, and reliable 

method compared to other similarity metrics. Its ability to work with both binary and continuous data, 

scalability, robustness to noise, and precise measurement based on intersection-union ratios make it an 

effective analytical tool across various scientific fields. 

A review of the literature reveals numerous studies focusing on Tanimoto similarity. Mohebbi et al. (2022) 

utilized Tanimoto similarity in the QSAR modeling of a ligand-based pharmacophore derived from Hepatitis 

B virus surface antigen inhibitors. Ying et al. (2021) applied Tanimoto similarity in improving the chemical 

structure elucidation process using Morgan Fingerprints. Kryszkiewicz (2021) employed Tanimoto similarity 

to identify similarity neighborhoods of real-valued vectors through triangle inequalities and length boundaries. 

Shan et al. (2025) evaluated ionic liquid toxicity using machine learning and structural similarity methods with 

Tanimoto similarity. Feldmann and Bajorath (2022) used Tanimoto similarity to calculate exact Shapley values 

for support vector machines. Yoon and Lee (2025) leveraged Tanimoto similarity in silico screening to 

discover new compounds for focal adhesion kinase activation using virtual screening, AI-based prediction, and 

molecular dynamics. Ahmad et al. (2025) applied Tanimoto similarity in developing a data mining and 

machine learning-based model for optimal materials for perovskite and organic solar cells. Yoshizawa et al. 

(2025) utilized Tanimoto similarity in creating a data-driven generative strategy to avoid reward manipulation 

in multi-target molecular design. Nowatzky et al. (2025) applied Tanimoto similarity for local neighborhood-

based prediction of compound mass spectrometric data from a single fragmentation event. Feldmann et al. 

(2025) used Tanimoto similarity in the uncertainty analysis of neural fingerprint-based models. 

2.3. Proposed Method (Tanimoto Contrast Approach-TCA) 

In the determination of criteria weights, the distinctiveness and contrasts among criteria are fundamental in 

defining their inherent characteristics. The proposed method shares a conceptual similarity with the CRITIC 

method in its underlying logic. The CRITIC approach posits that a criterion's importance is directly 

proportional to its degree of contrast. Consequently, a criterion's significance increases with greater standard 

deviation and lower correlation with other criteria, indicating a higher degree of contrast (Ecer, 2020). 

The proposed method emphasizes the uniqueness and oppositional nature of criteria, highlighting their 

distinguishing attributes. It employs Tanimoto similarity values to quantify the degree of contrast between 

criteria. Tanimoto similarity assesses the numerical proximity of criteria within a vector space. According to 

this principle, smaller differences within a criterion’s numerical series imply closer proximity to other criteria 

in the vector space, resulting in a lower degree of contrast series (Bajusz et al., 2015). Conversely, the CRITIC 

method utilizes Pearson correlation coefficients, which rely on the proportional relationship between criteria's 

numerical series (Diakoulaki et al., 1995). For example, if a criterion with a sequence of relatively small values 
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exhibits a similar progression to another criterion with larger values, a significant and positive correlation is 

inferred. 

The CRITIC method determines each criterion's weight by multiplying its internal and external distributions. 

The internal distribution, representing a criterion's variability, is quantified by its standard deviation. The 

external distribution, reflecting a criterion’s divergence from others, is measured by summing the differences 

between one and the Pearson correlation coefficients between the given criterion and all others (Diakoulaki et 

al., 1995). The fundamental formulation of the CRITIC weighting mechanism is expressed in Equations 3, 4, 

and 5 (Ayçin, 2019; Dinçer, 2019).  

𝑟𝑖𝑗: Correlation coefficient between the 𝑗 − 𝑡ℎ and 𝑗 − 𝑡ℎ criteria 

𝜎𝑗: Standard deviation of the 𝑗 − 𝑡ℎ criterion (𝑗 =  1, 2, … , 𝑛) 

𝑤𝑗: Weight of the 𝑗 − 𝑡ℎ evaluation criterion (𝑗 =  1, 2, … , 𝑛) 

𝑝𝑗𝑘: It indicates the correlation coefficient between any criterion j and criterion k. 

 
p

jk
=

∑ (r
ij
-rj).(rik

-rk)m
i=1

√∑ (r
ij
-rj)

2
.(r

ik
-rk)

2m
i=1

 j, k=1,2,…,n 
(3) 

 

σj=
√

∑ (r
ij
-rj)

2m
i=1

m-1
  (4) 

 
Cj=σj. ∑(1-rij)  j=1,2,…,m

m

i=1

 (5) 

As shown in Equation 3, term σj represents the internal contrast of each criterion, reflecting the dissimilarity 

among its own values, while term ∑ (1-rij)
m
i=1  represents the external contrast, indicating the dissimilarity of 

each criterion relative to all others. The product of σj and ∑ (1-rij)
m
i=1  determines the spatial dispersion of each 

criterion, thereby establishing its weight (Diakoulaki et al., 1995). The proposed method employs a weighting 

mechanism conceptually aligned with the CRITIC approach. Specifically, internal contrast in the proposed 

method is measured by σj, and external contrast, representing dissimilarity with other criteria, is quantified by 

∑ (1-rij)
m
i=1  (Diakoulaki et al., 1995), consistent with the CRITIC method's logic. Therefore, in the proposed 

method, each criterion's weight is calculated by multiplying its internal distributions (𝜎𝑗), with its external 

dispersion [∑ (1 − 𝑟𝑖𝑗)
𝑚
𝑖=1 ], derived from the dissimilarity or distance based on Tanimoto similarity values 

(i.e., the external contrast among the criteria’s own value distributions). The model illustrating the 

implementation steps of the proposed method within this scope is presented in Figure 1, while the 

corresponding mathematical procedures are meticulously detailed below. 
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Figure 1. TCA Model 

Step 1. Obtaining Decision Matrix (𝑋) 

In the first step of the proposed method, the decision matrix is constructed using Equation 6, similar to the 

CRITIC method. 

 𝐷𝑀 = [𝑑𝑖𝑗]𝑚𝑥𝑛

𝐴𝐿𝑇
𝐴𝐿𝑇1

𝐴𝐿𝑇2

⋮
𝐴𝐿𝑇𝑚 [

 
 
 
 
𝐶𝑅𝑇1 𝐶𝑅𝑇2 … 𝐶𝑅𝑇𝑛

𝑑11 𝑑12 … 𝑑1𝑛

𝑑21 𝑑22 … 𝑑2𝑛

⋮ ⋮ … ⋮
𝑑𝑚1 𝑑𝑚2 … 𝑑𝑚𝑛 ]

 
 
 
 

 (6) 

Step 2: Calculation of Normalisation Values of Decision Matrix (𝑑𝑖𝑗
∗ ) 

In the second step of the method, the normalization of the decision matrix values is achieved using Equation 

7 for benefit-oriented criteria and Equation 8 for cost-oriented criteria. Subsequently, the normalized decision 

matrix is constructed using Equation 9, based on the direction of the criteria. 

For benefit-oriented criteria: 

 𝑑𝑖𝑗
∗ =

min(𝑑𝑖𝑗)

𝑑𝑖𝑗

 (7) 

For cost-oriented criteria: 

 𝑑𝑖𝑗
∗ =

𝑑𝑖𝑗

max(𝑑𝑖𝑗)
 (8) 

Normalized matrix: 
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 𝐷𝑀∗ = [𝑑𝑖𝑗]
∗

𝑚𝑥𝑛
=

𝐴𝐿𝑇
𝐴𝐿𝑇1

𝐴𝐿𝑇2

⋮
𝐴𝐿𝑇𝑚 [

 
 
 
 
𝐶𝑅𝑇1 𝐶𝑅𝑇2 … 𝐶𝑅𝑇𝑛

𝑑∗
11 𝑑∗

12 … 𝑑∗
1𝑛

𝑑∗
21 𝑑∗

22 … 𝑑∗
2𝑛

⋮ ⋮ … ⋮
𝑑∗

𝑚1 𝑑∗
𝑚2 … 𝑑∗

𝑚𝑛]
 
 
 
 

 (9) 

Step 3: Calculation of Internal Distribution (𝐼𝐷)𝑗 of Critera 

In this step, the standard deviation (𝑆𝐷)𝑗 values of each criterion are calculated using Equation 10 to measure 

the distribution of values within each criterion. 

 (𝐼𝐷)𝑗 = (𝑆𝐷)𝑗=√
∑ (dij

∗ -dij
∗̅̅ ̅)

2m
i=1

m-1
    (10) 

Step 4: Calculation of Total Tanimoto Similarity Scores of Criteria (𝑇𝑇𝑆𝑆)𝑗 

In the third step, the Tanimoto Similarity Scores ((𝑇𝑆𝑆)𝑇𝐴𝑁𝐶𝑅𝑇𝑗→𝐶𝑅𝑇𝑗
) of each criterion with respect to the 

other criteria are first calculated using the equations provided below. These calculations are performed based 

on the normalized values and are determined using Equations 11, 12, 13, 14, and 15. 

 𝐶𝑅𝑇 ∈  {𝐶𝑅𝑇1, 𝐶𝑅𝑇2, 𝐶𝑅𝑇3 … . . 𝐶𝑅𝑇𝑛}  (11) 

(1) 𝑓𝑜𝑟 𝐶𝑅𝑇1 

 (𝑇𝐴𝑁𝐶𝑅𝑇1→𝐶𝑅𝑇2
) =

𝐶𝑅𝑇1 . 𝐶𝑅𝑇2

‖𝐶𝑅𝑇1‖ . ‖𝐶𝑅𝑇2‖ − (𝐶𝑅𝑇1 . 𝐶𝑅𝑇2) 
 (12) 

 

⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

  

 (𝑇𝐴𝑁𝐶𝑅𝑇1→𝐶𝑅𝑇𝑛
) =

𝐶𝑅𝑇1 . 𝐶𝑅𝑇𝑛

‖𝐶𝑅𝑇1‖ . ‖𝐶𝑅𝑇𝑛‖ − (𝐶𝑅𝑇1 . 𝐶𝑅𝑇2)  
 (13) 

(𝑛) 𝑓𝑜𝑟 𝐶𝑅𝑇𝑛 

 (𝑇𝐴𝑁𝐶𝑅𝑇𝑛→𝐶𝑅𝑇1
) =

𝐶𝑅𝑇𝑛 . 𝐶𝑅𝑇1

‖𝐶𝑅𝑇𝑛‖ . ‖𝐶𝑅𝑇1‖ − (𝐶𝑅𝑇1 . 𝐶𝑅𝑇2)   
 (14) 

 
⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

  

 (𝑇𝐴𝑁𝐶𝑅𝑇𝑛→𝐶𝑅𝑇𝑛−1
) =

𝐶𝑅𝑇𝑛 . 𝐶𝑅𝑇𝑛−1

‖𝐶𝑅𝑇𝑛‖ . ‖𝐶𝑅𝑇𝑛−1‖ − (𝐶𝑅𝑇1 . 𝐶𝑅𝑇2)   
 (15) 

Secondly, the Total Tanimoto Similarity Scores of Criteria (𝑇𝑇𝑆𝑆)𝑗 for each criterion are calculated using 

Equations 16 and 17. 
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(1) 𝑓𝑜𝑟 𝐶𝑅𝑇1 

 

(𝑇𝑇𝑆𝑆)𝐶𝑅𝑇1
= ∑ [(𝑇𝐴𝑁𝐶𝑅𝑇1→𝐶𝑅𝑇2

) + ⋯+ (𝑇𝐴𝑁𝐶𝑅𝑇1→𝐶𝑅𝑇𝑛
)]

(𝑚−1)

𝑗=1

 (16) 

 
⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

    

 

(𝑛) 𝑓𝑜𝑟 𝐶𝑅𝑇𝑛 

 

(𝑇𝑇𝑆𝑆)𝐶𝑅𝑇𝑛
= ∑ [(𝑇𝐴𝑁𝐶𝑅𝑇𝑛→𝐶𝑅𝑇1

) + ⋯+ (𝑇𝐴𝑁𝐶𝑅𝑇𝑛→𝐶𝑅𝑇𝑛−1
)]

(𝑚−1)

𝑗=1

 (17) 

Step 5: Calculation of Standard Total Tanimoto Similarity Scores of Criteria (𝑆𝑇𝑇𝑆𝑆)𝑗 

In this step, the (𝑇𝑇𝑆𝑆)𝑗 values of each criterion are standardized to the [0,1] range using Equation 18. 

 

(𝑆𝑇𝑇𝑆𝑆)𝑗 =
(𝑇𝑇𝑆𝑆)𝑗

∑ (𝑇𝑇𝑆𝑆)𝑗
𝑛
𝑗=1

 (18) 

Step 6: Calculation of Tanimoto Contrast Scores of Criteria (𝑇𝐶𝑆)𝑗(External Dispersion of Criteria: 𝐸𝐷𝑗) 

In this step, the (𝑆𝑇𝑇𝑆𝑆)𝑗 of the criteria are converted into distance (contrast) values using the method 

proposed by Todeschini et al. (2007) and formulated in Equation 19. Accordingly, the relationship between 

similarity and distance is explained in Equation 20. 

 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑆) =
1

1 + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡)
= 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡) =

1 − 𝑆

𝑆
 (19) 

 

(𝑇𝐶𝑆)𝑗 =
1 − (𝑆𝑇𝑇𝑆𝑆)𝑗

(𝑆𝑇𝑇𝑆𝑆)𝑗
 (20) 

The method presented in Equation 20 is not confined solely to the [0, 1] interval for similarity and distance 

measures but is also applicable to all positive similarity and distance metrics beyond this range (Bajusz et al., 

2015). This inherent flexibility enables the proposed method to effectively transform similarity and distance 

values into a standardized [0, 1] scale, establishing it as a robust and comprehensive metric for similarity 

assessment. In the existing literature, conventional similarity and distance measures are typically restricted to 

the [0, 1] interval, with transformations predominantly achieved by subtracting the obtained value from 1 

(Podani, 2000). However, this conventional approach can introduce metric inconsistencies, particularly in 

similarity assessments, thereby potentially compromising measurement accuracy. In this context, the 
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transformation framework outlined in Equation 20 transcends the limitations of traditional methods based 

solely on the subtraction of 1. The proposed method not only addresses measurements within the [0, 1] range 

but also effectively accommodates a broader spectrum of positive values. Consequently, it provides a more 

inclusive and integrative perspective on the similarity-distance transformation process. Therefore, in 

comparison to conventional approaches, the proposed method not only encompasses a wider range of 

measurements but also facilitates a more accurate and coherent evaluation of the similarity-distance 

relationship. In this respect, the transformation methodology articulated in Equation 20 not only distinguishes 

itself from existing methods in the literature but also establishes a more comprehensive and theoretically sound 

foundation for similarity measurement. 

Step 7: Calculation of General Contrast Score of Criteria (𝐺𝐶𝑆𝑗) 

In this step, the Standard Deviation (𝑆𝐷)𝑗 value of each criterion, measured using Equation 10, is multiplied 

by the 𝑇𝐶𝑆𝑗 value presented in Equation 21 to calculate the General Contrast Score (𝐺𝐶𝑆𝑗) or External 

Dispersion values for each criterion. Similar to the weighting logic in the CRITIC method, in Equation 21, 𝑆𝐷 

represents the standard deviation of the self-normalized values of each criterion (i.e., the internal distribution 

of each criterion's own values), while 𝐺𝐶𝑆𝑗, again as in the CRITIC method, indicates the contrast intensity 

∑ (1-rij)
m
i=1  of each criterion with respect to the other criteria. Within this scope, similar to the CRITIC method, 

the overall contrast value of the criteria is measured by multiplying the SD value of each criterion with the 

total contrast value of that criterion in relation to the other criteria. 

 
𝐺𝐶𝑆𝑗 = (𝑆𝐷)𝑗 ∗  (𝐺𝐶𝑆𝑗) (21) 

Step 8: Calculation of Criteria Weightings (𝑤𝑗) 

In the final step of the method, the weights of the criteria are calculated by determining the ratio of each 

criterion's 𝐺𝐶𝑆𝑗 value to the total 𝐺𝐶𝑆𝑗 value, as given in Equation 22. 

 

𝑤𝑗 =
𝐺𝐶𝑆𝑗

∑ 𝐺𝐶𝑆𝑗𝑗
𝑚
𝑗=1

 (22) 

The proposed criterion weighting method offers an objective, data-driven, and mathematically grounded 

approach, providing significant advantages in decision-making processes. Its primary strength lies in the ability 

to determine criterion weights independently of the decision-maker's subjective judgments. As a result, the 

method can generate consistent and reliable outcomes across various applications. The proposed approach 

optimizes the weighting process by considering both similarities and dissimilarities among criteria. In this 

context, the Tanimoto similarity plays a pivotal role by measuring the degree of similarity and contrast between 

criteria. This prevents the excessive weighting of criteria with high uniqueness or dissimilarity, thereby 
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ensuring a more balanced distribution of weights in terms of informational value. This balanced weighting 

contributes to a more meaningful and interpretable structure within the decision-making framework. The 

advantage provided by the Tanimoto similarity enables the method to produce more sensitive and robust 

results, particularly in MCDM problems. Furthermore, the scale-independence of the method allows for the 

normalization of criteria with different units of measurement, facilitating comparability and enhancing 

reliability across diverse data structures. This contributes to a more robust and accurate decision-making 

process. In addition, the high computational efficiency of the proposed method enables rapid and effective 

implementation, even on large datasets. Since the proposed method is conceptually based on the weighting 

logic of the CRITIC method, it has the potential to produce highly correlated results with other widely used 

objective weighting methods in the literature. This reinforces the reliability and scientific validity of the 

method. Moreover, its unique structure, which takes inter-criteria relationships into account, offers a novel 

perspective compared to existing methods and contributes meaningfully to the academic literature. In 

conclusion, when evaluated within a scientific and systematic framework, the proposed criterion weighting 

method can be regarded as a valuable approach that enhances objectivity, consistency, and accuracy in 

decision-making processes. By utilizing mathematical metrics such as Tanimoto similarity to analyze inter-

criterion relationships, the method is considered to yield more realistic and reliable results in decision support 

systems. 

Although the proposed criterion weighting method offers several advantages, it also presents certain limitations 

that may affect its applicability or pose challenges under specific conditions. First, the computational process 

of the method is relatively complex and requires more mathematical operations compared to traditional 

approaches. The integration of Tanimoto similarity and other associated calculations can lead to high 

computational costs, particularly when dealing with complex-scale datasets. This may render the method more 

time-consuming to implement and necessitate additional computational resources in big data environments. 

Second, the performance of the method can vary depending on the normalization techniques employed and the 

inherent characteristics of the dataset. For instance, in cases where an extremely high degree of similarity exists 

among the criteria, the discriminative power of Tanimoto similarity may diminish. As a result, the method may 

struggle to accurately reflect the relative importance of such criteria, potentially affecting the reliability of the 

weighting process. This limitation is particularly relevant in datasets where high correlations exist among 

multiple criteria, which can reduce the sensitivity of the method. 

The proposed TCA method offers several advantages when compared to the widely used CRITIC method. One 

major limitation of the CRITIC approach lies in its reliance on the Pearson correlation coefficient to capture 

the contrast among criteria (Ayçin, 2019). The application of this coefficient is constrained by its underlying 

assumption of normally distributed data (Kilmen, 2015). If the dataset does not meet this assumption, the 

resulting correlation values may be misleading or incorrect (Kalaycı, 2014). In contrast, the Tanimoto 

Similarity employed in the TCA method is not subject to such restrictions. It can be effectively applied to 
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datasets regardless of whether they follow a normal distribution, thus providing broader applicability. 

Secondly, while the Pearson correlation coefficient only measures linear relationships between variables 

ignoring potential nonlinear patterns (Karagöz, 2014; Özdamar, 2018). However, Tanimoto Similarity offers 

a more generalized similarity measure that accounts for both linear and nonlinear structures. This characteristic 

makes the TCA method more flexible and suitable for a wider range of applications, particularly in complex 

MCDM contexts. However, it is worth noting that the CRITIC method may yield more reliable results in cases 

where the relationships between criteria are strongly linear. In such scenarios, the use of TCA might introduce 

a risk of less accurate outcomes due to its sensitivity to complex or nonlinear patterns, whereas CRITIC 

maintains robustness due to its strong linear correlation-based structure (Diakoulaki et al., 1995). Moreover, 

the proposed TCA method shares conceptual similarities with the CRITIC approach in terms of its weighting 

logic. Both methods consider the contrast within individual criteria (internal dispersion) and the contrast 

between different criteria (external dispersion) in calculating the final criterion weights. This parallel highlights 

the methodological compatibility of TCA with established objective weighting approaches, while also 

emphasizing its unique advantages in terms of distributional flexibility and nonlinear relationship handling. 

The ENTROPY method is inherently sensitive to negative and zero values due to its reliance on logarithmic 

calculations. To mitigate this issue, Zhang et al. (2014) proposed the use of Z-Score normalization to convert 

the dataset into positive values before applying the method. However, this pre-processing step introduces 

additional computational costs. In contrast, the proposed TCA method is not affected by zero or negative 

values, thus eliminating the need for such pre-processing and enhancing its computational efficiency. From a 

methodological perspective, the ENTROPY method evaluates each criterion based solely on its own entropy 

values, without considering the interrelationships or contrasts with other criteria (Ayçin, 2019). This lack of 

external interaction may limit its representational comprehensiveness. On the other hand, the TCA method 

incorporates both internal dispersion (measured via standard deviation) and external contrast between criteria 

(captured through Tanimoto Similarity). As a result, the TCA method offers a broader analytical scope 

compared to the ENTROPY method. Similarly, the SD and SVP methods also calculate criterion weights using 

only the intrinsic statistical properties of each individual criterion standard deviation for SD and variance for 

SVP (Demir et al., 2021). These approaches, while straightforward, do not account for inter-criterion contrasts. 

In this regard, the TCA method demonstrates a more comprehensive structure by integrating both intra-

criterion and inter-criterion variability. Nevertheless, ENTROPY, SD, and SVP methods maintain an 

advantage in terms of computational simplicity (Ecer, 2020). Their ease of implementation makes them more 

practical for certain applications, and the risk of error during the weighting process tends to be lower compared 

to more complex approaches like TCA. Thus, while TCA offers greater analytical depth, traditional methods 

may be preferable in contexts where simplicity and efficiency are prioritized. 

The LOPCOW method determines criterion weights based on logarithmic computations applied separately to 

each criterion, aiming to analyze the differences among them (Keleş, 2023). In contrast, the proposed TCA 
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method considers both the similarity and contrast relationships between criteria, enabling a more 

comprehensive evaluation of their mutual interactions. However, due to its logarithmic formulation, the 

LOPCOW method is particularly sensitive to subtle differences among criteria (Ecer & Pamucar, 2022). As a 

result, it can more effectively distinguish between criteria with closely spaced values compared to the TCA 

method. This sensitivity allows LOPCOW to offer a finer differentiation in weight assignment when the criteria 

exhibit minimal variation. Therefore, while TCA provides a broader analysis by incorporating inter-criterion 

relationships, LOPCOW may outperform it in scenarios where a more granular distinction between closely 

related criteria is essential (Ecer & Pamucar, 2022). 

The MEREC method determines criterion weights by analyzing the impact caused by the removal of each 

individual criterion. In other words, it considers the deviation in overall performance resulting from the 

exclusion of a specific criterion and computes this impact using a logarithmic function (Keshavarz-Ghorabaee 

et al., 2021). In contrast, the proposed TCA method does not rely on the removal effect but instead adopts a 

broader framework by integrating similarity (Tanimoto similarity) and contrast (Total Contrast Score) analyses 

to assess inter-criterion relationships. Furthermore, because MEREC evaluates the information loss due to the 

removal of a criterion, it tends to focus on linear dependencies. On the other hand, TCA captures both similarity 

and contrast simultaneously, enabling it to better model non-linear and more complex relationships among 

criteria. Additionally, similar to the ENTROPY method, MEREC is sensitive to zero and negative values due 

to its reliance on logarithmic calculations (Keshavarz-Ghorabaee et al., 2021). Nevertheless, MEREC offers a 

powerful mechanism for identifying critical criteria. If the removal of a criterion leads to significant changes 

in the system's performance, MEREC effectively highlights its importance [32]. By contrast, since TCA 

focuses on general similarity and contrast values, it may not emphasize the importance of such critical criteria 

as clearly. Finally, because MEREC directly demonstrates the change in the system when a criterion is 

removed, it provides a more intuitive and interpretable structure for decision-makers [32]. In contrast, the 

similarity and contrast-based approach of TCA may present interpretative challenges, as the underlying 

computations are less straightforward and may require additional explanation to fully understand the resulting 

weights. 

2.4. Data Set 

This study proposes a method based on Tanimoto similarity to evaluate the weights of criteria within the scope 

of decision-making problems. The dataset consists of the 2024 Global Innovation Index (GII) criterion values 

for seven selected countries with varying performance levels. These countries were chosen to ensure that the 

criterion values do not dominate the performance outcomes and that the differences among alternatives are not 

excessively large. Accordingly, there are no dominant values for any criterion within the dataset. In this 

context, the proposed method aims to reveal an ideal differentiation in the weights of the criteria. For clarity, 

the abbreviations of the countries and the GII criteria are explained in Table 1. 
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Table 1. Data Set 

GII Criteria Abbreviations 

Institutions CRT1 

Human Capital and Research CRT2 

Infrastructure CRT3 

Market Sophistication CRT4 

Business Sophistication CRT5 

Knowledge and Technology Outputs CRT6 

Creative Outputs CRT7 

Countries/Alternatives (A) Abbreviations 

Hungary ALT1 

Türkiye ALT2 

Bulgaria ALT3 

India ALT4 

Poland ALT5 

Thailand ALT6 

Latvia ALT7 

3. RESULTS AND DISCUSSION 

3.1. Computational Analysis 

In the first step of the proposed method, the decision matrix was constructed using Equation 6, and in the 

second step, the normalized decision matrix was generated based on Equations 7 and 9. Accordingly, the 

calculated values are presented in Table 2. 

In the third stage of the method, according to Equation 10, the standard deviations of each criterion based on 

their normalized values were calculated. Accordingly, the internal dispersion (𝐼𝐷)𝑗 of each criterion defined 

as the contrast among the values within the same criterion was determined through the measurement of these 

standard deviation values. In the fourth stage of the method, under the first case, the Tanimoto Similarity 

Scores((𝑇𝑆𝑆)𝑇𝐴𝑁𝐶𝑅𝑇𝑗→𝐶𝑅𝑇𝑗
) between each criterion and the others were calculated using Equations 11, 12, 13, 

14, and 15. In the second case, the Total Tanimoto Similarity Scores (𝑇𝑇𝑆𝑆)𝑗 of each criterion were computed 

using Equations 16 and 17. In the fifth stage, the 𝑇𝑇𝑆𝑆𝑗 values of each criterion were standardized using 

Equation 18, resulting in the Standardized Tanimoto Similarity Scores (𝑆𝑇𝑇𝑆𝑆)𝑗. In the sixth stage, the 

Tanimoto Contrast Scores (𝑇𝐶𝑆)𝑗 or External Dispersion values (𝐸𝐷)𝑗 of each criterion were calculated using 
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Equations 19 and 20. Subsequently, the General Contrast Scores (𝐺𝐶𝑆)𝑗 for each criterion were computed 

using Equation 21. Finally, in the last stage of the method, the final criterion weights (𝑤)𝑗 were derived using 

Equation 22. The calculated values for all these steps are presented in Table 3. 

Table 2. Decision and Normalized Decision Matrix 

Decision Matrix 

G7 CRT1 CRT2 CRT3 CRT4 CRT5 CRT6 CRT7 

ALT1 52,2 42,9 51 34,1 46,3 35,6 32,1 

ALT2 33,3 40 50,2 43,4 31,1 28,6 48,3 

ALT3 41,8 32,3 54,4 37,7 32,1 31,7 42,9 

ALT4 51,5 34,8 39 52,3 28,1 38,8 32,1 

ALT5 44,9 42,6 45,8 33,6 38 28 38,1 

ALT6 44,8 30,7 45,8 50,6 35,4 29,8 34,9 

ALT7 57,9 39,2 51,3 36,6 35,9 24,2 32,8 

Normalized Decision Matrix 

G7 CRT1 CRT2 CRT3 CRT4 CRT5 CRT6 CRT7 

ALT1 0,638 0,716 0,765 0,985 0,607 0,680 1,000 

ALT2 1,000 0,768 0,777 0,774 0,904 0,846 0,665 

ALT3 0,797 0,950 0,717 0,891 0,875 0,763 0,748 

ALT4 0,647 0,882 1,000 0,642 1,000 0,624 1,000 

ALT5 0,742 0,721 0,852 1,000 0,739 0,864 0,843 

ALT6 0,743 1,000 0,852 0,664 0,794 0,812 0,920 

ALT7 0,575 0,783 0,760 0,918 0,783 1,000 0,979 

According to the values presented in the table, the CRT4 criterion was identified as the most significant one, 

with a weight of 0.334. This was followed by CRT1 (0.127), CRT7 (0.123), CRT5 (0.114), CRT6 (0.112), 

CRT2 (0.101), and CRT3 (0.090), respectively. The incorporation of three distinct metrics (𝐼𝐷, 𝐸𝐷, and 𝐺𝐶𝑆) 

in the determination of criterion weights demonstrates that the TCA method offers a balanced approach in the 

weighting process. In particular, the fact that CRT4 received the highest weight indicates that this criterion 

plays a pivotal role in the decision-making process within the TSA framework. Conversely, CRT3, having the 

lowest weight of 0.090, is shown to be relatively less influential in the evaluation. Within this context, the 

ranking of criteria based on the weights obtained through the TSA method is as follows: CRT4 > CRT1 > 

CRT7 > CRT5 > CRT6 > CRT2 > CRT3. This ranking, derived from computations performed on the decision 

matrix, provides a significant reference point for decision-makers in assessing the relative importance of the 

criteria involved. The mathematical calculation of the weight value of the CRT1 criterion, based on the 

proposed method, is presented below. 
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Table 3. 𝑆𝐷𝑗 = 𝐼𝐷𝑗, 𝑇𝑇𝑆𝑆𝑗, 𝑆𝑇𝑇𝑆𝑆𝑗, 𝑇𝐶𝑆𝑗 = 𝐸𝐷𝑗, 𝐺𝐶𝑆𝑗, and 𝑤𝑗 Scores of Criteria 

 ID ED 
𝑮𝑪𝑺𝒋 𝒘𝒋 Rank 

CRT 𝑺𝑫𝒋 = 𝑰𝑫𝒋 𝑻𝑻𝑺𝑺𝒋 𝑺𝑻𝑻𝑺𝑺𝒋 𝑻𝑪𝑺𝒋 = 𝑬𝑫𝒋 

CRT1 0,140 5,501 0,145 5,888 0,822 0,127 2 

CRT2 0,113 5,614 0,148 5,750 0,653 0,101 6 

CRT3 0,094 5,262 0,139 6,202 0,585 0,090 7 

CRT4 0,328 4,994 0,132 6,589 2,161 0,334 1 

CRT5 0,127 5,554 0,147 5,823 0,737 0,114 4 

CRT6 0,125 5,559 0,147 5,817 0,725 0,112 5 

CRT7 0,132 5,412 0,143 6,002 0,795 0,123 3 

Sum 37,895 Sum 6,479 ---- ----- 

Step 2. Normalized Matrix (𝐷∗) 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 7:  

33,3

52,2
= 0,638 

Step 3. Internal distribution (SD Score) of Criteria [(𝑆𝐷)𝐶𝑅𝑇1 = (𝐼𝐷)𝐶𝑅𝑇1] 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 10:  

(𝑆𝐷)𝐶𝑅𝑇1 = (𝐼𝐷)𝐶𝑅𝑇1 = 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4 =
[(0,638 − 0,734)2+. . +(0,575 − 0,734)2]

7 − 1 
= 0,140 

Step 4: Calculation of Total Tanimoto Similarity Scores of 𝐶𝑇𝑅1 (𝑇𝑇𝑆𝑆)𝐶𝑅𝑇1 

Condition 1: Tanimoto Similarity Scores of 𝐶𝑇𝑅1 with Other Criteria (𝑇𝐴𝑁𝐶𝑇𝑅1→𝐶𝑇𝑅𝑗) 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 11 − 15:  

𝑇𝐴𝑁𝐶𝑇𝑅1→𝐶𝑇𝑅2 =
[(0,638∗0,716)+⋯+(0,575∗0,783)]

[(0,638)2+⋯+(0,575)2]+[(0,716)2+⋯+(0,783)2]−[(0,638∗0,716)+⋯+(0,575∗0,783)]
= 0,945  

𝑇𝐴𝑁𝐶𝑇𝑅1→𝐶𝑇𝑅3 =
[(0,638∗0,765)+⋯+(0,575∗0,760)]

[(0,638)2+⋯+(0,575)2]+[(0,765)2+⋯+(0,760)2]−[(0,638∗0,765)+⋯+(0,575∗0,760)]
= 0,943  

𝑇𝐴𝑁𝐶𝑇𝑅1→𝐶𝑇𝑅4 =
[(0,638∗0,985)+⋯+(0,575∗0,918)]

[(0,638)2+⋯+(0,575)2]+[(0,985)2+⋯+(0,918)2]−[(0,638∗0,985)+⋯+(0,575∗0,918)]
= 0,824  
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𝑇𝐴𝑁𝐶𝑇𝑅1→𝐶𝑇𝑅5 =
[(0,638∗0,607)+⋯+(0,575∗0,783)]

[(0,638)2+⋯+(0,575)2]+[(0,607)2+⋯+(0,783)2]−[(0,638∗0,607)+⋯+(0,575∗0,783)]
= 0,958  

𝑇𝐴𝑁𝐶𝑇𝑅1→𝐶𝑇𝑅6 =
[(0,638∗0,680)+⋯+(0,575∗1)]

[(0,638)2+⋯+(0,575)2]+[(0,680)2+⋯+(1)2]−[(0,638∗0,680)+⋯+(0,575∗1)]
            = 0,948  

𝑇𝐴𝑁𝐶𝑇𝑅1→𝐶𝑇𝑅7 =
[(0,638∗1)+⋯+(0,575∗0,979)]

[(0,638)2+⋯+(0,575)2]+[(1)2+⋯+(0,979)2]−[(0,638∗1)+⋯+(0,575∗0,979)]
            = 0,885  

Condition 2: Total Tanimoto Similarity Scores of 𝐶𝑇𝑅1 (𝑇𝑇𝑆𝑆(𝐶𝑇𝑅1)) 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 16 − 17:  

(𝑇𝑇𝑆𝑆(𝐶𝑇𝑅1)) = 0,945 + 0,943 + 0,824 + 0,958 + 0,948 + 0,885 = 5,501 

Step 5: Calculation of Standard Total Tanimoto Similarity Scores of CRT1 (𝑆𝑇𝑇𝑆𝑆)𝐶𝑅𝑇1 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 18:  

(𝑆𝑇𝑇𝑆𝑆)𝐶𝑅𝑇1 =
5,501

5,501 + (𝑇𝑇𝑆𝑆(𝐶𝑇𝑅2)) + (𝑇𝑇𝑆𝑆(𝐶𝑇𝑅3)) + ⋯(𝑇𝑇𝑆𝑆(𝐶𝑇𝑅𝑛))
= 0,145 

Step 6: Calculation of Tanimoto Contrast Score (𝑇𝐶𝑆𝐶𝑅𝑇1) of CRT1 (External Dispersion of CRT1: 𝐸𝐷𝐶𝑅𝑇1) 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 19 − 20:  

(𝐸𝐷𝐶𝑇𝑅1 = 𝑇𝐶𝑆𝐶𝑇𝑅1) =
(1 − 0,145)

0,145
= 5,888 

Step 7. General Contrast Score of CTR1 Criteria (𝐺𝐶𝑆𝐶𝑇𝑅1) 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 21:  

𝐺𝐶𝑆𝐶𝑇𝑅1 = 0,140 ∗ 5,888 = 0,822 

Step 8. Weight Score of CTR1 (𝑤𝐶𝑇𝑅1) 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 22:  

𝑤𝐶𝑇𝑅1 =
0,822

6,479
= 0,127 

3.2. Sensitivity Analysis 

Evaluating the resilience of MCDM methodologies often involves the introduction of supplementary criteria 

or the exclusion of suboptimal options from the initial dataset. Under such circumstances, a robust MCDM 
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framework should exhibit stability, ensuring that the ordinal arrangement of criteria remains relatively 

consistent (Demir & Arslan, 2022). To scrutinize this particular facet, a sensitivity analysis was executed, 

commencing with the criteria identified as possessing the lowest relative importance according to the 

developed methodology. The resultant country rankings derived from this analytical procedure are tabulated 

in Table 4, and a corresponding visual representation is depicted in Figure 2. 

Table 4. Rank Reversal 

Criteria S0 S1 S2 S3 S4 S5 

GII7 7 0 0 0 0 0 

GII5 6 6 0 0 0 0 

GII1 5 5 4 0 0 0 

GII2 4 4 5 4 0 0 

GII4 3 3 3 3 3 0 

GII6 2 2 2 2 2 2 

GII3 1 1 1 1 1 1 

 

 

Figure 2. Rank Reversal Chart 

When Table 4 and Figure 2 are evaluated together, it is observed that the ranking of criteria remains largely 

stable under certain scenarios. Specifically, in scenarios S1 (when CRT3 is removed), S3 (when CRT3, CRT2, 

and CRT6 are removed), S4 (when CRT3, CRT2, CRT6, and CRT5 are removed), and S5 (when CRT3, CRT2, 

CRT6, CRT5, and CRT7 are removed), the rankings of the criteria remain unchanged. This indicates that the 

proposed method provides a stable structure in terms of overall ranking. However, in scenario S2 (when CRT3 

https://doi.org/10.54287/gujsa.1673755


464 
F.F. ALTINTAŞ  

GU J Sci, Part A 12(2) 445-478 (2025) 10.54287/gujsa.1673755  
 

 

and CRT2 are removed), certain changes occur. In this scenario, the CRT5 criterion moves from the 4th to the 

5th position, while the CRT6 criterion rises from the 5th to the 4th position. This change can be attributed to 

the relatively small difference in the weight values of these two criteria, as shown in Table 4. Therefore, the 

fact that the sensitivity analysis yields a different result only in scenario S2, while the overall ranking remains 

largely preserved, supports the robustness of the method in terms of ranking stability. In this context, it is 

concluded that the proposed TCA method exhibits an optimal level of sensitivity. The results of the sensitivity 

analysis demonstrate that the method shows only minor variations when specific criteria are removed, while 

the overall ranking structure remains largely intact. This finding underscores the robustness of the method and 

reinforces its reliability in decision-making processes. 

3.3. Comparative Analysis 

This comparative analysis scrutinizes the interrelationships and relative positions of the proposed methodology 

against established techniques for weight determination. The objective is to validate the proposed method's 

efficacy, reliability, and consistency with existing approaches, while demonstrating a robust and statistically 

significant correlation with diverse weighting methodologies (Keshavarz-Ghorabaee et al., 2021). 

Consequently, the initial stage of this comparative assessment involved the computation of criterion weights 

using ENTROPY, CRITIC, SD, SVP, LOPCOW, and MEREC methods, all of which are commonly utilized 

in MCDM research. The resulting weight values for GII criteria, along with their corresponding rankings, as 

derived from these weighting methods, are presented in Table 5 and Figure 3. 

The proposed TCA method's rankings, based on the Table 3 and Table 5, show varying degrees of consistency 

with different methods across various criteria. Notably, there is a complete alignment between the TCA and 

SVP rankings. This suggests that both TCA and SVP adopt a similar approach in determining the criteria 

weights.  

Additionally, the rankings derived from the TCA method exhibit a high degree of consistency with those of 

the ENTROPY method. This indicates that the TCA method functions in parallel with the ENTROPY method's 

criterion weighting and ranking approach, producing generally similar results. In contrast, the rankings of the 

TCA method also exhibit a similar trend when compared to the MEREC method. However, when examining 

other methods, the TCA rankings show more distinct differences, particularly with CRITIC, SD, and 

LOPCOW. Specifically, the rankings of these methods diverge noticeably from those of TCA.  

Both CRITIC and SD methods assign higher weights to certain criteria, while TCA ranks these criteria lower. 

In conclusion, the TCA method produces rankings that are more consistent with SVP, ENTROPY, and 

MEREC methods, while it shows noticeable differences in rankings compared to CRITIC, SD, and LOPCOW. 

These discrepancies are likely attributable to the different weighting techniques used by each method and the 

distinct importance assigned to the criteria. 
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Table 5. Weight Scores According to Methods 

Criteria ENTROPY Rank CRITIC Rank SD Rank 

CRT1 0,177 2 0,117 6 0,130 6 

CRT2 0,101 6 0,137 4 0,160 2 

CRT3 0,066 7 0,137 3 0,131 5 

CRT4 0,199 1 0,191 1 0,164 1 

CRT5 0,157 3 0,106 7 0,129 7 

CRT6 0,144 5 0,127 5 0,134 4 

CRT7 0,156 4 0,184 2 0,153 3 

Criteria SVP Rank LOPCOW Rank MEREC Rank 

CRT1 0,173 2 0,186 2 0,173 1 

CRT2 0,117 6 0,152 3 0,097 7 

CRT3 0,078 7 0,204 1 0,107 6 

CRT4 0,195 1 0,098 6 0,172 2 

CRT5 0,145 4 0,130 5 0,137 5 

CRT6 0,143 5 0,151 4 0,160 3 

CRT7 0,149 3 0,078 7 0,154 4 

 

 

Figure 3. Position of Methods 

A careful examination of Figure 3 reveals that the proposed TCA method generally exhibits a fluctuating 

pattern that aligns with other weighting methods (ENTROPY, SVP, and MEREC), with the exception of 
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LOPCOW, CRITIC, and SD. Specifically, the trends of increasing and decreasing criterion values show a clear 

parallelism between the TCA method and the other methods. This observation supports the hypothesis that, 

with the exception of LOPCOW, CRITIC, and SD, the TCA method demonstrates a significant, positive, and 

high correlation with the other methods. In this context, the correlation values between the TCA method and 

the other methods are presented in detail in Table 6. This correlation analysis is expected to enhance the 

understanding of the validity of the proposed method and its relationship with other widely used methods. 

Table 6. 𝑟ℎ𝑜 Correlation Scores-1 

Methods TCA ENTROPY CRITIC SD SVP LOPCOW MEREC 

TCA 1       

ENTROPY 0,964** 1      

CRITIC 0,198** 0,018 1     

SD 0,179** 0,036 0,883** 1    

SVP 0,998** 0,964** 0,198* 0,179 1   

LOPCOW -0,571* -0,500* -0,396* -0,393* -0,571* 1  

MEREC 0,821** 0,786** -0,018 -0,036 0,821** -0,214 1 

p**<.01, p*<.05 

Upon examining Table 6, this analysis reveals that the TCA method exhibits a significant, high, and positive 

correlation with the ENTROPY, SVP, and MEREC methods (0.964, 0.998, and 0.821, respectively). This 

supports the observation in Figure 1 that the fluctuation patterns of the TCA method closely overlap with those 

of these methods. However, the correlation values between TCA and the CRITIC and SD methods are 

relatively lower, calculated at 0.198 and 0.179, respectively. These results indicate that the TCA method shows 

only a limited degree of similarity with these methods. On the other hand, a significant negative correlation (-

0.571*) was found between the TCA method and the LOPCOW method. This finding, as seen in Figure 3, 

confirms that the general trends of the LOPCOW method significantly differ from those of the other methods 

and are not in parallel with the TCA method. Therefore, this correlation analysis demonstrates that the TCA 

method generally maintains a meaningful relationship with the ENTROPY, SVP, and MEREC methods, while 

exhibiting an inverse interaction with the LOPCOW method. This contributes to a better understanding of the 

compatibility of the proposed method with other commonly used methods. Consequently, the comparative 

analysis leads to the conclusion that the TCA method is reliable and credible, especially due to its high and 

significant correlations with the ENTROPY, SVP, and MEREC methods. 

3.4. Simulation Analysis 

To assess the reliability of the proposed method's findings, a simulation analysis was conducted wherein 

different values were assigned to the decision matrices to generate various scenarios. It is anticipated that as 

the number of scenarios increases, the method's results will progressively diverge from those of other criterion 
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weighting methods. In the subsequent phase, the average variance values derived from the proposed method 

should exceed the variance values calculated by one or more comparative objective weighting techniques. This 

outcome would affirm the proposed method's capacity to better differentiate the relative importance of the 

criteria. Ultimately, the variances of the criterion weights measured across the scenarios are expected to 

demonstrate homogeneity (Keshavarz-Ghorabaee et al., 2021).  

In this endeavor, ten distinct scenarios, represented as decision matrices, were initially formulated and 

partitioned into two discrete groups (First Group: Scenario1, Scenario2, Scenario3, Second Group: Scenario4, 

Scenario5, Scenario6, Scenario7, Scenario8, Scenario9, Scenario10). Subsequently, the correlation 

coefficients between the TCA method and other weighting methods were calculated for these scenarios. The 

results of these correlational analyses are presented in Table 7 and Figure 4. 

When Figure 4 and Table 7 are evaluated together, it is observed that the correlation values of the TCA method 

under different scenarios gradually decrease in comparison to the other methods. Specifically, the initially high 

correlation values with the SVP, ENTROPY, and MEREC methods show a decline as the number of scenarios 

increases. In contrast, the correlation with the MEREC method remains generally positive, and although it 

decreases over time, it stabilizes at a certain level. This indicates that while SVP, ENTROPY, and MEREC 

provide relatively similar results with the TCA method initially, they begin to diverge as the scenarios increase. 

The correlation with the CRITIC and SD methods, on the other hand, remains consistently low from the outset. 

Moreover, a negative correlation is observed between the TCA method and the LOPCOW method. In 

conclusion, the correlations of the TCA method with other objective weighting methods decrease as the 

scenarios diversify. Particularly, the negative correlation with the LOPCOW method and the positive but 

decreasing correlation with SVP, ENTROPY, and MEREC suggest that the TCA method adopts a more 

characteristic and distinctive structure as the number of scenarios increases. 

Table 7. 𝑟ℎ𝑜 Correlation Scores-2 

Scenarios ENTROPY CRITIC SD SVP LOPCOW MEREC 

Scenario1 0,988** 0,212 0,200 0,999** -0,555* 0,855** 

Scenario2 0,993** 0,244 0,209 0,999** -0,533* 0,875** 

Scenario3 0,921** 0,191 0,176 0,995** -0,558* 0,809** 

Scenario4 0,974** 0,182 0,165 0,998** -0,544* 0,863** 

Scenario5 0,908** 0,169 0,151 0,986** -0,533* 0,843** 

Scenario6 0,888** 0,155 0,136 0,974** -0,505* 0,831** 

Scenario7 0,873** 0,144 0,128 0,951** -0,488* 0,811** 

Scenario8 0,859** 0,132 0,125 0,933** -0,451* 0,802** 

Scenario9 0,837** 0,127 0,103 0,921** -0,439* 0,788** 

Scenario10 0,823** 0,118 0,089 0,909** -0,421* 0,763** 
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p**<.01, p*<.05 

 

Figure 4. Correlation Positions 

In the second phase of the simulation analysis, the variance value for each method was calculated under the 

respective scenarios, and the average variance values for each method were also determined. The relevant 

calculated values are presented in Table 8. 

When the variance values provided in Table 8 are examined, it is observed that the average variance value of 

the TCA method is 0.00621, which is higher than the average variance values of all other weighting methods. 

This finding indicates that the TCA method has a greater capacity to distinguish between differences among 

the criteria. A high variance value for a weighting method implies that the method assigns weights with a 

broader distribution, thereby allowing for a clearer differentiation between the criteria. The fact that the 

variance values obtained by the TCA method are higher than those of other methods such as ENTROPY, 

CRITIC, SD, SVP, LOPCOW, and MEREC demonstrates that this method can determine the relative 

importance levels of the criteria more sharply. In this context, the TCA method can be considered as an 

effective method for identifying the characteristic features of the criteria and revealing the differences between 

them, as much as other weighting methods. Particularly in analyses where the distinguishing power of the 

criteria needs to be enhanced, the use of the TCA method may be an appropriate approach. 

In the concluding phase of the simulation analysis, the uniformity of variance exhibited by the criterion weights 

within the TCA methodology was appraised across the spectrum of Levene's test technique. This analytical 

approach furnishes a visual instrument for evaluating the consistency of variance. The graphical depiction is 

structured around three pivotal elements: the aggregate mean ADM (ANOM for variances based on Levene), 

serving as the central benchmark, and the upper decision limit (UDL) and lower decision limit (LDL), which 

define the boundaries of acceptable variation. Should the variance of any specific group or cluster transcend 

these decision limits, it signifies a statistically significant departure from the overall mean ADM, thereby 

indicating heterogeneity of variance. Conversely, if the variance of all clusters remain confined within the 

UDL and LDL thresholds, it validates the homogeneity of variance. Therefore, the homogeneity of the 
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variances under the scenarios strengthens the robustness and stability of the method. (Keshavarz-Ghorabaee 

et al., 2021). Figure 5 illustrates the graphical outcomes of this ADM analysis. 

Table 8. Variance Scores of Methods in scope of Scenarios 

Criteria TCA ENTROPY CRITIC SD SVP LOPCOW MEREC 

Scenario1 0,00640 0,00180 0,00099 0,00025 0,00125 0,00189 0,00093 

Scenario2 0,00690 0,00190 0,00093 0,00029 0,00129 0,00187 0,00089 

Scenario3 0,00550 0,00156 0,00088 0,00016 0,00116 0,00171 0,00077 

Scenario4 0,00580 0,00169 0,00079 0,00015 0,00118 0,00168 0,00071 

Scenario5 0,00590 0,00181 0,00071 0,00017 0,00119 0,00166 0,00069 

Scenario6 0,00530 0,00145 0,00069 0,00013 0,00132 0,00163 0,00078 

Scenario7 0,00490 0,00249 0,00074 0,00013 0,00118 0,00165 0,00071 

Scenario8 0,00740 0,00178 0,00129 0,00033 0,00135 0,00176 0,00096 

Scenario9 0,00710 0,00197 0,00101 0,00031 0,00129 0,00188 0,00091 

Scenario10 0,00690 0,00135 0,00122 0,00039 0,00131 0,00191 0,00093 

Mean 0,00621 0,00178 0,00093 0,00023 0,00125 0,00180 0,00083 

 

 

Figure 5. ADM Chart 

Figure 5 illustrates the distribution of ADM weights calculated under different scenarios. In the graph, the 

mean ADM weights for each scenario are represented by blue dots, while the upper and lower confidence 

limits are indicated by red lines. Notably, the ADM weights for all scenarios remain below the Upper Decision 

Limit (UDL = 0.2319) and above the Lower Decision Limit (LDL = 0.0465). This observation indicates that 

the computed weights exhibit a stable distribution within the predefined decision boundaries. Additionally, it 

is evident that the weight values are predominantly concentrated around the Average (AVG = 0.1392) and do 
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not display significant fluctuations. These findings demonstrate that the weighting process obtained through 

the TCA method does not produce extreme outliers and maintains a generally reliable weighting structure. The 

fact that the weight values remain consistently within the specified decision boundaries suggests that the 

method generates stable results across different scenarios and adheres to statistically acceptable variance 

levels. Accordingly, Levene's test was conducted to assess the homogeneity of variances across the scenarios. 

The results of the Levene's test are presented in Table 9. 

Table 9. Levene Statistic 

Levene Statistic df1 df2 Sig. 

0,163 2 10 0,241 

p*<.05 

Upon examining Table 8, it is observed that the p-value (0.241) is greater than the significance level of 0.05 

(p > 0.05). This finding confirms that the variance of criterion weights across the scenarios does not exhibit a 

statistically significant difference, thereby affirming the homogeneity of variances. The homogeneity of 

variances indicates that the weights calculated by the method do not exhibit substantial variations across 

different scenarios, ensuring a certain level of stability. Consequently, the simulation analysis concludes that 

the proposed TCA method demonstrates a robust and stable weighting structure. These findings validate that 

the method is not only applicable to specific datasets or particular cases but is also reliable for various data 

structures and scenarios, providing objective weight assignments. Notably, the method consistently produces 

meaningful results even when the dataset contains distinct similarities and differences. In conclusion, when 

the findings from both Figure 5 and Table 9 are evaluated together, it is evident that the proposed TCA method 

ensures statistical homogeneity, reliability, and consistency in determining criterion weights. The weights 

obtained under different scenarios remained within the defined decision boundaries and did not exhibit 

excessive fluctuations in terms of variability. The variance homogeneity confirmed by Levene’s test supports 

the applicability of the method across diverse datasets and enhances its scientific credibility. 

3.5. Discussion 

In the sensitivity analysis of the TCA method, it was observed that changes in alternative rankings were 

minimal and did not lead to significant deviations in performance values. This finding highlights the method’s 

capacity to produce reliable outcomes in decision-making processes. The success of the TCA method lies in 

its structure, which incorporates the similarities between criteria, and its balanced weighting process based on 

Tanimoto similarity. This allows the influence of highly similar criteria to be minimized, bringing forward 

criteria with higher informational value and resulting in a more stable model. Comparative analyses have 

assessed the similarities and differences between TCA and other methods such as CRITIC, ENTROPY, SD, 

SVP, LOPCOW, and MEREC. TCA showed strong positive correlations with ENTROPY, SVP, and MEREC, 

further supporting its reliability and robustness. In simulation analyses, although correlation values between 

TCA and other objective methods declined over time, the unique structural characteristics of TCA became 
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more pronounced. The method effectively differentiates criterion weights through high average variance and 

maintains homogeneity across scenarios. These results demonstrate that TCA is a strong and stable method. 

Hence, the findings from sensitivity, comparative, and simulation analyses collectively confirm the 

applicability of the TCA method within the scope of MCDM. 

The most prominent advantage of the TCA method lies in its ability to determine criterion weights 

independently of subjective judgments. This feature enables the production of consistent and reliable results 

across different applications. Furthermore, by utilizing Tanimoto similarity, the method quantifies the 

similarities between criteria, thereby preventing excessive weighting and promoting a more balanced 

weighting and decision-making process. The method's scale independence also allows criteria with different 

measurement units to be normalized and compared effectively. Additionally, TCA demonstrates high 

computational efficiency, enabling fast and effective application even with large datasets. However, the 

proposed criterion weighting method also has certain limitations. First, due to the inclusion of Tanimoto 

similarity and other computational steps, the method’s calculation process can be complex and potentially 

costly for large datasets. Second, the performance of the method is dependent on the normalization techniques 

used and the structure of the dataset. Specifically, when criteria exhibit high degrees of similarity, the method’s 

discriminative power may decrease, leading to potential accuracy issues in the weighting process. 

Compared to the CRITIC method, the TCA approach does not require the assumption of normal distribution 

within the dataset and is capable of accounting for non-linear relationships. This characteristic allows TCA to 

offer a broader applicability, particularly within MCDM processes. While TCA considers contrasts between 

criteria similar to CRITIC’s weighting mechanism, it differs in its theoretical foundations. Considering the 

Pearson correlation coefficient and its relation to linear regression (Kalaycı, 2014), CRITIC can be deemed 

more compatible with datasets that exhibit linear structures. On the other hand, the ENTROPY method is 

sensitive to negative and zero values (Ayçin, 2019), a limitation that does not affect TCA. TCA not only takes 

into account the individual values of the criteria but also considers the similarities between them. This enables 

TCA to provide a more comprehensive weighting approach compared to ENTROPY. The SD and SVP 

methods focus solely on the dispersion of criterion values (Demir et al., 2021), whereas TCA offers a more 

holistic evaluation by incorporating both similarity and contrast dimensions. Nonetheless, ENTROPY, SD, 

and SVP provide practical advantages due to their computational simplicity (Demir et al., 2021), while the 

more complex structure of the TCA method may increase the potential for calculation errors. The LOPCOW 

method analyzes differences between criteria (Ecer & Pamucar, 2022), while TCA captures both similarities 

and contrasts, allowing for a more extensive assessment of inter-criteria interactions. However, LOPCOW may 

be more sensitive to subtle differences between criteria (Ecer & Pamucar, 2022). MEREC, which evaluates 

the impact of removing each criterion from the system, offers a distinct approach (Keleş, 2023), while TCA 

combines similarity and contrast assessments to better accommodate non-linear relationships. Although 

MEREC may be more effective in identifying critical criteria (Keshavarz-Ghorabaee et al., 2021), TCA 
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provides decision-makers with a deeper analytical framework. Additionally, since MEREC directly illustrates 

the system changes when a criterion is removed, it offers a more intuitive and interpretable structure for 

decision-makers (Keshavarz-Ghorabaee et al., 2021). In contrast, the similarity and contrast based analysis 

required by TCA may make it more challenging to clearly explain how results are derived. 

The proposed TCA method offers an original contribution to the literature on objective weighting techniques. 

By utilizing spatial contrasts and Tanimoto similarity to determine criterion weights, TCA introduces a novel 

perspective distinct from existing methods. This approach enables a more comprehensive evaluation, 

particularly in complex decision-making scenarios, by modeling different dimensions of inter-criteria 

relationships. Moreover, by adapting Tanimoto similarity originally used in biology and chemistry to the 

MCDM domain, the method facilitates interdisciplinary knowledge transfer and incorporates spatial 

information embedded within the dataset into the evaluation process. In addition, as the proposed method is 

entirely data-driven, it enhances objectivity and consistency in decision-making processes, offering new 

opportunities for solving more complex problems. In summary, the proposed TCA method contributes to the 

literature by introducing a new objective weighting approach, offering a unique perspective on inter-criteria 

relationships, integrating a novel concept like Tanimoto similarity into the MCDM domain, and utilizing 

spatial data characteristics for enhanced evaluation. These contributions have the potential to open new 

avenues for modeling and solving real-world, complex decision-making problems. Furthermore, the TCA 

method significantly enriches the weighting literature within the scope of MCDM by incorporating a statistical 

concept Tanimoto similarity into a numerical weighting framework. This interdisciplinary integration 

strengthens the literature by combining numerical and statistical methodologies. Thus, the TCA method 

introduces a novel perspective to weighting processes and offers a multidisciplinary approach for addressing 

more complex and realistic problems, contributing meaningfully to both numerical methods and statistical 

literature. 

4. CONCLUSION 

As a result, the TCA method emerges as a scientifically grounded and practically applicable approach for 

objective criterion weighting in MCDM processes. By integrating the internal variation based on standard 

deviation with the external contrast structure derived from Tanimoto similarity, the method enables a more 

detailed and precise evaluation of the contribution of each criterion. 

Its resilience to data changes, insensitivity to rank reversal, strong correlation with other objective weighting 

methods, and consistency observed in simulation environments further reinforce the methodological 

robustness of the approach. Furthermore, the comparative advantages of TCA over widely used methods in 

the literature, such as ENTROPY, CRITIC, SD, SVP, LOPCOW, and MEREC, are noteworthy in terms of 

interpretability, stability, and comprehensiveness. Therefore, the TCA method can be recommended as an 

effective tool for decision-makers seeking robust and reliable weighting mechanisms. In conclusion, TCA 

offers a comprehensive approach among objective weighting methods, particularly excelling in the modeling 
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success of inter-criterion similarities. The method provides decision-makers with a strong alternative, both in 

terms of its theoretical foundations and practical application outcomes. In this regard, it can be stated that TCA 

fills a significant gap in the multi-criteria decision-making literature and opens up new perspectives for future 

research. 

Regarding the proposed method, the current study has been conducted on a sample decision problem that 

includes a limited number of criteria and alternatives. In future research, it would be valuable to test the 

performance of the TCA method on more complex and multidimensional decision-making problems across 

various sectors such as sustainability, healthcare, logistics, and public administration. In the logistics sector, 

the TCA method could be employed to address critical decision-making problems such as distribution center 

location selection, supply chain optimization, and routing challenges. Given the necessity to evaluate a 

multitude of alternatives while balancing conflicting criteria, the TCA method offers decision-makers a more 

objective and comprehensive analytical framework capable of capturing nuanced distinctions among 

alternatives. Similarly, in the realm of public policy, the TCA method holds significant promise for evaluating 

the effectiveness of policy alternatives, conducting risk assessments, and determining optimal resource 

allocation strategies. Considering the inherently multi-criteria nature of public administration processes, the 

TCA method’s ability to accommodate a broad range of measurement scales provides decision-makers with 

more granular and reliable insights. In the healthcare sector, the TCA method can serve as a robust tool for 

assessing healthcare service quality, comparing hospital performance, and optimizing healthcare delivery 

systems. This methodological approach is particularly valuable in reconciling conflicting criteria such as 

patient satisfaction, treatment duration, and cost-effectiveness, thereby offering a more holistic perspective in 

complex healthcare decision-making scenarios. Therefore, future research should focus on systematically 

exploring the practical applications of the TCA method across diverse sectors, utilizing complex, multi-

dimensional decision-making contexts to rigorously validate its effectiveness and further extend its 

applicability. Such investigations would not only substantiate the method’s practical relevance but also 

contribute significantly to the broader body of decision-making literature by positioning the TCA method as a 

comprehensive and versatile decision-support framework. Secondly, subjecting the weights obtained by the 

TCA method to sensitivity analysis would be beneficial for understanding the stability of the proposed method 

under different data structures and increased scenario variations. Additionally, the applicability of the TCA 

method in decision-making environments characterized by uncertainty such as those involving fuzzy logic and 

grey system theory could be explored to assess its robustness in such contexts. Finally, the integration of TCA 

derived weights with different MCDM ranking algorithms (e.g., TOPSIS, VIKOR, MAUT, WASPAS, etc.) 

can be investigated. This would enable the development of more holistic decision support systems where both 

the weighting and ranking processes are jointly optimized. 
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