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Abstract

In this paper, a new modified proximal point algorithm is proposed for finding a common element of the
set of fixed points of a single-valued nonexpansive mapping, and the set of fixed points of a multivalued
nonexpansive mapping, and the set of minimizers of convex and lower semicontinuous functions. We obtain
convergence of the proposed algorithm to a common element of three sets in CAT(0) spaces.
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1. Introduction

A metric space (X, d) is said to be a geodesic space, if it is connected geodesically. A geodesic path
joining x to y in X is a mapping ¢ from a closed interval [0,1] C R to X such that g(0) = z, ¢g(I) = y and
d(g(s),g(t)) =l s —t | for all s,t € [0,{]. In particular, the mapping ¢ is an isometry and d(z,y) = [. The
image of g is called as a geodesic segment joining = and y, which is uniquely denoted by [z,y]. We denote
the unique point z € [z,y] such that

d(z,z) = kd(z,y) and d(y,z) = (1 — k)d(z,y),

by (1 — k)x @ ky, where 0 < k < 1.
A geodesic space is called as a CAT'(0) space, if every geodesic triangle in X is at least as ’thin’ as its
comparison triangle in the Euclidean plane R?. A geodesic triangle A(x1,z2,23) in a geodesic space (X, d)
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consists of three points in X (the vertices of A) and a geodesic segment between each pair of points (the
edges of /). A comparison triangle for A(x1,z2,23) in (X, d) is a triangle A(z1, 29, 73) := A(21, 72, £3) in
the Euclidean plane R? such that

dp2(zi, 75) = d(zi, ;)
for all 4,7 € {1,2,3}. Let A be a geodesic triangle in X and let A be a comparison triangle in R2. Then the
triangle A is said to satisfy the C AT (0) inequality if

d(l‘,y) < dR2(j7g))

for all z,y € A and all comparison points Z, 7 € A.
The useful inequality of a CAT(0) space is the (CN) inequality[l], that is, if z,z,y are points in a
CAT(0) space and if % is the midpoint of a geodesic segment [z, y|, then the CAT'(0) inequality implies

rDy
2

1 1 1
dz(zv ) < 2d2(2’,1‘) + §d2(2,y) - ZdQ(xay)v (CN)

which equals to the following inequality|2]
d*(z, 2 @ (1= N)y) < Ad*(z,2) + (1 — N)d*(z,y) — M1 — N d*(z,y), (CN*)

for any A € [0,1], where Az @ (1 — A\)y denotes a unique point in [z,y]. Moreover, if X is a CAT(0) space
and z,y € X, then for any A € [0, 1], there exists a unique point Az @& (1 — \)y € [z, y] such that

Az, \x® (1 = Ny) < AXd(z,z) + (1 = N)d(z,y), for any z € X. (1.1)

In 2013, the proximal point algorithm was introduced by Baédk [3] into CAT(0) spaces. For any 1 in
a CAT(0) space X, a sequence {z,} generated by

) 1
Tpg1 = argmingex[f(y) + KdZ(y, Zn)], (1.2)
n
where )\, > 0 for all n € N. If f has a minimizer, then the sequence {z,} A—converges to its minimizer.
For all A\ > 0, in a complete CAT'(0) space X, the Moreau — Yosida resolvent of f [4] is defined as

follows:
1

Ja(z) = argminyex[f(y) + ﬁd2(y, z)],

where f: X — (—o00,00] is a proper convex and lower semi-continuous function.
The set F'(Jy) of fixed points of the resolvent associated with f coincides with the set argminyex f(y)
of minimizers of f , which is found in reference [5]. For any A > 0, the resolvent J of f is nonexpansive [6].
The following algorithm is proposed by Suthep Suantai et.al[7] in 2017 as follows:

zn = argmingec(f(y) + ﬁdz(y, )],
Yn = Bnzn ® (1 — Bp)wn, wn € Szy, (1.3)
Tnt1 = Ty & (1 — ap)Tyn, Vn €N,

where T is a single-valued nonexpansive mapping, S is a multi-valued nonexpansive mapping, and {\,} is
a sequence such that A\, > A > 0 for all n > 1 and some \. Inspired by the above work, in this paper, we
come up with a new modified algorithm, which improved and extended the results|7].
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2. Preliminaries

We collect some definitions, lemmas, which will be used in next section.

Definition2.1/§/ Let D be a nonempty closed subset of a CAT(0) space X and let CB(D), CC(D) and
KC(D) denote the families of nonempty closed bounded subsets, closed convex subsets and compact convex
subsets of D, respectively. The Pompeiu — Hausdor f f distance on CB(D) is defined by

H(A, B) = maz{supyeadist(z, B), supycpdist(y, A)}

for A, B € CB(D), where dist(z,D) = inf{d(z,y) : y € D} is the distance from a point = to a subset D.
Definition2.2/7/ A single-valued mapping T': D — D is said to be semicompact if for any sequence {zy,}
in D such that lim,_, d(xy, Tx,) = 0, there exists a subsequence {xy,} of {x,} such that {z,,} converges
strongly to p € D. The set of fixed points of T is denoted by F(T), that is, F(T) ={x € D : x = Tx}.
Definition2.3/7/ A multi-valued mapping S : D — C'B(D) is said to be
(1) nonexpansive if H(Sx,Sy) < d(x,y) for all x,y € D;
(2) hemi — compact if for any sequence {z,} in D such that

lim dist(xy,, Sx,) =0,
n—oo
there exists a subsequence {zy,} of {z,} such that {z,,} converges strongly to p € D.

An element z € D is called a fixed point of S if x € Sz. The set of all fixed points of S is denoted by
F(S), that is, F(S) ={x € D : x € Sz}.

Definition2.4/7/ Let {x,} be a bounded sequence in a C'AT(0) space X. For z € X, we define a
mapping 7(-, {zn}) : X — [0,00) by r(z,{zn}) = limy_eo supd(x, z,,). The asymptotic radius of {z,} is
given by r({z,}) = inf{r(z,{z,}) : * € X} and the asymptotic center of {x,} is the set A({z,}) = {z €
X :r(z,{zn}) = r({zn})}. In a complete CAT(0) space, the asymptotic center A({z,}) consists of exactly
one point[9].

Definition2.5/7/ A sequence {x,} in a CAT(0) space X is said to A — converge to x € X if x is the
unique asymptotic center of every subsequence of {z,}. In this case, we write A — lim,, ooz, = = and call
x as A — limit of {z,}.

It is easy to see that C'AT(0) spaces satisfy Opial condition, which is known in Banach spaces theory
as Opial property, that is, given {x,,} C X such that the sequence {z,} A—converges to x € X and given
y € X with x # y, then the following inequality holds

nh—>r20 inf d(zp, x) < nlglgo inf d(xp, y).

Lemma2.6/10)) Every bounded sequence in a CAT(0) space has a A-convergent subsequence.

Lemma2.7[7]/ Let D be a nonempty closed convex subset of a C AT(0) space X. If {x,} is a bounded
sequence in D, then the asymptotic center of {x,} is in D.

Lemma2.8/2/ If {x,} is a bounded sequence in a complete C AT (0) space with A({z,,}) = {x}, {un} is
a subsequence of {x,} with A({u,}) = {u} and the sequence {d(x,,u)} converges, then x = u.

Lemma2.9/2/ Let D be a nonempty closed convex subset of a complete CAT(0) space X and T': D — D
be a nonexpansive mapping. If {z,} is a bounded sequence in D such that lim,_,. d(z,, Tz,) = 0 and
A —limy, oo Ty, = x, then z = Tx.

Lemma2.10/6] Let (X,d) be a complete CAT'(0) space and f : X — (—o00, 0] be a proper convex and
lower semi-continuous function. Then the following identity holds:

/\_
Iz = J”(TMJA:L‘ @ %az),VZL‘ EXA>pu>0,

where J) is the Moreau — Yosida resolvent of f.
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Lemma2.11/72/ Let (X,d) be a complete CAT(0) space and f : X — (—o0,00] be a proper convex
and lower semi-continuous function. Then, for all z,y € X and some A > 0, then the following inequality
holds:

ﬁdQ(JAx y) — ﬁdz(x y) + ﬁdQ(a} Ix) + f(Iaz) < f(y),

where J) is the Moreau — Yosida resolvent of f.

3. Main results

Next, we give the results of proposed algorithms in this section.

Theorem3.1 Suppose that the following conditions are satisfied:

(1) Let X be a complete CAT'(0) space and D be a nonempty closed convex subset of X;

(2) Let T': D — D be a single-valued nonexpansive mapping, S : D — CB(D) be a multi-valued
nonexpansive mapping, and f : D — (—o0,00] be a convex and lower semi-continuous proper function;

(3) {an},{Bn}. {1} are sequences in (0,1) with 0 < a < ay, Bn,¥n < b < 1 for all n € N and for some
a, b are positive constants in [0, 1], and {\,} is a sequence such that A\, > A > 0 for all n € N and some X;

(4) Suppose that Q = F(T') N F(S) Nargminyep f(y) is nonempty and Sq = {q} for all ¢ € ;

(5) Suppose that Jy is semi-compact or T is semi-compact or S is hemi-compact.

For any z1 € D, the sequence {z,} generated in the following manner:

zp = argmingep|f(y) + ﬁ”cﬁ(y,ﬂ:n)],
tn = Ynzn @ (1 — ) wp, wy, € Sz,
Yn = Bnzn © (1 — Bn)Tty,

Tl = Qptn ® (1 — ap)yn, Yn € N,

then the sequence {x,} converges strongly to a point in .

Proof. This proof will be divided into a few steps as follows.
(i) Let ¢ € Q. Then we have Tq = q € Sq and f(q) < f(y), for all y € D. It follows that

f(q) + KdQ(q q) < f(y) + KdQ(y q), Yy € D.

Hence, g = J,,q for all n € N. Since z, = J), zy, it follows by the nonexpansiveness of .Jy, that
d(zn,q) = d(Jx, Tn, Ir,q) < d(zn,q). (3.2)
For g € Q, by virtue of Sq = {q¢}, by (1.1) and (3.1)-(3.2), it shows that

d(tn, q) = d(Vnzn ® (1 — Y)wn, q)

< Md(2n, q) + (1 — yn)d(wn, q)

< Ynd(2n,q) + (1 — v)dist(Szp, q)

< Mnd(2n, q) + (1 — ) H(S2n, Sq) (3.3)

< Mmd(2n,q) + (1 = vn)d(2n, q)

= d(zn, q)

< d(zy,q)

By (3.3), we have
d(Yn, @) = d(Bnzn © (1 — Bn)T'tn, q)

< Bnd(2n,q) + (1 = Bn)d(Tty, q)
< Bnd(2n,q) + (1 = Bn)d(tn, q)
< Bnd(zn, q) + (1 = Bn)d(zn, q)
= d(zn,q)
< d(zn,q)
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and we get
d(Znt1,q) = d(antn @ (1 — oan)yn, q)

< apd(tn, q) + (1 = an)d(yn, 9)

< and(zn, q) + (1 = an)d(yn, q) (3.5)

< d(zn,q)

< d(zp,q).
Therefore, by (3.5), we obtain that the sequence {d(z,,q)} is decreasing and bounded. So, lim, o d(zy, q)
exists for all ¢ € 2.

(7i) Let
nan;O d(xn,q) =1>0. (3.6)
By lemma 2.11, we have
s o) = 3@ ns0) 5 o) < £ 0) — f(zn)
o Zn, q o Tn, q o Zn, Tn) < f(q Zn)-
Since f(q) < f(zp) for all n € N, we get
dQ(Zna xn) < dQ(xn7Q) - d2<zn7 Q)' (37)

From (3.5), we get
d(l’n+1, Q) S d(zn)q) S d(xnv Q)

So, we have

Jim_ d(zni1,q) < lim d(zp,q) < lim d(zn, q).

This implies that

nh_)rgo d(zn,q) = L. (3.8)
By virtue of (3.6) — (3.8), it shows that
li_)m d(xp, zn) = 0. (3.9)

Because of 0 < a < o, < b < 1, also by (3.5) we get

d(2ny1,q) < and(zn,q) + (1 — an)d(yn, q)

and change it as

1
d(Yn,q) 2 T——1d(@n+1,4) = and(zn, )]
n (3.10)
2 m[d(%H,CD = bd(xn, q)],
thus, we have
. . 1 -
Jim infd(yn,¢) 2 lim inf{-—[d(@nt1,q) = bd(zn, 9]} =1
and by (3.4), we obtain
lim supd(yn,q) < lim supd(z,,q) =1

Then, we have

le d(yn,q) = 1. (A*)

Similarity, by (3.5), we also get

d(fEn-i-la Q) < Olnd(tna Q) + (1 - an)d(ynv Q)
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and also change it as
1

A(tns0) = ~—[d(@ns1,0) = (1= @)y, )
> ~d(wns.) — (1 = )y, )
1

> —[d(@nt1,q) = (1= a)d(zn, q)]
So, we have
lim inf d(t,,q) > ILm inf{%[d(xn-s-hQ) — (1 —=a)d(zn,q)]} = 1.

n—o0

and by (3.3), this show
lim supd(ty,q) < lim supd(z,,q) =1

n—oo n—oo

Then, we obtain
lim d(t,,q) = 1. (B¥)

n—o0

Also from the inequality (CN*), Sq = {¢} and (3.1) — (3.3), we have

& (tn, @) = d*(yn2n © (1 = 1) Wn, @)
< (20, ) + (1 = 70)d*(wn, @) = (L = 70 )d* (20, wn)
< 'YndQ( ns> 4 1—- 'Yn)dwt (¢,52n) — (1 — 'Yn)d2(znv Wn)
< 'Yndz(zn 'Yn)H (8¢, 8zn) — (1 — 'Yn)dQ(men)
< 7nd2( ns 4 Vn)dQ(Zm q) — (1l — ’Yn)d2(znawn)

< dQ(me) 7n)d2(zm Wn).

: (3.11)

zZ

A/\/‘\/\/‘\

1—
(1 —
By (3.1) — (3.4), we get

d*(yn, @) = d*(Buzn ® (1 = )T, q)
< /BndQ(va q)+ (1 - Bn)dQ(Ttnv q) — Bn(1— /Bn)dZ(vaTtn)
< /BndQ(xm q)+(1— /Bn)dQ(tna q) — Bn(1 - Bn)dQ(ZmTtn)
< dZ(xn, q) — Bn(1 - Bn)d2(zantn)-

Similarly, by (3.1) — (3.5), we have

(3.12)

dQ(anrl, q) = d2(antn (1 — an)yn q)
< and*(tn, q) + (1 = n)d*(Yn, @) — an(l — an)d”(tn, yn)
< andQ(:cn, q)+(1— an)dZ(yn, q) — on(l— an)dQ(tna Yn)
< d2($m q) —on(l— an>d2(tna Yn)-

(3.13)

Because of 0 < a < ay, Bn, ¥n < b < 1, and from (3.6), and (A*), (B*), this shows that
0 < V(1 = n)d(2n, wp) < d*(wn, q) — d(tn, q) = O(n — ),

0 < Bu(1 = Bp)d* (20, Ttn) < d*(wn, @) — d*(yn, q) — O(n — 00),
0 < (1 = an)d*(tn, yn) < d*(Tn, q) — d*(2ni1,q) — 0(n — 00).
Thus, we obtain that
lim d(z,,w,) = lim d(zp,Tt,) = lim d(t,,y,) = 0. (3.14)

n—o0 n—o0 n—oo
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In fact, because t, = Y25 @ (1 — v )wy,, we get

d(tn, xn) = d(nzn ® (1 — yp)wn, )
< Ynd(2n, n) + (1 — v )d(wy, Tn)
< And(zn, xn) + (1 — y){d(wn, 2n) + d(2n, zn) }
— 0(n — 00).

(3.15)

By the nonexpansiveness of T', and this together (3.14) with (3.15) shows that

d(xn, Txy) < d(Tn, 2n) + d(2n, Tty) + d(Ttyp, Txy,)
< d(xp, 2n) + d(zn, Tty) + d(tn, x,) (3.16)
— 0(n = o).
Immediately, we have
li_}m d(xy, Txy,) = 0.

(7i1) Because of nonexpansiveness of S, also from (3.10) and (3.14), we get

dist(zy, Sxy) Ty 2n) + dist(zn, Szn) + H(Szp, Sxy)
Ty 2n) + dist(zn, Szp) + d(2zn, Tn)
2d(xp, 2n) + d(zn, wy)

0(n — o0).

d(
d(

L IAIA A

It is easy to see that
lim dist(zy, Sxy,) = 0.
noo

(7v) By Ap > A > 0, lemma 2.10 and nonexpansiveness of Jy, and z, = Jy, z, , we have

d(l’n, J)\xn) S d(xna Zn) + d(Zn, J)\xn)
S d(xna Zn) + d(J)\nxny Jx\mn>
A — A A
= d(.%'n, Zn) + d(*])\( \ J)\nxn ¥ Txn)a J)\xn)
A — A A
< d(xp, zn) + n)\ d(Jx, Tn, Ty) + )\—d(:vn,:r:n)
A
=(2—- Tn)d(mm Zn)

— 0(n — 00).

This also shows that
lim d(xy,, Jxx,) = 0.
noo

(v) Suppose that the mapping S is hemi-compact. By the step of (iii), we get lim, oo dist(x,, Sx,) = 0.
From the hemi-compactness of S and we have that there exists a subsequence {u,} of {x,}, which strongly
converges to an element ¢ in D. Furthermore, by the above(ii) — (iv), we have

lim d(up, Tuy) =0, im dist(uy,, Su,) =0 and lim d(uy, Jyu,) = 0.

n—oo n—oo n—o0

It follows by the nonexpansiveness of T" and the nonexpansiveness of Jy so that ¢ = T'q = Jyq, we get

q e F(T)NF(Jy) =F(T)Nargmingepf(y).
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By the nonexpansiveness of S, we have

dist(q,Sq) < d(q,un) + dist(uy, Suy,) + H(Suy, Sq)
< 2d(q, up) + dist(un, Suy,)
— 0(n = ).

It shows that dist(q, Sq) = 0. This implies that ¢ € Sq. Therefore, we get ¢ € F(S). By (3.16), we have
q € F(T)NF(S)Nnargmingepf(y) = Q.

Through the double extract subsequence principle, it shows that the sequence {z,} strongly converges to a
point ¢ in .
This completes the proof. O

Theorem3.2 Let D be a nonempty closed convex subset of a complete CAT(0) space X. Let T :
D — D be a nonexpansive single-valued mapping, S : D — KC(D) be a nonexpansive multi-valued
mapping, and f : D — (—00,00| be a convex and lower semi-continuous proper function. Suppose that
Q= F(T)NF(S)Nargminyep f(y) is nonempty and Sp = {p} for all p € Q. For z; € D, the sequence {z,}
generated by (3.1), where {an}, {8}, {7} are sequences in [0, 1] such that 0 < a < ay,, Bp,1m < b < 1 for
all n € N, and {\,} is a sequence such that A\, > XA > 0 for all n € N and some A. Then the sequence {z,}
A—converges to a point in 2.

Proof. Let wa(zy) := |JA({un}), where the union is taken over all subsequences {u,} of {x,}. Let p €
wA (). So there exists a subsequence {u,} of {x,} such that A({u,}) = {p}. By Lemmas 2.6 and 2.7,
there exists a subsequence {v,} of {u,} such that

A — lim v, =v € D. (3.17)

n—o0

From Theorem 3.1(é%), (iv), we have
lim d(vy, Tv,) =0

n—oo

and
lim d(vy, Jyv,) = 0.

n—oo

Then, by the nonexpansiveness of T" and J), it implies by Lemma 2.9 that v = Tv = Jyv. So, we get
ve F(T)NF(Jy) = F(T)Nargmingep f(y). (3.18)

Since S is compact valued, for each n € N, there exist r, € Sv, and 0, € Sv such that d(v,,r,) =
dist(vy, Svy,) and d(ry, 6y,) = dist(ry, Sv). By the third step of Theorem 3.1, it follows that

lim d(vy,,r,) =0.

n—oo

By the compactness of Sv, so there exists a subsequence {d,,} of {d,,} such that lim; o, 0, = 0 € Sv. Then

we have
lim inf d(vy,, d) < lim inf(d(vy,, rn,) + d(7n,, On;) + d(0p,, 9))
Z*)OO 21— 00
< lim inf(d(vp,, rn,;) + dist(ry,, Sv) + d(dp,,0))
71— 00
< lim inf(d(vp,, ;) + H(Svy,, Sv) + d(0p,,0))
71— 00
< lim inf(d(vn,, ;) + d(vn,,v) + d(0n,;, 9))
1—00

= lim inf d(vy,,v).
1—00
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By (3.17) and the uniqueness of asymptotic centers, we have v = § € Sv. Thus, by (3.18), we get
ve F(T)NF(S)Nargmingep f(y) = Q.

It follows by the first step of Theorem 3.1 and Lemma 2.8 so that p = v, and hence wa (z,,) C .

Suppose that {u,} is a subsequence of {z,} with A({u,}) = {v*} and A({z,}) = {z}. Since u* €
wa(zy) € Q and {d(z,,u*)} converges, it implies by Lemma 2.8 that = u*, which shows that wa (zy,)
consists of exactly one point. This implies that {z,} A—converges to a point in .

This completes the proof. O

References

[1] F. Bruhat, J. Tits, Groupes réductifs sur un corps local. Inst. Hautes Etudes Sci. Publ. Math. 41(1972), 5-251.

[2] S. Dhompongsa, B. Panyanak, On A—convergence theorems in CAT(0) spaces.Comput. Math. Appl.56(2008), 2572-2579.

[3] M. Bacdk, The proximal point algorithm in metric spaces. Isr. J. Math. 194(2013),689-701.

[4] O. Guler, On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim.29(1991),
403-419.

[5] D. Ariza-Ruiz, L. Leustean, G. Lopez, Firmly nonexpansive mappings in classes of geodesic spaces. Trans. Am. Math.
Soc.366 (2014), 4299-4322.

[6] J. Jost, Convex functionals and generalized harmonic maps into spaces of nonpositive curvature. Comment. Math. Helv.
70(1995), 659-673.

[7] S.Suantai, W. Phuengrattana, Proximal Point Algorithms for a Hybrid Pair of Nonexpansive Single-Valued and MultiValued
Mappings in Geodesic Metric Spaces. (2017).

[8] T. Rockafellar, R.J. Wets, Variational Analysis. Springer, Berlin(2005)

[9] S. Dhompongsa, W.A. Kirk, B. Sims, Fixed points of uniformly Lipschitzian mappings. Nonlinear Anal.65 (2006), 762-772.

[10] W.A. Kirk, B. Panyanak, A concept of convergence in geodesic spaces. Nonlinear Anal. 68 (2008), 3689-3696.

[11] S. Dhompongsa, W.A. Kirk, B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces. J. Nonlinear
Convex Anal.8(2007), 35-45.

[12] L. Ambrosio, N. Gigli, G. Savare, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in
Mathematics ETH Zrich, 2nd edn. Birkhuser, Basel (2008).



	1 Introduction
	2 Preliminaries
	3  Main results 

