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Introduction 

Accurately estimating fish weight is crucial for nutrition 

planning and effective aquaculture management, as it 

facilitates the efficient regulation of feeding processes. 

Traditionally, fish weight is measured using weighing 

scales. However, these methods not only increase labor 

requirements but also fail to save time and may cause 

physical harm to the fish. Consequently, there is a growing 

demand for more accurate, non-invasive, and sustainable 

estimation techniques. Nonetheless, estimating weight in 

underwater environments remains a highly challenging task 

due to factors such as the continuous movement of fish, 

fluctuating lighting conditions, and variable water quality. 

A review of recent literature reveals that machine learning 

(ML) and artificial intelligence (AI) have been extensively 

explored in academic research across various domains. For 

example, Wai Lok Woo et al. conducted a study that 

estimated the weight of Tilapia in turbid water using a low-

cost single-channel video camera combined with a Mask R-

CNN detection method, and subsequently employed 

regression models (Linear, Random Forest, SVR) to 

achieve high predictive accuracy [30]. For instance, Kazemi 

et al. conducted a comprehensive evaluation of ML 

algorithms used to predict the mechanical properties of 

fiber-reinforced polymers (FRPs), assessing model 

performance in detail [16]. Similarly, von Bülow et al. 

reviewed recent advances in ML-based approaches for 

investigating sequence–structure–function relationships in 

disordered proteins, emphasizing their relevance to 

biophysical functions [17]. In another study, Liu et al. 

developed a quantitative structure–property relationship 

(QSPR) model using ML techniques to predict CO₂ 

solubility in aqueous amine solutions. The study 

demonstrated high predictive accuracy and validated model 

interpretability through SHAP analyses [18]. D’Orazio and 

Pham examined the effects of climate-related financial 

policies on decarbonization and the renewable energy 

transition across 87 countries from 2000 to 2023, using ML 

to account for contextual differences and policy 

effectiveness [19]. Furthermore, Tuerxun et al. proposed an 

ML framework that integrates spectral indices and 

geospatial data to accurately estimate leaf chlorophyll 
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ABSTRACT 

 
Fish weight estimation using machine learning ensures that fish are fed appropriately, reduces labor, 

prevents physical harm to the fish, and saves time. In this study, Quantile and Box-Cox transformations 
are applied to improve the accuracy of fish weight predictions. These transformations correct the 

asymmetric distribution of the data and enable machine learning algorithms to generalize more effectively 

and produce more accurate results. CatBoost, Random Forest, Polynomial Regression, and Support Vector 
Regression methods were evaluated for fish weight estimation both before and after applying the 

transformations. The experimental results show that both the Quantile and Box-Cox transformations 

effectively reduce model error rates, particularly by normalizing the dataset distribution. Notably, models 
without transformation exhibit significant improvements in error rates after transformation is applied. The 

lowest Mean Absolute Error (MAE) without transformation was obtained using the CatBoost model, 

yielding a value of 14.002. After applying the Quantile transformation, the MAE decreased to 0.0171, 
while the Box-Cox transformation resulted in an MAE of 0.3302. Although both transformations 

contribute to error reduction, the Quantile transformation has a more substantial impact on fish weight 

estimation. These findings underscore the importance of data transformations in the preprocessing stage 
and highlight that transformation techniques are as crucial as selecting the appropriate machine learning 
model. 
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content (LCC), achieving high accuracy with the GWLS-

Support Vector Regression (SVR) model [20]. 

For example, in a recent study, Tianye Zhang and 

colleagues combined fish posture recognition using deep 

learning technology with biomass estimation, developing a 

stereo vision-based fast, accurate, and fully automated 

system for free-swimming fish, and demonstrated that the 

method provides an effective approach for real production 

and the investigation of fish growth mechanisms [33]. 

Recent studies have demonstrated that image processing 

and machine learning techniques can be effectively applied 

to estimate fish weight. For instance, Gutzmann et al. 

proposed a method for estimating the weight of large 

whitefish species in the lower Mackenzie River Basin using 

photographic image analysis [1]. Another recent study by 

SV Jansi Rani et al. aimed to estimate fish biomass in highly 

turbid water using a deep learning-based object detection 

and regression approach. This study presents a non-invasive 

and automated method [34]. In another study, Moseli 

Mots'oehli et al. developed FishNet, which achieved 89% 

classification accuracy and a 2.3 cm MAE in fish length 

estimation using a dataset of 1.2 million fish images from 

163 species [32]. Similarly, Konovalov et al. conducted a 

study on automatic weight estimation by collecting both 

images and weight measurements of approximately 2,500 

individuals of Lates calcarifer (Asian sea bass or 

barramundi) harvested from three different locations in 

Queensland, Australia [2]. Additionally, Islamadina et al. 

utilized digital camera images converted to grayscale for 

fish weight estimation, applying segmentation techniques to 

remove irrelevant objects from the images. During the 

feature extraction phase, length, width, and height were 

calculated using calibration values, and these features were 

used to estimate fish weight [3]. A similar approach was 

adopted by Suwannakhun and Daungmala in their study on 

pig weight estimation. They extracted features such as 

color, texture, center of gravity, axis lengths, eccentricity, 

and area from digital images [4]. Neural network analyses 

in both studies confirmed the effectiveness of non-contact 

estimation methods. Collectively, these findings suggest 

that image processing and AI-based techniques provide 

faster, more accurate, and more sustainable alternatives to 

traditional weight measurement methods. 

Quantile Transformation (QT) and Box-Cox 

Transformation (BCT) are widely used techniques that have 

demonstrated effectiveness across various fields. For 

instance, Bogner et al. employed the Normal Quantile 

Transform to normalize river flow data, thereby improving 

the accuracy and reliability of flood forecasting models 

[21]. In another study, Buchinsky applied Quantile 

Regression (QT) to analyze changes in returns to education 

and experience across different points of the wage 

distribution, as well as within-group wage inequality. The 

Box-Cox Transformation (BCT) was also incorporated in 

this analysis to appropriately transform the data for 

improved model fit [22]. Xie et al. used BCT as an early 

warning indicator for detecting abrupt climate changes [23], 

while Nagendra et al. utilized BCT to evaluate surface 

roughness in material science applications [24]. Similarly, 

Al Abbasi et al. applied QT to investigate the effects of rural 

transformation—specifically, high-value agricultural and 

non-agricultural employment—on income and poverty in 

Bangladesh [25]. 

Quantile transformation (QT) and Box-Cox transformation 

(BCT) improve prediction accuracy by regularizing the 

distribution of the dataset. In this study, QT and BCT 

methods are used to improve the accuracy of weight 

estimation. In literature, some studies that use these 

methods are summarized as follows: Peterson and 

Cavanaugh proposed a method that effectively transforms 

data into a normal distribution by introducing Ordered 

Quantile (ORQ) normalization. ORQ works consistently 

regardless of the underlying distribution and can be easily 

applied to new data. Its effectiveness is compared with other 

methods and the role of cross-validation in determining the 

best transformation is investigated. The technique was 

implemented on a car pricing dataset with the best 

Normalize R package [5]. Peng et al. highlighted the 

importance of transformations for mapping quantitative 

feature loci, and the empirical normal QT proved to be an 

effective method for normalizing feature values. In their 

study, they showed through extensive simulations that this 

transformation provides good control over power and type 

I error [6]. Rayner and MacGillivray studied the effects of 

Quantile-based methods in fitting g-and-k and adapted g-

and-h distributions and showed that weighted methods 

perform better for small and medium-sized [7]. In another 

study, Hamzaoui et al. (2023) achieved a very high R² 

accuracy of 99.94% for different fish species by employing 

the SFI-XGBoost method, which combines VIF, Pearson 

correlation, and XGBoost [31]. Atkinson et al. (2021) 

examined the relationship between BCT power 

transformation and generalized linear models and proposed 

transformation models for positive and negative 

observations. In the study, normality, and variance 

homogeneity of the data were tried to be ensured by using 

methods that include the transformation of both sides. 

Zhang and Yang proposed new methods and algorithms for 

more efficient application of BCT on big data. This method 

aims to speed up transformation and model parameter 

estimation by scanning the data only once [8]. In Osborne's 

study, the relationship of the BCT transformation with 

traditional normalization transformations was discussed 

and how it was developed was discussed. Osborne stated 

that BCT offers better applications than traditional methods 

and provided examples of how this transformation can be 

applied using software such as SPSS and SAS [9]. 

In this study, fish weight estimation using ML methods 

using fish images is discussed. CatBoost, Random Forest, 

Polynomial Regression, and Support Vector Regression 

(SVR) models are used to accurately estimate fish weight. 

The success of each model was compared by applying 

different ML methods and to improve the accuracy, the 

improvements from the above QT and BCT studies were 

applied to the fish weight estimation project and a 

successful improvement was achieved. QT and BCT 

significantly improved the prediction accuracy by 
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significantly reducing the error rate in all models. The 

contributions of this study can be summarized as follows: 

• To the best of our knowledge, Quantile 

Transformation (QT) and Box-Cox Transformation 

(BCT) have not previously been applied to the task of 

fish weight estimation. In this study, we incorporate 

these transformations into a novel fish weight 

estimation framework to evaluate their effectiveness. 

• Machine learning methods are employed to estimate 

fish weight based on their morphological 

characteristics, and the error rates are further 

improved through the application of QT and BCT.  

• Finally, we conducted a comparative analysis of 

weight estimation methods with and without 

transformations, evaluated the impact of the applied 

transformations, and assessed the improvements 

achieved. 

The rest of the paper is organized as follows. The second 

section describes the dataset used and the evaluation 

metrics. In the third section, the methods applied in the 

preprocessing phase, machine learning models, and the 

experimental results and findings obtained from these 

models are presented in a comparative manner. Finally, the 

study ends with conclusions and future studies section. 

Materials and Methods 

In this study, CatBoost, Random Forest, Polynomial 

Regression and SVR machine learning methods were used 

to estimate weight from morphological features of fish and 

their performances were evaluated. In addition, the effects 

of Box-Cox Transformation (BCT) and Quantile 

Transformation (QT) on these methods were analyzed, and 

their impact on estimation performance was compared. The 

method with the lowest error rate was determined by 

making improvements and comparisons with different 

parameters. In total, 12 different models such as CatBoost, 

Random Forest, Polynomial Regression, SVR, and their 

versions with QT and BCT were tested. The results were 

analyzed among methods, especially for the effect of 

transformations. The dataset was divided into 80% training 

and 20% test data. The general progression of the steps 

followed in the study is presented in the method flowchart 

in Fig. 1. The figure the overall workflow of the study, 

which employs machine learning techniques to estimate 

fish weight based on morphological characteristics. 

Dataset 

This study utilizes the Fish Market dataset [10], which 

includes morphological measurements of fish. The dataset 

comprises 159 samples spanning seven species: Bream, 

Perch, Roach, Pike, Smelt, Parkki, and Whitefish. For each 

sample, seven morphological characteristics are recorded: 

Species, weight, length1, length2, length3, height and 

width. The weight estimation of fish is performed by 

utilizing various morphological characteristics. The 

meanings of these morphological features are given below 

and Fig. 2 shows the representation of these features on the 

fish. In this study, weight estimation was performed using 

the relationships and ratios between these features. 

• Species: Bream, Perch, Roach, Pike, Smelt, Parkki, 

and Whitefish. 

• Weight: Weight of the fish (in grams) 

• Length1: Length from the nose to the beginning of the 
tail (in cm) 

• Length2: Length from the nose to the notch of the tail 
(in cm) 

• Length3: Length from the nose to the end of the tail (in 
cm) 

• Height: % Maximal height as % of Length3Width: % 
Maximal width as % of Length3 

Implementation Details 

All experiments were conducted on a personal computer 

equipped with an Intel Core i5-13500HX CPU (2.5 GHz) 

and 16 GB of RAM. 

Evaluation Metrics 

In this study, Mean Absolute Error (MAE) and the 

Coefficient of Determination (R2) were used as evaluation 

metrics. MAE is defined as the average of the absolute 

differences between the predicted and actual values. Lower 

MAE values indicate that the model’s predictions are 

closer to the true values. One of the key advantages of this 

metric is that it expresses the prediction error in the same 

unit as the target variable, which facilitates interpretability. 

Moreover, MAE is more robust to outliers compared to 

squared-error metrics, as it considers absolute deviations 

and does not disproportionately penalize large errors. In the 

literature, MAE is highlighted as a reliable and widely used 

metric for assessing regression performance [28]. The 

mathematical formulation of MAE is given in Equation (1). 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑖 − ŷ𝑖|

𝑛

𝑖=1

 (1) 

In this equation, n is the total number of data, yi indicates 

the actual values, and ŷi represents the predicted values. 
The R² metric was used to assess how well the independent 

variables in a regression model explain the variability of 

the dependent variable. It represents the proportion of 

variance in the dependent variable that can be predicted 

from the independent variables. An R² value of 1 indicates 

that the model explains the data perfectly, 0 indicates that 

it has no explanatory power, and negative values imply that 

the model performs worse than a simple mean-based 

prediction. In general, the closer the R² value is to 1, the 

stronger the explanatory power of the model. However, 

recent studies have emphasized that R², especially in linear 

regression, may sometimes overestimate the explained 

variance, which can lead to misleading interpretations [29]. 

The mathematical representation of R² is shown in 

Equation (2). 
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𝑅2 = 1 − 
∑(𝑦𝑖 − ŷ𝑖)

2

∑(𝑦𝑖 − ȳ)2
 (2) 

Within the scope of this study, the Box-Cox Transformation 

(BCT) was applied to adjust the distribution of variables 

toward normality. BCT is a parametric transformation 

method widely used for variance stabilization and 

approximation of normality in continuous and positive 

valued variables. The general formula of the transformation 

is shown in Equation (3). 

𝑦(λ) = {
𝑦λ − 1,   λ ≠ 0

log(𝑦) ,   λ = 0
 (3) 

here, y is the original data values to be transformed, λ is a 
parameter that determines the intensity and direction of the 

transformation. The λ values used in the study were 
determined by optimizing with the maximum log-
likelihood method. In this method, the log-likelihood 
function for the transformed data set is as follows. 

log 𝐿(λ) =
𝜋

2
log(SSE)(λ) (4) 

where, SSE(λ) represents the sum of squared errors of the 

transformed data and n represents the number of 

observations. The parameter λ, which provides the 

maximum log-likelihood value, is used as the optimal 

transformation coefficient that ensures that the data set is 

distributed closest to normality. This method determines 

the transformation parameters systematically and 

objectively, increasing the reproducibility and statistical 

reliability of the analysis results. 

 

 

Figure 1. Flowchart of the proposed method. 

 

 

Figure 2. Illustration of the morphological features measured on fish, including Length1 (L1), Length2 (L2), Length3 

(L3), Height (H), and Width (W) [11].

Experimental Results and Findings 

This section outlines three key aspects: changes in 

preprocessing steps before and after applying QT and BCT, 

performance variations of machine learning algorithms 

under each condition, and the effect of these 

transformations on prediction outputs. 

Preprocessing Steps 

Several data-related challenges hinder the reliable and 
effective performance of machine learning and data 
analysis processes. These problems can be identified and 
corrected with the data preprocessing step. In the data 

preprocessing phase, the relationships of morphological 
features with each other, especially with weight, are 
analyzed, outliers are identified, and missing data are 
removed. When the data preprocessing phase is skipped, the 
model's learning process is adversely affected, prediction 
accuracy decreases, the model tends to learn biasedly, and 
its generalization ability may be weakened, leading to 
erroneous results. Data preprocessing steps should be 
implemented to reduce the impact of such problems. 

In this study, all preprocessing steps are kept identical 
except for the QT, BCT, and method components. This 
approach allows for a more accurate comparison of 
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prediction errors and isolates the effects of the QT and BCT 
transformations on weight estimation. 

Attribute Representation 

To analyze the value distribution of each    morphological 

feature in the dataset, bar charts were generated. Fig. 3 

presents the column plots for species, weight, width, height, 

length1, length2, and length3. In the distribution of these 

graphs, species are clustered in certain index ranges, 

indicating categorical distinctions in the dataset. Fig. 3(a) 

shows the species distribution in the dataset. In Fig. 3(b), 

the weight variable shows sharp increases and decreases in 

certain index ranges, indicating that some fish species are 

much heavier. The width and height plots in Fig. 3(c) and 

Fig. 3(d) show that different species are more dominant in 

certain ranges, while the length variables (length1, length2, 

length3) in Fig. 3(e), Fig. 3(f) and Fig. 3(g) show similar 

distributional trends and increase on the horizontal axis. 

Overall, the variables exhibit different distributions within 

specific index ranges, indicating that the dataset has distinct 

clustering by species, reflecting measurable differences 

between fish species. The fact that fish exhibit different 

distributions within specific index ranges directly affects 

weight estimation, requiring consideration of species-based 

differences. Since each fish species has its weight range, 

their relationships with measurements such as length, 

width, and height also differ. When the graphs are analyzed, 

it is seen that some variables show a right-skewed (positive 

skewness) distribution. The distribution of weight and 

height variables exhibits a right-skewed character with a 

long tail structure extending from small to large values. 

Length1, length2, and length3 variables are skewed to the 

right with a distribution of low values and decreasing 

towards large values. The effect was observed when QT and 

BCT were applied to remove these skews. 

Quantile Transformation (QT) 

QT is a pre-processing step used to transform distributions 

of data. Instead of creating a new dataset, this 

transformation creates a transformed version of the original 

dataset. In this transformation, the data is rescaled 

according to a given probability distribution. It is especially 

preferred for data with different distributions to achieve a 

more homogeneous distribution. QT is usually performed 

by placing the order of each observation into the 

corresponding Quantile in the target distribution. 

There are two common approaches to this transformation: 

uniform distribution and normal distribution. The uniform 

distribution is a type of distribution where each value is 

chosen with equal probability, and with this method, the data 

is redistributed with equal probabilities between 0 and 1. In 

this distribution, the data only lie between 0 and 1 and do not 

take negative values. In the normal distribution, the data are 

symmetrically distributed around the mean and can also 

take negative values. The uniform distribution was used in 

the study. This process ensures that the values are evenly 

distributed between 0 and 1, without any negative values. 

Furthermore, by leveraging the Box-Cox Transformation's 

ability to approximate a normal distribution, the study aims 

to compare the results obtained through this alternative 

transformation approach. QT has been applied to all 

columns except the Species column. The other columns 

were rearranged according to a specific probability 

distribution and subjected to QT to ensure a homogeneous 

distribution of the data. Fig.  4 shows the original distribution 

of the dataset and its distribution via QT. As shown in the 

figure, the dataset exhibits a more homogeneous 

distribution after the application of QT. 

Before the QT transformation, the data exhibited substantial 

right skewness, with most values clustered near the lower 

end and a long tail extending toward higher values. To 

address this issue, QT was applied, transforming the data 

into a uniform distribution. After the transformation, the 

values were evenly distributed within the [0, 1] range, 

reducing skewness and the influence of outliers, and 

producing a more balanced dataset suitable for machine 

learning models. 

Box-Cox Transformation (BCT) 

In regression analysis, the accuracy of most models 

increases when the data resemble a normal distribution. 

BCT is a mathematical method used to bring the 

distribution of the data closer to a normal distribution. This 

transformation attempts to transform the data into a normal 

distribution by applying functions such as a logarithm or 

square root to the data. BCT is widely used to improve the 

accuracy of the model, especially when working with 

volatile and skewed data, the Fish Market dataset is skewed 

to the right as can be seen in the bar charts in Fig. 3. This 

transformation aims to flatten the distribution of the data, 

make it symmetric, and perform a better regression analysis. 

BCT does not work with negative values, since there are no 

negative values in the Fish Market dataset, it is suitable for 

BCT. Fig. 5 shows the original dataset distribution, the 

distribution of the dataset after BCT, and the Kernel Density 

Estimation (KDE) curve of this distribution. By obtaining a 

continuous probability density function with the KDE 

curve, it can be observed in which intervals the data is 

concentrated. The graphs indicate that the data distribution 

after BCT is closer to the normal distribution. 

BCT proved highly effective in converting the right-skewed 

and potentially multimodal distributions into more 

symmetric, near-normal forms. This transformation serves 

as a critical preprocessing step for enhancing the 

performance of parametric statistical tests and machine 

learning models. Additionally, BCT alters the scale of the 

data, making it more compact and facilitating more stable 

and interpretable model training. 

Interquartile Range (IQR) 

The IQR method is a statistical method used to identify 

outliers in a data set. This method detects and visualizes 

unusually low or high values based on the difference 

between the 25% quartile of Q1 and the 75% quartile of Q3. 

To identify outliers, a threshold of 1.5 times the difference 

between Q1 and Q3 was set. In this way, outliers in the data  
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          (a) Species                                                                                          (b) Weight  

  (c) Height                                                                                         (d) Width 

 

          (e) Length1                                                                                (f) Length2 

(g) Length3 

Figure 3. Distribution of morphological features in the dataset. 

 

set that could affect the analysis results were identified, 

resulting in more reliable and consistent results. The lower 

bound is shown in Equation (4) and the upper bound is 

shown in Equation (5). 

𝐿𝑏 = Q1 − 1.5 ∗ IQR (4) 

𝑈𝑏 = Q3 + 1.5 ∗ IQR (5) 
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Fig. 6(a) shows the plot of outliers detected by the IQR 

method before the transformation is applied, there are 

outliers because the raw data has a skewed distribution. Fig.  

6(b) presents the results of the outliers detected with the 

IQR method after QT, while Fig. 6(c) shows the effect of 

the IQR method on the outliers after BCT. When the graphs 

were analyzed, outliers were detected in length1, length2, 

and length3 before the transformation. However, QT and 

BCT eliminate these outliers. 

Correlation Matrix 

The correlation matrix is used to analyze and interpret the 

relationships between variables. It is a matrix showing the 

linear relationship between variables. It is used in statistics 

and data analysis processes to understand how variables are 

related to each other. This matrix contains the correlation 

coefficients between pairs of variables. This correlation 

coefficient takes values between -1 and 1. Negative values 

mean that there is a negative correlation between the 

variables, i.e. one increases while the other decreases, while 

positive values mean that there is a positive correlation 

between the variables, i.e. one increases while the other 

increases or one decreases while the other decreases. 0 

indicates that there is no linear relationship between them. 

In the scope of this study, we observed the correlation 

between morphological features in the absence of 

transformations, the correlation between morphological 

features after QT, and the correlation between 

morphological features after BCT, and how transformations 

affect the relationships between features. Fig. 7(a) shows 

the correlation matrix without transformation, Fig. 7(b) 

shows the correlation matrix after QT and Fig. 7(c) shows 

the changes in the correlation matrix after BCT. When the 

correlation matrices are analyzed, generally positive 

correlations are detected between the features before any 

transformation is applied. In particular, a strong positive 

correlation is observed among the features Length1, 

Length2, and Length3. This suggests that these features are 

highly interrelated and likely convey overlapping or 

redundant information. After applying QT and BCT, the 

correlation between the features generally increased at 

similar rates. However, this increase was found to be more 

pronounced in QT. This suggests that QT reveals the 

relationships between features more strongly and may be 

more effective in the process of normalizing the data 

distribution. 

Principal Component Analysis (PCA) 

PCA is a dimensionality reduction technique used to 

identify the components that explain the highest variability 

in the data. Given the relationships in the correlation matrix, 

applying dimensionality reduction techniques on highly 

correlated features can minimize the risk of overlearning by 

reducing the complexity of the model. Moreover, this 

approach can contribute to improved model generalizability 

and reduced error rates, thereby enhancing overall model 

performance. Fig. 8(a) shows the variance explained for 

each principal component in the absence of transformation,  

Fig. 8(b)  shows  the  variance explained for each principal 

component after QT and  Fig. 8(c) shows the changes in the 

variance explained for each principal component after BCT. 

These graphs show that in the absence of transformation, 

the first principal component explains a large proportion of 

the total variance. This shows that the data is highly 

correlated and PCA can represent a large portion of the data 

with a single component. After the transformations, the 

transformations provide a more even distribution of 

variance, increasing the contribution of the second and third 

components, but the first component is still dominant. 

Machine Learning Methods 

In studies involving structured datasets with multiple 

features, machine learning (ML) approaches offer powerful 

alternatives to traditional statistical methods, particularly 

when developing prediction models using high-dimensional 

data [12]. In this study, the performance of four ML 

methods including, CatBoost, Random Forest, Polynomial 

Regression, and Support Vector Regression (SVR) is 

compared across three data versions: untransformed, QT-

transformed, and BCT-transformed. The results and the 

impact of these transformations on model performance are 

discussed in detail. 

CatBoost 

CatBoost has emerged as a powerful tool for ML tasks 

involving big data [13]. It is a machine learning algorithm 

belonging to the Gradient Incremental Decision Trees 

(GADT) family. In this study, it was used for a small 

dataset. CatBoost can be used in both classification and 

regression problems. CatBoost Regression is the version of 

CatBoost used in weight estimation problems. One of the 

most important features of CatBoost is that it can work 

directly with categorical variables and process these 

variables effectively. In the Fish Market dataset, the species 

column is a categorical variable. CatBoost applies several 

methods to deal with categorical features. For one-hot 

encoded features, no special processing is required, and the 

histogram-based approach used for partition search can be 

easily adapted to this case [14]. When using CatBoost, there 

is no need to convert this column into numerical data. 

CatBoost is a method that aims to build a strong model by 

successively building weak models, usually decision trees. 

At each step, it focuses on correcting the prediction errors 

of the previous model. The process starts with a simple 

model, and each new tree is trained to minimize the errors 

of the previous model over gradients. This process improves 

the performance of the model step by step. The training 

process of the CatBoost model is shown in Fig. 9(a) before 

applying the transformation, Fig. 9(b) after QT, and Figure 

9 (c) after applying BCT. In the graphs, it is observed that 

the error value in the test data decreases more than the 

training data. MAE values decrease significantly after QT 

and BCT. The lowest MAE value is obtained after Quantile 

transformation as seen in the graphs. The error values of the 

training data show a better reduction than the error values of 

the test data. However, as the model becomes more 

complex, the risk of overfitting arises. 
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A lower error was observed in the train data compared to 

the validation data, and this was evaluated in terms of the 

possibility of overfitting. However, after hyper parameter 

optimization and multi-level validation, the difference 

between training and validation errors decreased, which  

 

             (a) Weight                                                          (b) Weight distribution after QT 

           (c) Width                                                       (d) Width distribution after QT 

                 (e) Height                                                        (f) Height distribution after QT 

                                  (g) Length1                                                  (h) Length1 distribution after QT 

                                         (i) Length2                                                                 (j) Length2 distribution after QT 

                                  (k) Length3                                                                  (l) Length3 distribution after QT 

Figure 4. Original and Quantile Transformed (QT) distributions of fish morphological features: 
(a)-(l) show before and after QT transformations for Weight, Width, Height, Length1, Length2, and Length3, 

respectively. 
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                    (a) Weight                                                          (b) Width                                                    (c) Height 

          (d) Weight after BCT                          (e) Width after BCT                                         (f) Height after BCT 

(g) Length1                                                        (g) Length2                                             (g) Length3                             

            (j) Length1 after BCT                                   (k) Length2 after BCT                                     (l) Length3 after BCT          

Figure 5. Original and Box-Cox Transformed (BCT) distributions of fish morphological features with Kernel Density 
Estimation (KDE) curves: (a)-(l) show before and after BCT transformations for Weight, Width, Height, Length1, 

Length2, and Length3, respectively 
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(a) Outliers detected by IQR method in the absence of transformation 

(b) Outliers detected by IQR method after QT 

(c) Outliers detected by IQR after BCT 

Figure 6. Outliers detected by IQR in the absence of conversion, after QT and after BCT. 

            (a) Correlation matrix without transformation                                        (b) Correlation matrix after QT 

  (c) Correlation matrix after BCT 

Figure 7. Correlation matrices of morphological features. 
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(a)                                                                                             (b) 

                                                                                                       (c) 

Figure 8. Variance explained by principal components: (a) Without transformation, (b) After QT, (c) After BCT. 

 

reduced the risk of overfitting and improved the model's 

generalization performance. 

CatBoost 

Grid search is used to improve the performance of the 

model for hyper parameter optimization and to determine 

the best combination of hyper parameters. Using cross- 

validation with Grid search, different combinations of 

iterations, learning rate, depth and fold count hyper 

parameters were tested, and the MAE values of the 

combinations without transformation in Fig. 10(a), after QT 

in Fig. 10(b) and after BCT in Fig. 10(c) are shown 

graphically. In this process, the performance of the model 

was evaluated according to the MAE metric, and the hyper- 

 

                                  (a)                                                                                                              (b) 

(c) 

Figure 9. CatBoost model training process graphs: (a) Without transformation, (b) After QT, (c) After BCT. 
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Figure 10. Grid search results showing MAE values for different combinations of CatBoost hyperparameters 

(iterations, learning rate, depth, and number of layers). The first column corresponds to the original data 

(untransformed), the second column to the data with QT applied, and the third column to the data with BCT applied.

 
 

parameters with the lowest MAE values without 

transformation, after QT and after BCT were selected. 

Thus, it was aimed to generalize the model better and to 

prevent overlearning and overfitting. Values giving the 

lowest error rate in the absence of transformation: 

iterations: 1000, learning rate: 0.01, depth: 6, fold count: 5. 

Values giving the least error rate after QT: iterations: 1000, 

learning rate: 0.05, depth: 4, fold count: 5 Values giving the 

least error rate after BCT: iterations: 1000, learning rate: 

0.01, depth: 4, fold count:3. These values are different due 

to the transformation of the dataset after the 

transformations. 

Random Forest 

Random Forest is an ML method that can be used in both 

classification and weight estimation models. One study 

examines the historical development of Random Forest, its 

successful applications, and comparisons with other 

classifiers [15]. This method is used for a regression 

problem and compared with other ML methods in this 

study. It is an ensemble of decision trees, generates 

multiple decision trees, and makes a final prediction by 

taking predictions from these trees and averaging these 

predictions. This method uses the bagging technique to 

reduce overfitting and increase the model's generalization 

ability. This technique allows the model to produce more 

balanced and reliable results by training each decision tree 

on different subsets of data. It cannot work with categorical 

data, so categorical data was converted into numerical data 

using the label encoder method. 

Polynomial Regression 

Polynomial regression is a modeling method used to 

understand the relationship between independent and 

dependent variables. It is a preferred ML method when the 

link between variables is not linear. 

𝑦 = 𝑏0 +  𝑏1𝑥 +  𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛 +  𝜖  (5) 

here, 𝑏0, 𝑏1, 𝑏2, 𝑏n are the coefficients of the independent 

variable x, x2 is its square, ϵ is the error term. In polynomial 

regression, more complex and flexible models were created 

by adding higher-order terms of the independent variable. 

For example, fish length (x) as an independent variable 

presented a certain linear relationship when included in the 

model alone, while the square of length (x2) helped to better 

capture growth trends and make weight estimation more 

accurate. Although this method allows for more successful 

modeling of nonlinear relationships, the optimum model 

complexity was determined to avoid overfitting, as 

polynomials of very high degree can lead to overfitting. 

Support Vector Regression (SVR) 

Support Vector Regression (SVR) is a machine learning 

method commonly applied to regression problems and has 

been utilized across various domains. For instance, a study 
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by [27] examined treatment processes and the management 

of patients who achieved Sustained Virologic Response 

(SVR), while [26] explored the application of hybrid 

machine learning techniques, particularly SVR, for wind 

forecasting and the management of ramp events. In this 

study, SVR is employed for the estimation of fish weight. 

SVR is an effective method for regression problems with 

non-linear relationships such as fish weight estimation. Its 

goal is to find the best hyperplane by ignoring the data 

within the specified error tolerance (ε). It builds models 

with support vectors only, thus avoiding overlearning and 

improving generalization performance. Non-linear 

relationships can be captured by using morphological 

characteristics of the fish as independent variables and 

weight as dependent variable. In this model, the Grid 

Search method was used in hyper parameter optimization 

to improve the performance of the model and to determine 

the most appropriate hyper parameter combination. C, 

epsilon, and gamma values were determined by the Grid 

search method for non- transformed, after QT and after 

BCT. These parameters significantly affect the learning 

process and performance of the SVR model. The C 

parameter determines the error tolerance of the model. A 

high C value leads to a tighter fit of the model to the 

training data, but increases the risk of overfitting. A low C 

value creates a more flexible model, but may not fit the 

training data perfectly. The epsilon parameter determines 

the acceptable amount of error in the model's predictions. 

A small epsilon value produces more accurate predictions, 

while a large epsilon value produces a more general model 

and accepts more errors. The gamma parameter determines 

the complexity of the kernel function. When 'scale' is 

selected, the gamma value is calculated automatically 

according to the characteristics of the data. When 'auto' is 

selected, the gamma is set to a fixed value. Setting these 

hyper parameters correctly improves the overall 

performance of the model, leading to more reliable and 

accurate predictions and reducing the risk of overfitting. 

Fig. 11(a) shows the MAE vs. MAE values of the 

combinations of “C”, “Epsilon” and “Gamma” parameters 

in the absence of transformation, in Fig. 11(b) after QT and 

in Fig. 11(c) after BCT. 'C' in Fig. 11(a): 1000, 'epsilon': 1, 

'gamma': 'scale' and 'C': 100, 'epsilon': 0.01, 'gamma': 'auto' 

in Fig. 11(b): 100, 'epsilon': 0.01, 'gamma': 'auto' in Fig. 

11(b), and 'C': 1000, 'epsilon': 0.01, 'gamma': 'scale' gives 

the lowest MAE value. 

Quantitative Comparison 

The values obtained with Catboost, Random Forest, 

Polynomial Regression and SVR methods without 

transformation, after QT, and after BCT are given in Table 

1. As shown in Table, among the models applied without 

transformation, CatBoost yielded the lowest Mean 

Absolute Error (MAE), with a value of 14.0020. The 

highest MAE value was obtained in the SVR model with a 

value of 45.49. In general, it is observed that the average 

absolute error in the models decreases significantly after 

QT and BCT. This shows that the transformations 

significantly reduce the error rate and increase the success 

of the model. There is a greater reduction in the error value 

after QT than BCT, indicating that QT gives better results 

for the dataset.  The CatBoost+QT experiment had the 

lowest average absolute error in these 12 runs. In the 𝑅2 

values, the highest value is obtained in the SVR + BCT 

method, which means that the model explains all the data 

almost perfectly, and the 𝑅2 values are generally close to 1, 

which shows that it successfully explains a large part of the 

data in all methods and provides a good fit. Fig. 12 shows 

the boxplot of weight prediction with CatBoost model 

without transformation, weight prediction with CatBoost 

model after QT and weight prediction with CatBoost model 

after BCT. Fig. 13 shows the box plot of weight estimation 

with the Random Forest model after QT, and weight 

estimation with the Random Forest model after BCT. Fig. 

14 shows the box plot of weight prediction with the 

Polynomial Regression model without transformation, 

weight prediction with the Polynomial Regression model 

after QT, and weight prediction with the Polynomial 

Regression model after BCT. Fig. 15 shows the box plot of 

weight prediction with the SVR model without 

transformation, after QT, and BCT, respectively.  

An analysis of Figs. 12 through 15 clearly demonstrates the 

impact of the applied transformations on the distribution of 

the data. In the graphs without transformation, it is seen that 

the weight values are distributed in a wide range and the data 

set exhibits a high degree of variability. This shows that the 

data distribution has a skewed structure, especially with the 

effect of extreme values. In the graphs obtained after QT, 

the distribution is made more symmetric by scaling the 

weight values between 0 and 1. This transformation 

significantly reduced the effect of outliers and increased the 

homogeneity of the data. In graphs obtained after BCT, the 

weight values were scaled between 0 and 30, closer to their 

original units. This transformation reduced, but did not 

completely eliminate, the effect of outliers by bringing the 

data closer to a normal distribution.   

Limitations of the proposed work 

The Fish Market dataset used in this study is one of the rare 

open-access resources that provides both morphological 

features of different fish species and their corresponding 

weight measurements. In the literature, there is a limited 

number of reliable datasets that include both physical 

measurements and validated weight information, making 

this dataset the most suitable option for our study. However, 

the dataset consists of only 159 samples, which limits the 

generalization capability of the applied machine-learning 

algorithms. Additionally, due to the imbalanced 

representation of certain species, the models may perform 

poorly on underrepresented classes. The small sample size 

also increases the risk of overfitting, where the model 

performs well on training data but fails to produce accurate 

predictions on unseen data. 

To address these limitations, future work will focus on 

constructing larger datasets with more representative 

samples, thereby improving both the accuracy and 

generalizability of the models. In addition, synthetic data 

generation techniques based on the statistical characteristics 
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Figure 11. MAE values for Support Vector Regression (SVR) with different combinations of hyper parameters (C, 

epsilon, gamma). The first row corresponds to the original data (no transformation), the second row to QT-applied 

data, and the third row to BCT-applied data. 

 

Table 1. Performance Comparison of Models with and Without Data Transformations 

Method MAE 𝑅2 

CatBoost 14.0020 0.9958 

CatBoost + QT 0.0171 0.9947 

CatBoost + BCT 0.3302 0.9971 

Random Forest 

Random Forest + QT 

Random Forest + BCT 

Polynomial Regression 

Polynomial Regression + QT 

Polynomial Regression+ BCT 

SVR 

SVR + QT 

SVR + BCT 

44.53 

0.03 

0.77 

42.8059 

0.0306 

0.6533 
45.49 

0.01 

0.22 

0.9692 

0.9815 

0.9834 

0.9732 

0.9847 

0.9882 
0.9622 

0.9981 

0.9986 
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Figure 12. Box plot comparison of actual and predicted fish weight using CatBoost. From left to right, the 

columns correspond to the original data (no transformation), QT-applied data, and BCT-applied data. 

   

Figure 13. Box plot comparison of actual and predicted fish weight using Random Forest. From left to right, the 

columns correspond to the original data (no transformation), QT-applied data, and BCT-applied data. 

 

Figure 14. Box plot comparison of actual and predicted fish weight using Polynomial Regression. From left to 

right, the columns correspond to the original data (no transformation), QT-applied data, and BCT-applied data. 

 

Figure 15. Box plot comparison of actual and predicted fish weight using SVR. From left to right, the columns 

correspond to the original data (no transformation), QT-applied data, and BCT-applied data. 
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of the existing data may be explored to enhance data 

diversity. If visual data is incorporated in subsequent 

phases, image-based data augmentation techniques could 

also be employed to improve model robustness. Expanding 

the dataset in these ways will significantly enhance the 

statistical reliability of the findings and their potential 

applicability in real-world scenarios. 

Conclusions and Future Works 

This study investigates the effects of data 

transformation methods on improving the fish weight 

estimation model's accuracy. The QT and BCT 

transformation methods applied to the input data as a 

preprocessing step appear to significantly reduce weight 

estimation errors by reconstructing the fish weight 

distribution closer to normal form. These transformations, 

which are applied as a preprocessing step, correct the 

skewed distribution in the dataset and enable machine 

learning models such as CatBoost, Random Forest, 

Polynomial Regression, and SVR to generalize better and 

perform better than the weight estimation results obtained 

without preprocessing on the raw dataset. Among the QT 

and BCT transformation methods, QT outperforms BCT by 

giving the lowest MAE value in all machine learning 

models. QT applied on the original dataset dramatically 

improves by reducing the MAE value from 14.002 to 0.017 

with the CatBoost model, which gives the best accuracy, 

while BCT achieves an MAE value of 0.330 in the same 

model. The experimental results demonstrate that not only 

machine learning model selection has a significant impact 

on accuracy, but also a well-chosen transformation has a 

significant impact on error reduction. 

The findings show that proper transformation and data 

normalization are important factors in maximizing model 

prediction performance. Future studies aim to learn more 

complex features from image or video frames using 

advanced deep learning architectures such as Convolutional 

Neural Networks (CNNs) for fish weight estimation and to 

make real-time fish weight estimation using camera and 

sensor-based technologies. Moreover, the model's 

performance on fish weight estimation using many 

parameters will be examined with multi-model data fusion, 

such as the use of image data together with sensor readings 

on water quality, temperature, and sonar- based 

measurements of fish size. 
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