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ARTICLE INFO ABSTRACT

Fish weight estimation using machine learning ensures that fish are fed appropriately, reduces labor,
prevents physical harm to the fish, and saves time. In this study, Quantile and Box-Cox transformations
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transformation, Fish weight while the Box-Cox transformation resulted in an MAE of 0.3302. Although both transformations
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Introduction regression models (Linear, Random Forest, SVR) to
g

L ) ) ) o achieve high predictive accuracy [30]. For instance, Kazemi
Accurately estimating fish weight is crucial for nutrition ot a1 conducted a comprehensive evaluation of ML
planning and effective aquaculture management, as it  ajgorithms used to predict the mechanical properties of
facilitates the efficient regulation of feeding processes.  fiper-reinforced polymers (FRPs), assessing model
Traditionally, fish weight is measured using weighing  herformance in detail [16]. Similarly, von Biilow et al.
scaleg However, these methods not.only increase labor  oviewed recent advances in ML-based approaches for
requirements but also fail to save time and may cause jpyestigating sequence—structure—function relationships in
physical harm to the fish. Consequently, there is a growing  disordered proteins, emphasizing their relevance to
demand for more accurate, non-invasive, and sustainable biophysical functions [17]. In another study, Liu et al.
estimation techniques. Nonetheless, estimating weight in developed a quantitative structure—property relationship
underwater environments remains a highly challenging task (QSPR) model using ML techniques to predict CO»
due to factors such as the continuous movement of fish, solubility in aqueous amine solutions. The study
fluctuating lighting conditions, and variable water quality.  gemonstrated high predictive accuracy and validated model

A review of recent literature reveals that machine learning ~ interpretability through SHAP analyses [18]. D*Orazio and
(ML) and artificial intelligence (AI) have been extensively ~Pham examined the effects of climate-related financial
explored in academic research across various domains. For ~ Policies on decarbonization and the renewable energy
example, Wai Lok Woo et al. conducted a study that transition across 87 countries from 2000 to 2023, using ML
estimated the weight of Tilapia in turbid water using a low- ~ t© account for contextual ~differences and policy
cost single-channel video camera combined with a Mask R- effectiveness [19]. Furthermore, Tuerxun et al. proposed an

CNN detection method, and subsequently employed ML framework that integrates spectral indices and
geospatial data to accurately estimate leaf chlorophyll
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content (LCC), achieving high accuracy with the GWLS-
Support Vector Regression (SVR) model [20].

For example, in a recent study, Tianye Zhang and
colleagues combined fish posture recognition using deep
learning technology with biomass estimation, developing a
stereo vision-based fast, accurate, and fully automated
system for free-swimming fish, and demonstrated that the
method provides an effective approach for real production
and the investigation of fish growth mechanisms [33].
Recent studies have demonstrated that image processing
and machine learning techniques can be effectively applied
to estimate fish weight. For instance, Gutzmann et al.
proposed a method for estimating the weight of large
whitefish species in the lower Mackenzie River Basin using
photographic image analysis [1]. Another recent study by
SV Jansi Rani et al. aimed to estimate fish biomass in highly
turbid water using a deep learning-based object detection
and regression approach. This study presents a non-invasive
and automated method [34]. In another study, Moseli
Mots'oehli et al. developed FishNet, which achieved 89%
classification accuracy and a 2.3 cm MAE in fish length
estimation using a dataset of 1.2 million fish images from
163 species [32]. Similarly, Konovalov et al. conducted a
study on automatic weight estimation by collecting both
images and weight measurements of approximately 2,500
individuals of Lates calcarifer (Asian sea bass or
barramundi) harvested from three different locations in
Queensland, Australia [2]. Additionally, Islamadina et al.
utilized digital camera images converted to grayscale for
fish weight estimation, applying segmentation techniques to
remove irrelevant objects from the images. During the
feature extraction phase, length, width, and height were
calculated using calibration values, and these features were
used to estimate fish weight [3]. A similar approach was
adopted by Suwannakhun and Daungmala in their study on
pig weight estimation. They extracted features such as
color, texture, center of gravity, axis lengths, eccentricity,
and area from digital images [4]. Neural network analyses
in both studies confirmed the effectiveness of non-contact
estimation methods. Collectively, these findings suggest
that image processing and Al-based techniques provide
faster, more accurate, and more sustainable alternatives to
traditional weight measurement methods.

Quantile  Transformation  (QT) and  Box-Cox
Transformation (BCT) are widely used techniques that have
demonstrated effectiveness across various fields. For
instance, Bogner et al. employed the Normal Quantile
Transform to normalize river flow data, thereby improving
the accuracy and reliability of flood forecasting models
[21]. In another study, Buchinsky applied Quantile
Regression (QT) to analyze changes in returns to education
and experience across different points of the wage
distribution, as well as within-group wage inequality. The
Box-Cox Transformation (BCT) was also incorporated in
this analysis to appropriately transform the data for
improved model fit [22]. Xie et al. used BCT as an early
warning indicator for detecting abrupt climate changes [23],
while Nagendra et al. utilized BCT to evaluate surface
roughness in material science applications [24]. Similarly,

Al Abbasi et al. applied QT to investigate the effects of rural
transformation—specifically, high-value agricultural and
non-agricultural employment—on income and poverty in
Bangladesh [25].

Quantile transformation (QT) and Box-Cox transformation
(BCT) improve prediction accuracy by regularizing the
distribution of the dataset. In this study, QT and BCT
methods are used to improve the accuracy of weight
estimation. In literature, some studies that use these
methods are summarized as follows: Peterson and
Cavanaugh proposed a method that effectively transforms
data into a normal distribution by introducing Ordered
Quantile (ORQ) normalization. ORQ works consistently
regardless of the underlying distribution and can be easily
applied to new data. Its effectiveness is compared with other
methods and the role of cross-validation in determining the
best transformation is investigated. The technique was
implemented on a car pricing dataset with the best
Normalize R package [5]. Peng et al. highlighted the
importance of transformations for mapping quantitative
feature loci, and the empirical normal QT proved to be an
effective method for normalizing feature values. In their
study, they showed through extensive simulations that this
transformation provides good control over power and type
I error [6]. Rayner and MacGillivray studied the effects of
Quantile-based methods in fitting g-and-k and adapted g-
and-h distributions and showed that weighted methods
perform better for small and medium-sized [7]. In another
study, Hamzaoui et al. (2023) achieved a very high R?
accuracy of 99.94% for different fish species by employing
the SFI-XGBoost method, which combines VIF, Pearson
correlation, and XGBoost [31]. Atkinson et al. (2021)
examined the relationship between BCT power
transformation and generalized linear models and proposed
transformation models for positive and negative
observations. In the study, normality, and variance
homogeneity of the data were tried to be ensured by using
methods that include the transformation of both sides.
Zhang and Yang proposed new methods and algorithms for
more efficient application of BCT on big data. This method
aims to speed up transformation and model parameter
estimation by scanning the data only once [8]. In Osborne's
study, the relationship of the BCT transformation with
traditional normalization transformations was discussed
and how it was developed was discussed. Osborne stated
that BCT offers better applications than traditional methods
and provided examples of how this transformation can be
applied using software such as SPSS and SAS [9].

In this study, fish weight estimation using ML methods
using fish images is discussed. CatBoost, Random Forest,
Polynomial Regression, and Support Vector Regression
(SVR) models are used to accurately estimate fish weight.
The success of each model was compared by applying
different ML methods and to improve the accuracy, the
improvements from the above QT and BCT studies were
applied to the fish weight estimation project and a
successful improvement was achieved. QT and BCT
significantly improved the prediction accuracy by
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significantly reducing the error rate in all models. The
contributions of this study can be summarized as follows:

e To the best of our knowledge, Quantile
Transformation (QT) and Box-Cox Transformation
(BCT) have not previously been applied to the task of
fish weight estimation. In this study, we incorporate
these transformations into a novel fish weight
estimation framework to evaluate their effectiveness.

e Machine learning methods are employed to estimate
fish weight based on their morphological
characteristics, and the error rates are further
improved through the application of QT and BCT.

e Finally, we conducted a comparative analysis of
weight estimation methods with and without
transformations, evaluated the impact of the applied
transformations, and assessed the improvements
achieved.

The rest of the paper is organized as follows. The second
section describes the dataset used and the evaluation
metrics. In the third section, the methods applied in the
preprocessing phase, machine learning models, and the
experimental results and findings obtained from these
models are presented in a comparative manner. Finally, the
study ends with conclusions and future studies section.

Materials and Methods

In this study, CatBoost, Random Forest, Polynomial
Regression and SVR machine learning methods were used
to estimate weight from morphological features of fish and
their performances were evaluated. In addition, the effects
of Box-Cox Transformation (BCT) and Quantile
Transformation (QT) on these methods were analyzed, and
their impact on estimation performance was compared. The
method with the lowest error rate was determined by
making improvements and comparisons with different
parameters. In total, 12 different models such as CatBoost,
Random Forest, Polynomial Regression, SVR, and their
versions with QT and BCT were tested. The results were
analyzed among methods, especially for the effect of
transformations. The dataset was divided into 80% training
and 20% test data. The general progression of the steps
followed in the study is presented in the method flowchart
in Fig. 1. The figure the overall workflow of the study,
which employs machine learning techniques to estimate
fish weight based on morphological characteristics.

Dataset

This study utilizes the Fish Market dataset [10], which
includes morphological measurements of fish. The dataset
comprises 159 samples spanning seven species: Bream,
Perch, Roach, Pike, Smelt, Parkki, and Whitefish. For each
sample, seven morphological characteristics are recorded:
Species, weight, lengthl, length2, length3, height and
width. The weight estimation of fish is performed by
utilizing various morphological characteristics. The
meanings of these morphological features are given below
and Fig. 2 shows the representation of these features on the

fish. In this study, weight estimation was performed using
the relationships and ratios between these features.

e Species: Bream, Perch, Roach, Pike, Smelt, Parkki,
and Whitefish.

o Weight: Weight of the fish (in grams)

e Lengthl: Length from the nose to the beginning of the
tail (in cm)

e Length2: Length from the nose to the notch of the tail
(in cm)

o Length3: Length from the nose to the end of the tail (in
cm)

e Height: % Maximal height as % of Length3Width: %
Maximal width as % of Length3

Implementation Details

All experiments were conducted on a personal computer
equipped with an Intel Core i5-13500HX CPU (2.5 GHz)
and 16 GB of RAM.

Evaluation Metrics

In this study, Mean Absolute Error (MAE) and the
Coefficient of Determination (R2) were used as evaluation
metrics. MAE is defined as the average of the absolute
differences between the predicted and actual values. Lower
MAE values indicate that the model’s predictions are
closer to the true values. One of the key advantages of this
metric is that it expresses the prediction error in the same
unit as the target variable, which facilitates interpretability.
Moreover, MAE is more robust to outliers compared to
squared-error metrics, as it considers absolute deviations
and does not disproportionately penalize large errors. In the
literature, MAE is highlighted as a reliable and widely used
metric for assessing regression performance [28]. The
mathematical formulation of MAE is given in Equation (1).

n
1
MAE = = 1y -3 M
i=1

In this equation, n is the total number of data, yi indicates
the actual values, and yi represents the predicted values.
The R2 metric was used to assess how well the independent
variables in a regression model explain the variability of
the dependent variable. It represents the proportion of
variance in the dependent variable that can be predicted
from the independent variables. An R? value of 1 indicates
that the model explains the data perfectly, 0 indicates that
it has no explanatory power, and negative values imply that
the model performs worse than a simple mean-based
prediction. In general, the closer the R? value is to 1, the
stronger the explanatory power of the model. However,
recent studies have emphasized that R?, especially in linear
regression, may sometimes overestimate the explained
variance, which can lead to misleading interpretations [29].
The mathematical representation of R? is shown in
Equation (2).
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Within the scope of this study, the Box-Cox Transformation
(BCT) was applied to adjust the distribution of variables
toward normality. BCT is a parametric transformation
method widely used for wvariance stabilization and
approximation of normality in continuous and positive
valued variables. The general formula of the transformation
is shown in Equation (3).

y*—1, A#0

log(y), A=0 3)

yo = |

here, y is the original data values to be transformed, A is a
parameter that determines the intensity and direction of the

transformation. The A values used in the study were
determined by optimizing with the maximum log-
likelihood method. In this method, the log-likelihood
function for the transformed data set is as follows.

logL() = glog(SSE) Q) )

where, SSE(A) represents the sum of squared errors of the
transformed data and n represents the number of
observations. The parameter A, which provides the
maximum log-likelihood value, is used as the optimal
transformation coefficient that ensures that the data set is
distributed closest to normality. This method determines
the transformation parameters systematically and
objectively, increasing the reproducibility and statistical
reliability of the analysis results.

Figure 1. Flowchart of the proposed method.
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Figure 2. Illustration of the morphological features measured on fish, including Lengthl (L1), Length2 (L2), Length3
(L3), Height (H), and Width (W) [11].

Experimental Results and Findings

This section outlines three key aspects: changes in
preprocessing steps before and after applying QT and BCT,
performance variations of machine learning algorithms
under each condition, and the effect of these
transformations on prediction outputs.

Preprocessing Steps

Several data-related challenges hinder the reliable and
effective performance of machine learning and data
analysis processes. These problems can be identified and
corrected with the data preprocessing step. In the data

preprocessing phase, the relationships of morphological
features with each other, especially with weight, are
analyzed, outliers are identified, and missing data are
removed. When the data preprocessing phase is skipped, the
model's learning process is adversely affected, prediction
accuracy decreases, the model tends to learn biasedly, and
its generalization ability may be weakened, leading to
erroneous results. Data preprocessing steps should be
implemented to reduce the impact of such problems.

In this study, all preprocessing steps are kept identical
except for the QT, BCT, and method components. This
approach allows for a more accurate comparison of
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prediction errors and isolates the effects of the QT and BCT
transformations on weight estimation.

Attribute Representation

To analyze the value distribution of each morphological
feature in the dataset, bar charts were generated. Fig. 3
presents the column plots for species, weight, width, height,
lengthl, length2, and length3. In the distribution of these
graphs, species are clustered in certain index ranges,
indicating categorical distinctions in the dataset. Fig. 3(a)
shows the species distribution in the dataset. In Fig. 3(b),
the weight variable shows sharp increases and decreases in
certain index ranges, indicating that some fish species are
much heavier. The width and height plots in Fig. 3(c) and
Fig. 3(d) show that different species are more dominant in
certain ranges, while the length variables (lengthl, length2,
length3) in Fig. 3(e), Fig. 3(f) and Fig. 3(g) show similar
distributional trends and increase on the horizontal axis.
Overall, the variables exhibit different distributions within
specific index ranges, indicating that the dataset has distinct
clustering by species, reflecting measurable differences
between fish species. The fact that fish exhibit different
distributions within specific index ranges directly affects
weight estimation, requiring consideration of species-based
differences. Since each fish species has its weight range,
their relationships with measurements such as length,
width, and height also differ. When the graphs are analyzed,
it is seen that some variables show a right-skewed (positive
skewness) distribution. The distribution of weight and
height variables exhibits a right-skewed character with a
long tail structure extending from small to large values.
Lengthl, length2, and length3 variables are skewed to the
right with a distribution of low values and decreasing
towards large values. The effect was observed when QT and
BCT were applied to remove these skews.

Quantile Transformation (QT)

QT is a pre-processing step used to transform distributions
of data. Instead of creating a new dataset, this
transformation creates a transformed version of the original
dataset. In this transformation, the data is rescaled
according to a given probability distribution. It is especially
preferred for data with different distributions to achieve a
more homogeneous distribution. QT is usually performed
by placing the order of each observation into the
corresponding Quantile in the target distribution.

There are two common approaches to this transformation:
uniform distribution and normal distribution. The uniform
distribution is a type of distribution where each value is
chosen with equal probability, and with this method, the data
is redistributed with equal probabilities between 0 and 1. In
this distribution, the data only lie between 0 and 1 and do not
take negative values. In the normal distribution, the data are
symmetrically distributed around the mean and can also
take negative values. The uniform distribution was used in
the study. This process ensures that the values are evenly
distributed between 0 and 1, without any negative values.
Furthermore, by leveraging the Box-Cox Transformation's
ability to approximate a normal distribution, the study aims

to compare the results obtained through this alternative
transformation approach. QT has been applied to all
columns except the Species column. The other columns
were rearranged according to a specific probability
distribution and subjected to QT to ensure a homogeneous
distribution of the data. Fig. 4 shows the original distribution
of the dataset and its distribution via QT. As shown in the
figure, the dataset exhibits a more homogeneous
distribution after the application of QT.

Before the QT transformation, the data exhibited substantial
right skewness, with most values clustered near the lower
end and a long tail extending toward higher values. To
address this issue, QT was applied, transforming the data
into a uniform distribution. After the transformation, the
values were evenly distributed within the [0, 1] range,
reducing skewness and the influence of outliers, and
producing a more balanced dataset suitable for machine
learning models.

Box-Cox Transformation (BCT)

In regression analysis, the accuracy of most models
increases when the data resemble a normal distribution.
BCT is a mathematical method used to bring the
distribution of the data closer to a normal distribution. This
transformation attempts to transform the data into a normal
distribution by applying functions such as a logarithm or
square root to the data. BCT is widely used to improve the
accuracy of the model, especially when working with
volatile and skewed data, the Fish Market dataset is skewed
to the right as can be seen in the bar charts in Fig. 3. This
transformation aims to flatten the distribution of the data,
make it symmetric, and perform a better regression analysis.
BCT does not work with negative values, since there are no
negative values in the Fish Market dataset, it is suitable for
BCT. Fig. 5 shows the original dataset distribution, the
distribution of the dataset after BCT, and the Kernel Density
Estimation (KDE) curve of this distribution. By obtaining a
continuous probability density function with the KDE
curve, it can be observed in which intervals the data is
concentrated. The graphs indicate that the data distribution
after BCT is closer to the normal distribution.

BCT proved highly effective in converting the right-skewed
and potentially multimodal distributions into more
symmetric, near-normal forms. This transformation serves
as a critical preprocessing step for enhancing the
performance of parametric statistical tests and machine
learning models. Additionally, BCT alters the scale of the
data, making it more compact and facilitating more stable
and interpretable model training.

Interquartile Range (IQR)

The IQR method is a statistical method used to identify
outliers in a data set. This method detects and visualizes
unusually low or high values based on the difference
between the 25% quartile of Q1 and the 75% quartile of Q3.
To identify outliers, a threshold of 1.5 times the difference
between Q1 and Q3 was set. In this way, outliers in the data
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Figure 3. Distribution of morphological features in the dataset.

set that could affect the analysis results were identified,

resulting in more reliable and consistent results. The lower L, =Q1—-15+IQR 4
bound is shown in Equation (4) and the upper bound is _
shown in Equation (5). U, =Q3+ 1.5%IQR 5)
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Fig. 6(a) shows the plot of outliers detected by the IQR
method before the transformation is applied, there are
outliers because the raw data has a skewed distribution. Fig.
6(b) presents the results of the outliers detected with the
IQR method after QT, while Fig. 6(c) shows the effect of
the IQR method on the outliers after BCT. When the graphs
were analyzed, outliers were detected in lengthl, length2,
and length3 before the transformation. However, QT and
BCT eliminate these outliers.

Correlation Matrix

The correlation matrix is used to analyze and interpret the
relationships between variables. It is a matrix showing the
linear relationship between variables. It is used in statistics
and data analysis processes to understand how variables are
related to each other. This matrix contains the correlation
coefficients between pairs of variables. This correlation
coefficient takes values between -1 and 1. Negative values
mean that there is a negative correlation between the
variables, i.e. one increases while the other decreases, while
positive values mean that there is a positive correlation
between the variables, i.e. one increases while the other
increases or one decreases while the other decreases. 0
indicates that there is no linear relationship between them.
In the scope of this study, we observed the correlation
between morphological features in the absence of
transformations, the correlation between morphological
features after QT, and the correlation between
morphological features after BCT, and how transformations
affect the relationships between features. Fig. 7(a) shows
the correlation matrix without transformation, Fig. 7(b)
shows the correlation matrix after QT and Fig. 7(c) shows
the changes in the correlation matrix after BCT. When the
correlation matrices are analyzed, generally positive
correlations are detected between the features before any
transformation is applied. In particular, a strong positive
correlation is observed among the features Lengthl,
Length2, and Length3. This suggests that these features are
highly interrelated and likely convey overlapping or
redundant information. After applying QT and BCT, the
correlation between the features generally increased at
similar rates. However, this increase was found to be more
pronounced in QT. This suggests that QT reveals the
relationships between features more strongly and may be
more effective in the process of normalizing the data
distribution.

Principal Component Analysis (PCA)

PCA is a dimensionality reduction technique used to
identify the components that explain the highest variability
in the data. Given the relationships in the correlation matrix,
applying dimensionality reduction techniques on highly
correlated features can minimize the risk of overlearning by
reducing the complexity of the model. Moreover, this
approach can contribute to improved model generalizability
and reduced error rates, thereby enhancing overall model
performance. Fig. 8(a) shows the variance explained for
each principal component in the absence of transformation,
Fig. 8(b) shows the variance explained for each principal

component after QT and Fig. 8(c) shows the changes in the
variance explained for each principal component after BCT.

These graphs show that in the absence of transformation,
the first principal component explains a large proportion of
the total variance. This shows that the data is highly
correlated and PCA can represent a large portion of the data
with a single component. After the transformations, the
transformations provide a more even distribution of
variance, increasing the contribution of the second and third
components, but the first component is still dominant.

Machine Learning Methods

In studies involving structured datasets with multiple
features, machine learning (ML) approaches offer powerful
alternatives to traditional statistical methods, particularly
when developing prediction models using high-dimensional
data [12]. In this study, the performance of four ML
methods including, CatBoost, Random Forest, Polynomial
Regression, and Support Vector Regression (SVR) is
compared across three data versions: untransformed, QT-
transformed, and BCT-transformed. The results and the
impact of these transformations on model performance are
discussed in detail.

CatBoost

CatBoost has emerged as a powerful tool for ML tasks
involving big data [13]. It is a machine learning algorithm
belonging to the Gradient Incremental Decision Trees
(GADT) family. In this study, it was used for a small
dataset. CatBoost can be used in both classification and
regression problems. CatBoost Regression is the version of
CatBoost used in weight estimation problems. One of the
most important features of CatBoost is that it can work
directly with categorical variables and process these
variables effectively. In the Fish Market dataset, the species
column is a categorical variable. CatBoost applies several
methods to deal with categorical features. For one-hot
encoded features, no special processing is required, and the
histogram-based approach used for partition search can be
easily adapted to this case [14]. When using CatBoost, there
is no need to convert this column into numerical data.
CatBoost is a method that aims to build a strong model by
successively building weak models, usually decision trees.
At each step, it focuses on correcting the prediction errors
of the previous model. The process starts with a simple
model, and each new tree is trained to minimize the errors
of the previous model over gradients. This process improves
the performance of the model step by step. The training
process of the CatBoost model is shown in Fig. 9(a) before
applying the transformation, Fig. 9(b) after QT, and Figure
9 (c¢) after applying BCT. In the graphs, it is observed that

the error value in the test data decreases more than the
training data. MAE values decrease significantly after QT
and BCT. The lowest MAE value is obtained after Quantile
transformation as seen in the graphs. The error values of the
training data show a better reduction than the error values of
the test data. However, as the model becomes more
complex, the risk of overfitting arises.
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A lower error was observed in the train data compared to
the validation data, and this was evaluated in terms of the
possibility of overfitting. However, after hyper parameter
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reduced the risk of overfitting and improved the model's

generalization performance.

CatBoost

Grid search is used to improve the performance of the
model for hyper parameter optimization and to determine

iterations, learning rate, depth and fold count hyper

parameters were tested, and the MAE values of the
combinations without transformation in Fig. 10(a), after QT
in Fig. 10(b) and after BCT in Fig. 10(c) are shown

the best combination of hyper parameters. Using cross-
validation with Grid search, different combinations of

graphically. In this process, the performance of the model
was evaluated according to the MAE metric, and the hyper-
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Figure 9. CatBoost model training process graphs: (a) Without transformation, (b) After QT, (c) After BCT.
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Figure 10. Grid search results showing MAE values for different combinations of CatBoost hyperparameters

(iterations, learning rate, depth, and number of layers). The first column corresponds to the original data
(untransformed), the second column to the data with QT applied, and the third column to the data with BCT applied.

parameters with the lowest MAE values without
transformation, after QT and after BCT were selected.
Thus, it was aimed to generalize the model better and to
prevent overlearning and overfitting. Values giving the
lowest error rate in the absence of transformation:
iterations: 1000, learning rate: 0.01, depth: 6, fold count: 5.
Values giving the least error rate after QT: iterations: 1000,
learning rate: 0.05, depth: 4, fold count: 5 Values giving the
least error rate after BCT: iterations: 1000, learning rate:
0.01, depth: 4, fold count:3. These values are different due
to the transformation of the dataset after the
transformations.

Random Forest

Random Forest is an ML method that can be used in both
classification and weight estimation models. One study
examines the historical development of Random Forest, its
successful applications, and comparisons with other
classifiers [15]. This method is used for a regression
problem and compared with other ML methods in this
study. It is an ensemble of decision trees, generates
multiple decision trees, and makes a final prediction by
taking predictions from these trees and averaging these
predictions. This method uses the bagging technique to
reduce overfitting and increase the model's generalization
ability. This technique allows the model to produce more
balanced and reliable results by training each decision tree
on different subsets of data. It cannot work with categorical

data, so categorical data was converted into numerical data
using the label encoder method.

Polynomial Regression

Polynomial regression is a modeling method used to
understand the relationship between independent and
dependent variables. It is a preferred ML method when the
link between variables is not linear.
y=by+ bix+ byx*+ -+ bx"+ € 5)

here, bo, b1, b2, b are the coefficients of the independent
variable x, x? is its square, € is the error term. In polynomial
regression, more complex and flexible models were created
by adding higher-order terms of the independent variable.
For example, fish length (x) as an independent variable
presented a certain linear relationship when included in the
model alone, while the square of length (x?) helped to better
capture growth trends and make weight estimation more
accurate. Although this method allows for more successful
modeling of nonlinear relationships, the optimum model
complexity was determined to avoid overfitting, as
polynomials of very high degree can lead to overfitting.

Support Vector Regression (SVR)

Support Vector Regression (SVR) is a machine learning
method commonly applied to regression problems and has
been utilized across various domains. For instance, a study

592



DUIJE (Dicle University Journal of Engineering) 16:3 (2025) Page 581-597

by [27] examined treatment processes and the management
of patients who achieved Sustained Virologic Response
(SVR), while [26] explored the application of hybrid
machine learning techniques, particularly SVR, for wind
forecasting and the management of ramp events. In this
study, SVR is employed for the estimation of fish weight.
SVR is an effective method for regression problems with
non-linear relationships such as fish weight estimation. Its
goal is to find the best hyperplane by ignoring the data
within the specified error tolerance (¢). It builds models
with support vectors only, thus avoiding overlearning and
improving  generalization performance. Non-linear
relationships can be captured by using morphological
characteristics of the fish as independent variables and
weight as dependent variable. In this model, the Grid
Search method was used in hyper parameter optimization
to improve the performance of the model and to determine
the most appropriate hyper parameter combination. C,
epsilon, and gamma values were determined by the Grid
search method for non- transformed, after QT and after
BCT. These parameters significantly affect the learning
process and performance of the SVR model. The C
parameter determines the error tolerance of the model. A
high C value leads to a tighter fit of the model to the
training data, but increases the risk of overfitting. A low C
value creates a more flexible model, but may not fit the
training data perfectly. The epsilon parameter determines
the acceptable amount of error in the model's predictions.
A small epsilon value produces more accurate predictions,
while a large epsilon value produces a more general model
and accepts more errors. The gamma parameter determines
the complexity of the kernel function. When 'scale' is
selected, the gamma value is calculated automatically
according to the characteristics of the data. When 'auto' is
selected, the gamma is set to a fixed value. Setting these
hyper parameters correctly improves the overall
performance of the model, leading to more reliable and
accurate predictions and reducing the risk of overfitting.
Fig. 11(a) shows the MAE vs. MAE values of the
combinations of “C”, “Epsilon” and “Gamma” parameters
in the absence of transformation, in Fig. 11(b) after QT and
in Fig. 11(c) after BCT. 'C' in Fig. 11(a): 1000, 'epsilon": 1,
'samma’: 'scale' and 'C": 100, 'epsilon": 0.01, 'gamma': 'auto’
in Fig. 11(b): 100, 'epsilon": 0.01, 'gamma': 'auto' in Fig.
11(b), and 'C": 1000, 'epsilon': 0.01, 'gamma': 'scale' gives
the lowest MAE value.

Quantitative Comparison

The values obtained with Catboost, Random Forest,
Polynomial Regression and SVR methods without
transformation, after QT, and after BCT are given in Table
1. As shown in Table, among the models applied without
transformation, CatBoost yielded the lowest Mean
Absolute Error (MAE), with a value of 14.0020. The
highest MAE value was obtained in the SVR model with a
value of 45.49. In general, it is observed that the average
absolute error in the models decreases significantly after
QT and BCT. This shows that the transformations
significantly reduce the error rate and increase the success
of the model. There is a greater reduction in the error value

after QT than BCT, indicating that QT gives better results
for the dataset. The CatBoost+QT experiment had the
lowest average absolute error in these 12 runs. In the R?
values, the highest value is obtained in the SVR + BCT
method, which means that the model explains all the data
almost perfectly, and the R? values are generally close to 1,
which shows that it successfully explains a large part of the
data in all methods and provides a good fit. Fig. 12 shows
the boxplot of weight prediction with CatBoost model
without transformation, weight prediction with CatBoost
model after QT and weight prediction with CatBoost model
after BCT. Fig. 13 shows the box plot of weight estimation
with the Random Forest model after QT, and weight
estimation with the Random Forest model after BCT. Fig.
14 shows the box plot of weight prediction with the
Polynomial Regression model without transformation,
weight prediction with the Polynomial Regression model
after QT, and weight prediction with the Polynomial
Regression model after BCT. Fig. 15 shows the box plot of
weight prediction with the SVR model without
transformation, after QT, and BCT, respectively.

An analysis of Figs. 12 through 15 clearly demonstrates the
impact of the applied transformations on the distribution of
the data. In the graphs without transformation, it is seen that
the weight values are distributed in a wide range and the data
set exhibits a high degree of variability. This shows that the
data distribution has a skewed structure, especially with the
effect of extreme values. In the graphs obtained after QT,
the distribution is made more symmetric by scaling the
weight values between 0 and 1. This transformation
significantly reduced the effect of outliers and increased the
homogeneity of the data. In graphs obtained after BCT, the
weight values were scaled between 0 and 30, closer to their
original units. This transformation reduced, but did not
completely eliminate, the effect of outliers by bringing the
data closer to a normal distribution.

Limitations of the proposed work

The Fish Market dataset used in this study is one of the rare
open-access resources that provides both morphological
features of different fish species and their corresponding
weight measurements. In the literature, there is a limited
number of reliable datasets that include both physical
measurements and validated weight information, making
this dataset the most suitable option for our study. However,
the dataset consists of only 159 samples, which limits the
generalization capability of the applied machine-learning
algorithms. Additionally, due to the imbalanced
representation of certain species, the models may perform
poorly on underrepresented classes. The small sample size
also increases the risk of overfitting, where the model
performs well on training data but fails to produce accurate
predictions on unseen data.

To address these limitations, future work will focus on
constructing larger datasets with more representative
samples, thereby improving both the accuracy and
generalizability of the models. In addition, synthetic data
generation techniques based on the statistical characteristics

593



DUIJE (Dicle University Journal of Engineering) 16:3 (2025) Page 581-597

250

200

MAE

100

50

200

400 600
C

800 1000

025

0.20

015

MAE

0.10

0.05

cle ®mg ®

200

400 600
C

800 1000

400 600 800 1000

2
S0 250
225
200 500
175 w
g < .0 [}
150 = =150
125 . .
100 100
75 s ]
50{® @ [ ]
00 02 04 06 08
Epsilon
0.25-
0.20 0.20)
015 015
w w
< <
= S
0.10 0.10-
]
L]
0.05 005 g
]
00 02 04 06 08
Epsilon
B 5
4 4
3 3
< e
= =
2 2
) :
* e
l 1 i !
ol . .
00 02 04 06 08
Epsilon

1.0

250
225
200

175

w w
= L] <
=150 1502
. 125
100~ 100
[ ]
d 75
50 *
auto scale
Gamma
0.25
0.20 -0.20
0.15 0.15
w w
< <L
= =
0.10 0.10
. .
L) L]
0.057 e o Woos
s .
auto scale
Gamma
5
4 4
3 3
w w
< =
= =
2 2
1 l ' 1
o' .
auto scale
Gamma

Figure 11. MAE values for Support Vector Regression (SVR) with different combinations of hyper parameters (C,
epsilon, gamma). The first row corresponds to the original data (no transformation), the second row to QT-applied

Table 1. Performance Comparison of Models with and Without Data Transformations

data, and the third row to BCT-applied data.

Method MAE R?
CatBoost 14.0020 0.9958
CatBoost + QT 0.0171 0.9947
CatBoost + BCT 0.3302 0.9971
Random Forest 44.53 0.9692
Random Forest + QT 0.03 0.9815
Random Forest + BCT 0.77 0.9834
Polynomial Regression 42.8059 0.9732
Polynomial Regression + QT 0.0306 0.9847
Polynomial Regression+ BCT 0.6533 0.9882
SVR 45.49 0.9622
SVR + QT 0.01 0.9981
SVR +BCT 0.22 0.9986
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of the existing data may be explored to enhance data
diversity. If visual data is incorporated in subsequent
phases, image-based data augmentation techniques could
also be employed to improve model robustness. Expanding
the dataset in these ways will significantly enhance the
statistical reliability of the findings and their potential
applicability in real-world scenarios.

Conclusions and Future Works

This study investigates the effects of data
transformation methods on improving the fish weight
estimation model's accuracy. The QT and BCT
transformation methods applied to the input data as a
preprocessing step appear to significantly reduce weight
estimation errors by reconstructing the fish weight
distribution closer to normal form. These transformations,
which are applied as a preprocessing step, correct the
skewed distribution in the dataset and enable machine
learning models such as CatBoost, Random Forest,
Polynomial Regression, and SVR to generalize better and
perform better than the weight estimation results obtained
without preprocessing on the raw dataset. Among the QT
and BCT transformation methods, QT outperforms BCT by
giving the lowest MAE value in all machine learning
models. QT applied on the original dataset dramatically
improves by reducing the MAE value from 14.002 to 0.017
with the CatBoost model, which gives the best accuracy,
while BCT achieves an MAE value of 0.330 in the same
model. The experimental results demonstrate that not only
machine learning model selection has a significant impact
on accuracy, but also a well-chosen transformation has a
significant impact on error reduction.

The findings show that proper transformation and data
normalization are important factors in maximizing model
prediction performance. Future studies aim to learn more
complex features from image or video frames using
advanced deep learning architectures such as Convolutional
Neural Networks (CNNs) for fish weight estimation and to
make real-time fish weight estimation using camera and
sensor-based technologies. Moreover, the model's
performance on fish weight estimation using many
parameters will be examined with multi-model data fusion,
such as the use of image data together with sensor readings
on water quality, temperature, and sonar- based
measurements of fish size.
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