

RESEARCH ARTICLE

A note on coset complexes of *p*-subgroups

Huilong Gu¹, Hangyang Meng^{*1,2}, Xiuyun Guo^{1,2}

¹ Department of Mathematics, Shanghai University, ²Newtouch Center for Mathematics of Shanghai University, Shanghai 200444, P. R. China

Abstract

This paper investigates the coset complexes of *p*-subgroups in finite groups. Given a finite group *G* and a prime *p*, we define $\mathscr{C}_p(G)$ as the poset of all cosets of *p*-subgroups of *G*. We construct a probability function $P_p(G, s)$ with group-theoretic connections, strengthen the congruence formula of the *p*-local Euler characteristic of $\mathscr{C}_p(G)$, and analyze the connectivity of $\mathscr{C}_p(G)$.

Mathematics Subject Classification (2020). 20D15, 20D25

Keywords. coset complexes, probability function, Möbius function, connectivity.

1. Introduction

All groups considered in this paper are finite. Let G be a group and p a prime. Given a positive integer s, we write

 $\phi_p(G,s) = |\{(g_1,...,g_s) \mid g_i \in G, 1 \le i \le s \text{ and } \langle g_1,...,g_s \rangle \text{ is a } p\text{-group}\}|.$

Then a probability function that randomly selects s-elements from G to generate p-subgroups can be defined by

$$\mathcal{P}_p(G,s) = \frac{\phi_p(G,s)}{|G|^s}.$$

Obviously, G is a p-group if and only if $P_p(G, s) = 1$. For a prime p and a group G, we denote by $S_p(G)$ the poset of all nontrivial p-subgroups of G. Let

$$\mathfrak{I}_p(G) = \left\{ P_1 \cap P_2 \dots \cap P_s \mid P_i \in \operatorname{Syl}_p(G) \text{ for all } 1 \le i \le s, \text{ and } s \ge 1 \right\}$$

be the set of all intersections of some Sylow p-subgroups of G.

Theorem 1.1. Let G be a group and p a prime. Suppose that G is not a p-group. The probability function $P_p(G, s)$ is given by:

$$\mathbf{P}_{p}(G,s) = -\sum_{H \in \mathcal{S}_{p}(G) \cup \{1\}} \frac{\mu(H,G)}{|G:H|^{s}} = -\sum_{H \in \mathcal{I}_{p}(G)} \frac{\mu(H,G)}{|G:H|^{s}},$$

where μ is the Möbius function of the poset $S_p(G) \cup \{1, G\}$.

^{*}Corresponding Author.

Email addresses: hymeng2009@shu.edu.cn (H. Meng), xyguo@staff.shu.edu.cn (X. Guo) Received: 12.04.2025; Accepted: 27.05.2025

It is easily observed that $P_p(G,s)$ belongs to the ring of finite Dirichlet series

 $\mathbb{C}[1/2^s, 1/3^s, 1/5^s, \cdots],$

which is a unique factorization domain and it is interesting to study the factorization of $P_p(G, s)$ as in [1,2]. We denote by $|G|_{p'}$ the largest positive integer that is coprime to p and divides the order of the group G. Theorem 1.1 implies that $1/|G|_{p'}^s$ divides $P_p(G, s)$ for each finite group G and each prime p. Throughout this paper, we define

$$\mathbf{Z}_p(G,s) = |G|_{p'}^s \mathbf{P}_p(G,s).$$

In fact, we can observe that $Z_p(G, s) \in \mathbb{Z}[1/p^s]$, that is, $Z_p(G, s)$ is a polynomial function of $1/p^s$ with integer coefficients.

In [3], we denote by

$$\mathscr{C}_p(G) = \{ Hx \mid H \text{ is a } p \text{-subgroup of } G, x \in G \}$$

the set of all right cosets Hx with *p*-subgroups H (including the identity subgroup) of G. Let $\Delta \mathscr{C}_p(G)$ be the order complex of $\mathscr{C}_p(G)$. We study the *p*-local Euler characteristic of $\Delta \mathscr{C}_p(G)$, which is defined by

$$\chi_p(G) := \frac{\chi(\mathscr{C}_p(G))}{|G|_{p'}},$$

where $\chi(\mathscr{C}_p(G))$ denotes the Euler characteristic of $\Delta \mathscr{C}_p(G)$.

It easily follows from [3, Theorem A] that

$$\chi_p(G) = \mathbf{Z}_p(G, -1).$$

It is worth noting here that if G is p-closed then $\chi_p(G) = 1$, and the converse is not true in general, for example, $G = S_3 \times S_3$ and p = 2 (see detail in [3, Theorem C]). Here we give a description on p-closed groups and p-TI-groups G with the function $Z_p(G, s)$. Recall that for a prime p, a group G is said to be a p-TI-group if for every $g \in G$, either $P \cap P^g = 1$ or $P = P^g$, where P is a Sylow p-subgroup of G. Such class of groups has been described in [5,8].

Theorem 1.2. Let G be a group and p a prime. Then

(1) $Z_p(G,s) = 1$ if and only if G is p-closed; (2) $Z_p(G,s) = n_p - \frac{n_p - 1}{|G|_p^s}$ if and only if G is a p-TI-group.

where n_p is the number of all Sylow p-subgroups of G.

In [3, Theorem D], we prove that $\chi_p(G) \equiv 1 \pmod{p^d}$, where p^d is the smallest index of the intersection of two distinct Sylow *p*-subgroups *P*, *Q* of *G* in *P*. In fact, we can show a slight further result.

Theorem 1.3. Let p be a prime and let G be a non-p-closed group. Then

$$\chi_p(G) \equiv |\operatorname{Syl}_p(G)| \pmod{p^{d+1}},$$

where $p^d = \min\{|P: P \cap Q| \mid P, Q \in \operatorname{Syl}_p(G) \text{ with } P \neq Q\}.$

In [3, Theorem B], it is shown that a group G is p-closed if and only if $\mathscr{C}_p(G)$ has exactly $|G|_{p'}$ connected components. Denote the set of connected components of the poset $\mathscr{C}_p(G)$ by $\pi_0 \mathscr{C}_p(G)$, for which a detailed definition can be found in Section 4. In fact, we have

Theorem 1.4. Let G be a group and let P be a Sylow p-subgroup of G for some prime p. Then $|\pi_0 \mathscr{C}_p(G)| = |G : P^G|$, where $P^G = \langle P^x | x \in G \rangle$, the normal closure of P in G.

2. Probability function $P_p(G, s)$

Let ${\mathscr C}$ be a finite poset and denote by

$$\mathbf{I}(\mathscr{C}) = \{(x, y) \in \mathscr{C} \times \mathscr{C} \mid x \le y\}$$

the subset of $\mathscr{C} \times \mathscr{C}$ consisting of all pairs x, y in \mathscr{C} with $x \leq y$. Recall that the Möbius function μ of \mathscr{C} is a function from $I(\mathscr{C})$ to \mathbb{Z} such that for each pair $(x, y) \in I(\mathscr{C})$,

$$\sum_{x \le z \le y} \mu(x, z) = \delta(x, y) = \sum_{x \le z \le y} \mu(z, y),$$

where $\delta(x, y) = 1$ if x = y; and $\delta(x, y) = 0$ if x < y.

The following lemma was described in [4, Theorem 2.3]. For the sake of completeness, we present a proof.

Lemma 2.1. Let \mathfrak{X} be a poset consisting of some subgroups of a group G such that $G \notin \mathfrak{X}$ and all meets of some members of \mathfrak{X} exist in \mathfrak{X} . Let μ be the Möbius function of $\overline{\mathfrak{X}} = \mathfrak{X} \cup \{G\}$. Let $H \in \mathfrak{X}$ with $\mu(H, G) \neq 0$. Then H is the meet of a certain number of maximal members of \mathfrak{X} .

Proof. Assume that H is not the meet of a certain number of maximal members of \mathfrak{X} . We work by induction on |G:H|. Let M be the meet of all maximal members of \mathfrak{X} which contain H. Then we have H < M. Write $\mathfrak{Y} = \{K \in \overline{\mathfrak{X}} \mid H < K \text{ and } \mu(K,G) \neq 0\}$. For each $K \in \mathfrak{Y}$ with $Y \neq G$, applying the induction, we get that K is the meet of some maximal members of \mathfrak{X} . Note that such maximal members also contains H. Hence $M \leq K$ by the choice of M. Now, by the definition of μ ,

$$\mu(H,G) = -\sum_{H < K \in \overline{\mathfrak{X}}} \mu(K,G) = -\sum_{H < K \in \mathfrak{Y}} \mu(K,G)$$
$$= -\sum_{M \le K \in \overline{\mathfrak{X}}} \mu(K,G) = -\sum_{M \le K \in \overline{\mathfrak{X}}} \mu(K,G) = 0.$$

Proof of Theorem 1.1. We may assume that G is not a p-group and write $\mathfrak{X} = \mathfrak{S}_p(G) \cup \{1\}$ and $\overline{\mathfrak{X}} = \mathfrak{X} \cup \{G\}$. Recall that $\phi_p(G, s)$ is the number of s-tuple elements in G generating p-groups. For $K \in \overline{\mathfrak{X}}$, we set

$$\psi_p(K,s) = |\{(k_1,\cdots,k_s) \mid k_i \in K \text{ and } K = \langle k_1,\cdots,k_s \rangle \text{ is } p\text{-group}\}|$$

Note that $\psi_p(G,s) = 0$ as G is not a p-group. For each $K \in \overline{\mathfrak{X}}$, by definition,

$$\phi_p(K,s) = \sum_{H \le K \text{ in } \overline{\mathfrak{X}}} \psi_p(H,s)$$

Note that the above equation also holds for K = G as $\psi_p(G, s) = 0$. Applying Möbius inversion formula [9, Proposition 1.2.5], we obtain that

$$\psi_p(K,s) = \sum_{H \leq K \text{ in } \overline{\mathfrak{X}}} \phi_p(H,s) \mu(H,K),$$

where μ is the Möbius function on $\overline{\mathfrak{X}}$. In particular, for K = G, it follows that

$$0 = \psi_p(G, s) = \sum_{H \le G \text{ in } \overline{\mathfrak{X}}} \phi_p(H, s) \mu(H, G) = \phi_p(G, s) + \sum_{H \in \mathfrak{X}} \phi_p(H, s) \mu(H, G),$$

as $\psi_p(G,s) = 0$. For each $H \in \mathfrak{X}$, H is a *p*-group, which implies that $\phi_p(H,s) = |H|^s$ by definition. Hence

$$\phi_p(G,s) = -\sum_{H \in \mathfrak{X}} \phi_p(H,s)\mu(H,G) = -\sum_{H \in \mathfrak{X}} \mu(H,G)|H|^s.$$

Then it easily follows from that

$$\mathbf{P}_p(G,s) = \frac{\phi_p(G,s)}{|G|^s} = -\sum_{H \in \mathfrak{X}} \frac{\mu(H,G)}{|G:H|^s} = -\sum_{H \in \mathfrak{I}_p(G)} \frac{\mu(H,G)}{|G:H|^s}.$$

The last equation follows from Lemma 2.1.

Proof of Theorem 1.2. We will first prove Part (1). If G is p-closed, $\mathcal{I}_p(G)$ contains only the Sylow p-subgroup of G. It easily from Theorem 1.1 and the definition of $\mathbb{Z}_p(G,s)$ that $\mathbb{Z}_p(G,s) = 1$, as desired. Conversely, we may assume that $\mathbb{Z}_p(G,s) = 1$. If G is not p-closed, then, by Theorem 1.1,

$$1 = \mathbf{Z}_p(G, s) = -\sum_{H \in \mathbb{J}_p(G)} \frac{\mu(H, G)}{|G:H|_p^s} = -\sum_{H \in \mathbb{J}_p(G) \setminus \mathrm{Syl}_p(G)} \frac{\mu(H, G)}{|G:H|_p^s} + |\operatorname{Syl}_p(G)|,$$

where μ is the Möbius function of the poset $S_p(G) \cup \{1, G\}$ and $\mu(H, G) = -1$ for $H \in Syl_p(G)$. Comparing the coefficients of $Z_p(G, s)$ as a polynomial of $1/p^s$, we conclude $|Syl_p(G)| = 1$, which is a contradiction. Hence G is p-closed, as desired.

Next we show the sufficiency of Part (2). If G is p-closed, $n_p = 1$. As in the sufficiency proof of Part (1), $Z_p(G, s) = 1 = n_p$, as required.

Assume G is not p-closed. Since G is a p-TI-group, $\mathcal{I}_p(G) = \mathrm{Syl}_p(G) \cup \{1\}$. Consequently, according to Theorem 1.1,

$$\mathbf{Z}_{p}(G,s) = -\sum_{H \in \mathcal{I}_{p}(G)} \frac{\mu(H,G)}{|G:H|_{p}^{s}} = n_{p} - \frac{\mu(1,G)}{|G|_{p}^{s}},$$

where μ is the Möbius function of the poset $S_p(G) \cup \{1, G\}$ and $\mu(H, G) = -1$ for $H \in Syl_p(G)$. By definition of μ and Lemma 2.1,

$$\mu(1,G) = -\sum_{1 < K \in \mathcal{S}_p(G) \cup \{G\}} \mu(K,G) = -\sum_{1 < K \in \mathcal{I}_p(G)} \mu(K,G) - 1 = n_p - 1.$$

Hence $Z_p(G,s) = n_p - (n_p - 1)/|G|_p^s$, as desired.

Finally, we show the necessity of Part (2). We assume that $Z_p(G, s) = n_p - (n_p - 1)/|G|_p^s$, where $n_p = |\operatorname{Syl}_p(G)|$. We will assume that G is not p-closed. Then $\mathfrak{X} = \mathfrak{I}_p(G) \setminus \operatorname{Syl}_p(G) \neq \emptyset$. Write $p^t = \min\{|G|_p/|H| \mid H \in \mathfrak{X}\}$ and $\mathcal{B} = \{H \in \mathfrak{X} \mid |G|_p/|H| = p^t\}$. Clearly $p^t > 1$. For each $H \in \mathfrak{B}$ and $H < K \in \mathfrak{I}_p(G)$, the minimality of $|G|_p/|H|$ implies that $K \in \mathcal{K} \in \mathfrak{I}_p(G)$.

Syl_p(G) and so $\mu(K,G) = -1$. By definition of μ and Lemma 2.1,

$$\mu(H,G) = -\sum_{H < K \in \mathfrak{S}_p(G) \cup \{G\}} \mu(K,G) = -\sum_{H < K \in \mathfrak{I}_p(G)} \mu(K,G) - 1 = n_H - 1,$$

where n_H is the number of Sylow *p*-subgroups of *G* containing *H*. Since *H* is the intersection of at least two Sylow *p*-subgroups, $n_H \ge 2$. Hence $\mu(H, G) \ge 1$ for each $H \in \mathcal{B}$.

Viewing $Z_p(G,s)$ as a polynomial in $\mathbb{Z}[1/p^s]$, the coefficients of the term $(1/p^s)^t$ in $Z_p(G,s)$ is

$$\sum_{H \in \mathcal{B}} \mu(H, G) > 0.$$

Since $Z_p(G, s) = n_p - (n_p - 1)/|G|_p^s$, comparing the non-zero coefficients, we have that $p^t = |G|_p$. The minimality of p^t implies that $\mathfrak{X} = \{1\}$. This means that $\mathfrak{I}_p(G) = \mathrm{Syl}_p(G) \cup \{1\}$ and so G is a p-TI-group by definition. \Box

$$\square$$

3. *p*-local Euler characteristic of $\mathscr{C}_p(G)$

Lemma 3.1. [7, Theorem] Let K be a subgroup of G of order p^m , where p is a prime. If $m \leq n$ and p^n dividing |G|, the number of subgroups of order p^n in G containing K is congruent to 1 modulo p.

Proof of Theorem 1.3. Write $\mathfrak{X} = \mathfrak{S}_p(G) \cup \{1, G\}$. Let

$$p^{d} = \min\{|P: P \cap Q| \mid P, Q \in \operatorname{Syl}_{p}(G), P \neq Q\}.$$

Since G is not p-closed, $p^d > 1$. Write $\mathcal{A} = \{P \cap Q \mid P, Q \in \text{Syl}_p(G) \text{ and } |P : P \cap Q| = p^d\}$. For each $H \in \mathcal{A}$, as $\mu(K, G) = 0$ for all $K \in \mathfrak{X} \setminus (\mathfrak{I}_p(G) \cup \{G\})$ by Lemma 2.1, we have that

$$0 = \sum_{H \leq K \in \mathfrak{X}} \mu(K,G) = \mu(G,G) + \sum_{H \leq K \in \mathbb{J}_p(G)} \mu(K,G) = 1 + \sum_{H \leq K \in \mathbb{J}_p(G)} \mu(K,G).$$

Since $H \in \mathcal{A}$, H is the largest intersection of at least two distinct Sylow subgroups. Hence, for each $H < K \in \mathfrak{I}_p(G)$, $K \in \mathrm{Syl}_p(G)$ and $\mu(K, G) = -1$ Now we will obtain

$$\mu(H,G) = -1 - \sum_{H < K \in \mathbb{J}_p(G)} \mu(K,G) = -1 - \sum_{H < K \in \mathbb{J}_p(G)} (-1) = n_H - 1,$$

where n_H is the number of Sylow *p*-subgroups of *G* containing *H*. Applying Lemma 3.1, we have that *p* divides $n_H - 1 = \mu(H, G)$ for each $H \in \mathcal{A}$.

Note that for each $K \in \mathfrak{I}_p(G) \setminus (\mathcal{A} \cup \operatorname{Syl}_p(G))$, the minimality of p^d implies that p^{d+1} divides $|G|_p/|K|$. Then we have

$$\begin{split} \chi_p(G) &= -\sum_{H \in \mathbb{J}_p(G)} \mu(H,G) \frac{|G|_p}{|H|} \\ &\equiv -\sum_{H \in \operatorname{Syl}_p(G)} \mu(H,G) \frac{|G|_p}{|H|} - \sum_{H \in \mathcal{A}} \mu(H,G) \frac{|G|_p}{|H|} \pmod{p^{d+1}} \\ &\equiv -\sum_{H \in \operatorname{Syl}_p(G)} (-1) - \sum_{H \in \mathcal{A}} \mu(H,G) p^d \pmod{p^{d+1}} \\ &\equiv |\operatorname{Syl}_p(G)| - \sum_{H \in \mathcal{A}} \mu(H,G) p^d \pmod{p^{d+1}} \\ &\equiv |\operatorname{Syl}_p(G)| \pmod{p^{d+1}}. \end{split}$$

The last equality hold since p divides $\mu(H, G)$ for each $H \in \mathcal{A}$.

4. Connectivity of $\mathscr{C}_p(G)$

Recall that, in a finite poset (X, \leq) , we say there is a path from x to y (written by $x \sim y$) for $x, y \in X$ if there exist $x_0, x_1, \ldots, x_n \in X$ such that $x = x_0, x_n = y$ and either $x_i \leq x_{i+1}$ or $x_i \geq x_{i+1}$ for each $i = 0, 1, \ldots, n$. Denote by

$$[x] = \{ y \in X \mid y \sim x \}$$

the connected component containing x of X and by $\pi_0(X) = \{[x] \mid x \in X\}$ the set of all connected components of X. In particular, X is called connected if X has only one connected component; otherwise X is called disconnected, as studied in [6, section 5].

Now, let us consider the set of all connected components of $\mathscr{C}_p(G)$.

Lemma 4.1. Let G be a group and P be a Sylow p-subgroup of G for some prime p. Then $\pi_0 \mathscr{C}_p(G) = \{[Px] \mid x \in G\}.$

Proof. Since G is the union of all cosets Px with $x \in G$, for each $Qy \in \mathscr{C}_p(G)$, there exists some $x \in G$ such that $Qy \cap Px \neq \emptyset$. Let $z \in Qy \cap Px$. We obtain that Qy = Qz and Px = Pz, moreover, $Qy \cap Py = Qz \cap Pz = (Q \cap P)z \in \mathscr{C}_p(G)$. This implies that there is a path $Qy \supseteq Qy \cap Px \subseteq Px$ in $\mathscr{C}_p(G)$. Thus [Qy] = [Px], and consequently $\pi_0 \mathscr{C}_p(G) = \{[Px] \mid x \in G\}$.

Proof of Theorem 1.4. By Lemma 4.1, $\pi_0 \mathscr{C}_p(G) = \{[Px] \mid x \in G\}$. We consider the action of G on $\pi_0 \mathscr{C}_p(G)$ defined by $[Px] \cdot g \triangleq [Pxg]$. It is not difficult to check that such action is well-defined and transitive. Now let S be the stabilizer of [P] in G. The transitivity of this action implies that $|G:S| = |\pi_0 \mathscr{C}_p(G)|$. We only have to show that $S = P^G$, the normal closure of P in G.

For any $g \in P^G$, we can express g as a product $g = x_1 x_2 \cdots x_r$, where each x_i is a p-element of G for $1 \leq i \leq r$. Write $P_i = \langle x_i \rangle, y_i = x_{i+1} \cdots x_r$ for $1 \leq i \leq r-1$ and set $y_0 = x_1 x_2 \cdots x_r = g$ and $y_r = 1$. It is easy to see that $\{y_{i-1}\} \subseteq P_i y_i \supseteq \{y_i\} \subseteq P_{i+1} y_{i+1}$ for each $i \geq 1$. Hence there exists a sequence of inclusions in $\mathscr{C}_p(G)$ as follows:

$$Pg \supseteq \{g = y_0\} \subseteq P_1y_1 \supseteq y_1 \subseteq P_2y_2 \supseteq \cdots \supseteq y_{r-1} \subseteq P_r \supseteq \{y_r = 1\} \subseteq P,$$

which implies that [P] = [Pg] = [P]g and so $g \in S$.

Conversely, for any $g \in S$, we have [Pg] = [P]. It implies the existence of a sequence of vertices $T_i y_i$ in $\mathscr{C}_p(G)$ such that:

$$Pg = T_1y_1 \supseteq T_2y_2 \subseteq T_3y_3 \supseteq \cdots \subseteq T_{2n-1}y_{2n-1} = P.$$

From this, we can deduce that:

$$g^{-1} = y_{2n-1}^{-1}(y_{2n-1}y_{2n-2}^{-1})\cdots(y_3y_2^{-1})(y_2g^{-1}) \in \langle T_1, T_3, \dots, T_{2n-1} \rangle \le P^G.$$

Thus we have shown that $S = P^G$, as desired.

Acknowledgements

The second author is supported by the Natural Science Foundation of Shanghai (24ZR1422800) and the National Natural Science Foundation of China (12471018); The third author is supported by the National Natural Science Foundation of China (12171302).

References

- E. Detomi and A. Lucchini, Recognizing soluble groups from their probabilistic zeta functions, Bull. London Math. Soc. 35 (5), 659–664, 2003.
- [2] E. Detomi and A. Lucchini, Some generalizations of the probabilistic zeta function, Ischia Group Theory 2006, 56–72, 2007.
- [3] H. Gu, H. Meng, and X. Guo, Coset complexes of p-subgroups in finite groups, Reprint, arXiv:2503.06379, 2025.
- [4] P. Hall. The Eulerian functions of a finite group, Q. J. Math. 7 (1), 134–151, 1936.
- [5] C. Y. Ho, Finite groups in which two different Sylow p-subgroups have trivial intersection for an odd prime p, J. Math. Soc. Japan, 31 (4), 669–675, 1979.
- [6] D. Quillen, Homotopy properties of the poset of nontrivial p-subgroups of a group, Advances in Math. 28 (2), 101–128, 1978.
- [7] E. Snapper, Counting p-subgroups Proc. Amer. Math. Soc. 39 (1), 81–82, 1973.
- [8] M. Suzuki, Finite groups of even order in which Sylow 2-groups are independent, Ann. of Math. 80 (1), 58–77, 1964.
- [9] M. Wachs, *Poset topology: tools and applications*, Reprint, arXiv: math/0602226, 2006.