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Abstract
This paper investigates the coset complexes of p-subgroups in finite groups. Given a
finite group G and a prime p, we define Cp(G) as the poset of all cosets of p-subgroups
of G. We construct a probability function Pp(G, s) with group-theoretic connections,
strengthen the congruence formula of the p-local Euler characteristic of Cp(G), and analyze
the connectivity of Cp(G).
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1. Introduction
All groups considered in this paper are finite. Let G be a group and p a prime. Given

a positive integer s, we write
ϕp(G, s) = |{(g1, ...., gs) | gi ∈ G, 1 ≤ i ≤ s and ⟨g1, ...., gs⟩ is a p-group}|.

Then a probability function that randomly selects s-elements from G to generate p-
subgroups can be defined by

Pp(G, s) = ϕp(G, s)
|G|s

.

Obviously, G is a p-group if and only if Pp(G, s) = 1. For a prime p and a group G, we
denote by Sp(G) the poset of all nontrivial p-subgroups of G. Let

Ip(G) =
{
P1 ∩ P2 · · · ∩ Ps | Pi ∈ Sylp(G) for all 1 ≤ i ≤ s, and s ≥ 1

}
be the set of all intersections of some Sylow p-subgroups of G.

Theorem 1.1. Let G be a group and p a prime. Suppose that G is not a p-group. The
probability function Pp(G, s) is given by:

Pp(G, s) = −
∑

H∈Sp(G)∪{1}

µ(H,G)
|G : H|s

= −
∑

H∈Ip(G)

µ(H,G)
|G : H|s

,

where µ is the Möbius function of the poset Sp(G) ∪ {1, G}.
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It is easily observed that Pp(G, s) belongs to the ring of finite Dirichlet series

C[1/2s, 1/3s, 1/5s, · · · ],

which is a unique factorization domain and it is interesting to study the factorization of
Pp(G, s) as in [1, 2]. We denote by |G|p′ the largest positive integer that is coprime to p
and divides the order of the group G. Theorem 1.1 implies that 1/|G|sp′ divides Pp(G, s)
for each finite group G and each prime p. Throughout this paper, we define

Zp(G, s) = |G|sp′ Pp(G, s).

In fact, we can observe that Zp(G, s) ∈ Z[1/ps], that is, Zp(G, s) is a polynomial function
of 1/ps with integer coefficients.

In [3], we denote by

Cp(G) = {Hx | H is a p-subgroup of G, x ∈ G}

the set of all right cosets Hx with p-subgroups H (including the identity subgroup) of G.
Let ∆Cp(G) be the order complex of Cp(G). We study the p-local Euler characteristic of
∆Cp(G), which is defined by

χp(G) := χ(Cp(G))
|G|p′

,

where χ(Cp(G)) denotes the Euler characteristic of ∆Cp(G).
It easily follows from [3, Theorem A] that

χp(G) = Zp(G,−1).

It is worth noting here that if G is p-closed then χp(G) = 1, and the converse is not
true in general, for example, G = S3 × S3 and p = 2 (see detail in [3, Theorem C]). Here
we give a description on p-closed groups and p-TI-groups G with the function Zp(G, s).
Recall that for a prime p, a group G is said to be a p-TI-group if for every g ∈ G, either
P ∩ P g = 1 or P = P g, where P is a Sylow p-subgroup of G. Such class of groups has
been described in [5, 8].

Theorem 1.2. Let G be a group and p a prime. Then
(1) Zp(G, s) = 1 if and only if G is p-closed;
(2) Zp(G, s) = np − np−1

|G|sp
if and only if G is a p-TI-group.

where np is the number of all Sylow p-subgroups of G.

In [3, Theorem D], we prove that χp(G) ≡ 1 (mod pd), where pd is the smallest index
of the intersection of two distinct Sylow p-subgroups P,Q of G in P . In fact, we can show
a slight further result.

Theorem 1.3. Let p be a prime and let G be a non-p-closed group. Then

χp(G) ≡ | Sylp(G)| (mod pd+1),

where pd = min{|P : P ∩Q| | P,Q ∈ Sylp(G) with P ̸= Q}.

In [3, Theorem B], it is shown that a group G is p-closed if and only if Cp(G) has exactly
|G|p′ connected components. Denote the set of connected components of the poset Cp(G)
by π0Cp(G), for which a detailed definition can be found in Section 4. In fact, we have

Theorem 1.4. Let G be a group and let P be a Sylow p-subgroup of G for some prime p.
Then |π0Cp(G)| = |G : PG|, where PG = ⟨P x|x ∈ G⟩, the normal closure of P in G.
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2. Probability function Pp(G, s)
Let C be a finite poset and denote by

I(C ) = {(x, y) ∈ C × C | x ≤ y}.
the subset of C × C consisting of all pairs x, y in C with x ≤ y. Recall that the Möbius
function µ of C is a function from I(C ) to Z such that for each pair (x, y) ∈ I(C ),∑

x≤z≤y

µ(x, z) = δ(x, y) =
∑

x≤z≤y

µ(z, y),

where δ(x, y) = 1 if x = y; and δ(x, y) = 0 if x < y.
The following lemma was described in [4, Theorem 2.3]. For the sake of completeness,

we present a proof.

Lemma 2.1. Let X be a poset consisting of some subgroups of a group G such that G /∈ X
and all meets of some members of X exist in X. Let µ be the Möbius function of X =
X ∪ {G}. Let H ∈ X with µ(H,G) ̸= 0. Then H is the meet of a certain number of
maximal members of X.

Proof. Assume that H is not the meet of a certain number of maximal members of X.
We work by induction on |G : H|. Let M be the meet of all maximal members of X which
contain H. Then we have H < M . Write Y = {K ∈ X | H < K and µ(K,G) ̸= 0}.
For each K ∈ Y with Y ̸= G, applying the induction, we get that K is the meet of some
maximal members of X. Note that such maximal members also contains H. Hence M ≤ K
by the choice of M . Now, by the definition of µ,

µ(H,G) = −
∑

H<K∈X

µ(K,G) = −
∑

H<K∈Y

µ(K,G)

= −
∑

M≤K∈Y

µ(K,G) = −
∑

M≤K∈X

µ(K,G) = 0.

□

Proof of Theorem 1.1. We may assume that G is not a p-group and write X = Sp(G)∪
{1} and X = X ∪ {G}. Recall that ϕp(G, s) is the number of s-tuple elements in G

generating p-groups. For K ∈ X, we set
ψp(K, s) = |{(k1, · · · , ks) | ki ∈ K and K = ⟨k1, · · · , ks⟩ is p-group}|.

Note that ψp(G, s) = 0 as G is not a p-group. For each K ∈ X, by definition,

ϕp(K, s) =
∑

H≤K in X

ψp(H, s).

Note that the above equation also holds for K = G as ψp(G, s) = 0. Applying Möbius
inversion formula [9, Proposition 1.2.5], we obtain that

ψp(K, s) =
∑

H≤K in X

ϕp(H, s)µ(H,K),

where µ is the Möbius function on X. In particular, for K = G, it follows that

0 = ψp(G, s) =
∑

H≤G in X

ϕp(H, s)µ(H,G) = ϕp(G, s) +
∑

H∈X

ϕp(H, s)µ(H,G),

as ψp(G, s) = 0. For each H ∈ X, H is a p-group, which implies that ϕp(H, s) = |H|s by
definition. Hence

ϕp(G, s) = −
∑

H∈X

ϕp(H, s)µ(H,G) = −
∑

H∈X

µ(H,G)|H|s.
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Then it easily follows from that

Pp(G, s) = ϕp(G, s)
|G|s

= −
∑

H∈X

µ(H,G)
|G : H|s

= −
∑

H∈Ip(G)

µ(H,G)
|G : H|s

.

The last equation follows from Lemma 2.1.
□

Proof of Theorem 1.2. We will first prove Part (1). If G is p-closed, Ip(G) contains
only the Sylow p-subgroup of G. It easily from Theorem 1.1 and the definition of Zp(G, s)
that Zp(G, s) = 1, as desired. Conversely, we may assume that Zp(G, s) = 1. If G is not
p-closed, then, by Theorem 1.1,

1 = Zp(G, s) = −
∑

H∈Ip(G)

µ(H,G)
|G : H|sp

= −
∑

H∈Ip(G)\Sylp(G)

µ(H,G)
|G : H|sp

+ | Sylp(G)|,

where µ is the Möbius function of the poset Sp(G) ∪ {1, G} and µ(H,G) = −1 for H ∈
Sylp(G). Comparing the coefficients of Zp(G, s) as a polynomial of 1/ps, we conclude
| Sylp(G)| = 1, which is a contradiction. Hence G is p-closed, as desired.

Next we show the sufficiency of Part (2). If G is p-closed, np = 1. As in the sufficiency
proof of Part (1), Zp(G, s) = 1 = np, as required.

AssumeG is not p-closed. SinceG is a p-TI-group, Ip(G) = Sylp(G)∪{1}. Consequently,
according to Theorem 1.1,

Zp(G, s) = −
∑

H∈Ip(G)

µ(H,G)
|G : H|sp

= np − µ(1, G)
|G|sp

,

where µ is the Möbius function of the poset Sp(G) ∪ {1, G} and µ(H,G) = −1 for H ∈
Sylp(G). By definition of µ and Lemma 2.1,

µ(1, G) = −
∑

1<K∈Sp(G)∪{G}
µ(K,G) = −

∑
1<K∈Ip(G)

µ(K,G) − 1 = np − 1.

Hence Zp(G, s) = np − (np − 1)/|G|sp, as desired.
Finally, we show the necessity of Part (2). We assume that Zp(G, s) = np−(np−1)/|G|sp,

where np = | Sylp(G)|. We will assume that G is not p-closed. Then X = Ip(G)\Sylp(G) ̸=
∅. Write pt = min{|G|p/|H| | H ∈ X} and B = {H ∈ X | |G|p/|H| = pt}. Clearly pt > 1.

For each H ∈ B and H < K ∈ Ip(G), the minimality of |G|p/|H| implies that K ∈
Sylp(G) and so µ(K,G) = −1. By definition of µ and Lemma 2.1,

µ(H,G) = −
∑

H<K∈Sp(G)∪{G}
µ(K,G) = −

∑
H<K∈Ip(G)

µ(K,G) − 1 = nH − 1,

where nH is the number of Sylow p-subgroups of G containing H. Since H is the inter-
section of at least two Sylow p-subgroups, nH ≥ 2. Hence µ(H,G) ≥ 1 for each H ∈ B.

Viewing Zp(G, s) as a polynomial in Z[1/ps], the coefficients of the term (1/ps)t in
Zp(G, s) is ∑

H∈B

µ(H,G) > 0.

Since Zp(G, s) = np − (np − 1)/|G|sp, comparing the non-zero coefficients, we have that
pt = |G|p. The minimality of pt implies that X = {1}. This means that Ip(G) = Sylp(G) ∪
{1} and so G is a p-TI-group by definition. □
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3. p-local Euler characteristic of Cp(G)
Lemma 3.1. [7, Theorem] Let K be a subgroup of G of order pm, where p is a prime.
If m ≤ n and pn dividing |G|, the number of subgroups of order pn in G containing K is
congruent to 1 modulo p.

Proof of Theorem 1.3. Write X = Sp(G) ∪ {1, G}. Let

pd = min{|P : P ∩Q| | P,Q ∈ Sylp(G), P ̸= Q}.

SinceG is not p-closed, pd > 1. Write A = {P∩Q | P,Q ∈ Sylp(G) and |P : P∩Q| = pd}.
For each H ∈ A, as µ(K,G) = 0 for all K ∈ X \ (Ip(G) ∪ {G}) by Lemma 2.1, we have
that

0 =
∑

H≤K∈X

µ(K,G) = µ(G,G) +
∑

H≤K∈Ip(G)
µ(K,G) = 1 +

∑
H≤K∈Ip(G)

µ(K,G).

Since H ∈ A, H is the largest intersection of at least two distinct Sylow subgroups.
Hence, for each H < K ∈ Ip(G), K ∈ Sylp(G) and µ(K,G) = −1 Now we will obtain

µ(H,G) = −1 −
∑

H<K∈Ip(G)
µ(K,G) = −1 −

∑
H<K∈Ip(G)

(−1) = nH − 1,

where nH is the number of Sylow p-subgroups of G containing H. Applying Lemma 3.1,
we have that p divides nH − 1 = µ(H,G) for each H ∈ A.

Note that for each K ∈ Ip(G) \ (A ∪ Sylp(G)), the minimality of pd implies that pd+1

divides |G|p/|K|. Then we have

χp(G) = −
∑

H∈Ip(G)
µ(H,G) |G|p

|H|

≡ −
∑

H∈Sylp(G)
µ(H,G) |G|p

|H|
−

∑
H∈A

µ(H,G) |G|p
|H|

(mod pd+1)

≡ −
∑

H∈Sylp(G)
(−1) −

∑
H∈A

µ(H,G)pd (mod pd+1)

≡ | Sylp(G)| −
∑

H∈A

µ(H,G)pd (mod pd+1)

≡ | Sylp(G)| (mod pd+1).

The last equality hold since p divides µ(H,G) for each H ∈ A. □

4. Connectivity of Cp(G)

Recall that, in a finite poset (X,≤), we say there is a path from x to y (written by
x ∼ y) for x, y ∈ X if there exist x0, x1, . . . , xn ∈ X such that x = x0, xn = y and either
xi ≤ xi+1 or xi ≥ xi+1 for each i = 0, 1, . . . , n. Denote by

[x] = {y ∈ X | y ∼ x}

the connected component containing x of X and by π0(X) = {[x] | x ∈ X} the set of
all connected components of X. In particular, X is called connected if X has only one
connected component; otherwise X is called disconnected, as studied in [6, section 5].

Now, let us consider the set of all connected components of Cp(G).

Lemma 4.1. Let G be a group and P be a Sylow p-subgroup of G for some prime p. Then
π0Cp(G) = {[Px] | x ∈ G}.
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Proof. Since G is the union of all cosets Px with x ∈ G, for each Qy ∈ Cp(G), there
exists some x ∈ G such that Qy ∩ Px ̸= ∅. Let z ∈ Qy ∩ Px. We obtain that Qy = Qz
and Px = Pz, moreover, Qy ∩ Py = Qz ∩ Pz = (Q ∩ P )z ∈ Cp(G). This implies that
there is a path Qy ⊇ Qy ∩ Px ⊆ Px in Cp(G). Thus [Qy] = [Px], and consequently
π0Cp(G) = {[Px] | x ∈ G}. □
Proof of Theorem 1.4. By Lemma 4.1, π0Cp(G) = {[Px] | x ∈ G}. We consider the
action of G on π0Cp(G) defined by [Px] · g ≜ [Pxg]. It is not difficult to check that
such action is well-defined and transitive. Now let S be the stabilizer of [P ] in G. The
transitivity of this action implies that |G : S| = |π0Cp(G)|. We only have to show that
S = PG, the normal closure of P in G.

For any g ∈ PG, we can express g as a product g = x1x2 · · ·xr, where each xi is a
p-element of G for 1 ≤ i ≤ r. Write Pi = ⟨xi⟩, yi = xi+1 · · ·xr for 1 ≤ i ≤ r − 1 and set
y0 = x1x2 · · ·xr = g and yr = 1. It is easy to see that {yi−1} ⊆ Piyi ⊇ {yi} ⊆ Pi+1yi+1
for each i ≥ 1. Hence there exists a sequence of inclusions in Cp(G) as follows:

Pg ⊇ {g = y0} ⊆ P1y1 ⊇ y1 ⊆ P2y2 ⊇ · · · ⊇ yr−1 ⊆ Pr ⊇ {yr = 1} ⊆ P,

which implies that [P ] = [Pg] = [P ]g and so g ∈ S.
Conversely, for any g ∈ S, we have [Pg] = [P ]. It implies the existence of a sequence of

vertices Tiyi in Cp(G) such that:
Pg = T1y1 ⊇ T2y2 ⊆ T3y3 ⊇ · · · ⊆ T2n−1y2n−1 = P.

From this, we can deduce that:
g−1 = y−1

2n−1(y2n−1y
−1
2n−2) · · · (y3y

−1
2 )(y2g

−1) ∈ ⟨T1, T3, . . . , T2n−1⟩ ≤ PG.

Thus we have shown that S = PG, as desired.
□
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