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Abstract 

In this study, a deep learning-based decision support system was developed to classify diabetic 

retinopathy (DR), macular hole (MH), and healthy cases using fundus images. A total of 1,397 

fundus images, selected from the open-source Retinal Disease Classification dataset, were used 

in the training and testing phases. ResNet50, InceptionV3, and Xception models were trained 

with different hyperparameter configurations, and their performances were evaluated 

comparatively. Among the models, ResNet50 achieved the highest accuracy on the test set, 

reaching 93.79%. However, the Xception model exhibited superior robustness and stability across 

various hyperparameter settings, consistently delivering balanced and reliable classification 

performance. These findings indicate that deep learning-based approaches can be effectively 

utilized as clinical decision support systems for the diagnosis of retinal diseases. 

Keywords: deep learning, fundus images, diabetic retinopathy, macular hole, convolutional 

neural networks, Resnet50, Xception, InceptionV3 

 

1. Introduction 

The use of artificial intelligence (AI) methods in healthcare has rapidly expanded in recent 
years. In particular, AI applications powered by deep learning techniques are increasingly 
being adopted in the medical field [1]. In this context, the early diagnosis of eye diseases is 
crucial for preventing permanent vision loss. Conditions such as diabetic retinopathy (DR) 
and macular hole (MH) can lead to severe visual impairment, especially in their advanced 
stages [2]. Fundus images play a critical role in the diagnosis of these diseases by enabling 
a detailed examination of the retinal layer, thus supporting physicians in the decision-making 
process [2], [3]. However, manual interpretation of fundus images is time-consuming and 
susceptible to human error. At this point, digital image processing and deep learning methods 
offer valuable assistance by serving as decision support systems for the classification of 
fundus images [4]. 

In this study, deep learning-based image processing models were trained to classify DR [5], 
MH [6], and healthy samples using fundus images. The Retinal Disease Classification 
dataset [7], an open-source collection of fundus images representing different disease 
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categories, was used in the study. These images were processed and trained with various 
hyperparameter configurations using ResNet50 [8], InceptionV3 [9], and Xception [10] 
models, and the performance of each model was comparatively analyzed. The results 
indicated that ResNet50 and Xception achieved high classification accuracies of 93.70% and 
92.94%, respectively, by effectively capturing distinctive features in fundus images. 
InceptionV3 also performed well with an accuracy of 88.70%, though slightly lower than the 
other two models. 

This study highlights the effectiveness of deep learning-based artificial intelligence 
approaches in the diagnosis of retinal diseases and aims to contribute to future clinical 
applications. The findings support the integration of AI-powered decision support systems, 
particularly in the early detection of conditions such as DR and MH, where early diagnosis is 
critical. 

2. Retinal Diseases 

The retina is one of the fundamental structures responsible for the visual function of the 
eye. Retinal diseases can lead to serious and permanent vision loss if not diagnosed 
and treated in a timely manner [11]. In this section, we focus on DR and MH, two common 
retinal disorders that fall within the scope of this study and can cause significant visual 
impairment if not detected early. 

2.1 Diabetic Retinopathy 

Diabetic retinopathy (DR) is a serious retinal disease affecting one-third of the 
approximately 285 million people with diabetes worldwide. One third of these individuals 
also have vision-threatening symptoms of DR [12]. DR occurs in diabetic patients when 
the blood vessels in the retina are damaged due to high blood glucose levels [2]. Since 
the disease is usually asymptomatic in the initial stages, it is difficult to diagnose early 
and often manifests itself in later stages with symptoms such as blurred vision, dark spots 
in the visual field and vision loss. Therefore, early diagnosis of DR is critical to stop the 
progression of the disease and prevent vision loss. In the absence of early diagnosis and 
treatment, the disease can cause severe vision loss, up to blindness [5]. Figure 1 
presents sample images labeled as DR from the Retinal Disease Classification dataset 
[7]. 

   

Figure 1. Fundus images labeled as DR in the Retinal Disease Classification dataset. 

 

2.2 Macular Hole 

A macular hole (MH) is a small tear or opening that occurs in the macula, the central 
region of the retina. Since the macula is responsible for sharp and detailed central vision, 
a hole in this area can significantly impair visual acuity [6]. A MH is often associated with 
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the natural process of aging; it occurs as the structure of the vitreous fluid deteriorates 
and separates from the macula with age. The incidence is particularly high in individuals 
over 50 years of age. Early signs of the disease include distorted central vision, blurred 
vision and the inability to see fine details. When treatment is delayed, the damage to the 
macular area deepens and this can lead to permanent vision loss. Early detection of MH 
and appropriate intervention can preserve central vision [6], [13]. Figure 2 presents 
sample images labeled as MH from the Retinal Disease Classification dataset [7]. 

   

Figure 2. Fundus images labeled as MH in the Retinal Disease Classification dataset. 

3. Literature Review 

In recent years, deep learning-based models developed for the early diagnosis of retinal 
diseases—especially DR—have attracted significant interest in the research community. 
The potential of artificial intelligence-based systems to enhance the efficiency of clinical 
processes is particularly evident when faced with limited data and complex diagnostic 
challenges. In this section, we review some of the most influential studies on the 
classification and diagnosis of retinal diseases. 

Kori et al. (2018) employed a CNN-based ensemble approach for the automatic grading 
of DR and macular edema (ME). To address the challenge of limited labeled data, the 
researchers utilized transfer learning by fine-tuning models that were previously trained 
on ImageNet, adapting them to fundus images. The final model achieved an accuracy of 
83.9% for DR grading and 95.45% for ME grading. The study emphasized that the 
ensemble method outperformed a single CNN model and highlighted the effectiveness 
of transfer learning techniques [14]. 

Sahlsten et al. (2019) proposed a deep learning-based method for the automatic 
detection of DR and ME using high-resolution fundus images. Their study achieved high 
accuracy rates, emphasizing the potential for increased cost-effectiveness in existing 
screening programs [15]. 

Torre et al. (2020) developed a deep learning classifier aimed at improving interpretability 
in DR grading. Their method assigned importance scores to individual pixels or regions 
contributing to the final classification, enhancing transparency for clinical experts. This 
not only improved the diagnostic reliability but also underscored its potential for 
integration into clinical decision support systems [16]. 

Özçelik and Altan (2021) introduced a two-stage model for the early diagnosis of DR. In 
the first stage, two-dimensional signal processing techniques were utilized to prevent 
overfitting, while in the second stage, classification was performed using ESA-based 
transfer learning. The model was trained on 5,100 fundus images and achieved an 
accuracy of 97.8%. This study demonstrated the model’s speed and reliability as a 
diagnostic tool [5]. 
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Aykat and Senan (2023) proposed a deep learning-based method for diagnosing retinal 
diseases such as DR and cataract. In their study, fundus images were enhanced using 
histogram equalization as preprocessing and 99% accuracy was achieved with the 
MobileNet-based hybrid model. These results suggest that the hybrid model outperforms 
similar methods in existing literature [2]. 

Polater and Işık (2024) conducted a study on the classification of DR severity levels using 
the APTOS 2019 dataset. By employing the DenseNet121 model, they achieved 
approximately 97% accuracy. Their findings reaffirm the superior performance of the 
DenseNet121 architecture and the overall efficacy of deep learning methods in DR 
diagnosis [17]. 

These studies clearly demonstrate that deep learning methods offer high accuracy and 
reliability in the diagnosis of DR and other retinal diseases. Validating these models on 
diverse datasets and across various clinical scenarios may broaden their applicability in 
diagnostic and treatment workflows and contribute to the development of robust clinical 
decision support systems. 

4. Material and Method 

4.1 Dataset 

The Retinal Disease Classification dataset [7] used in this study is a comprehensive and 
open-source dataset designed for the classification of eye diseases based on retinal 
fundus images. It contains a total of 3,200 fundus images representing 46 distinct ocular 
diseases. The images were captured using three different fundus cameras—TOPCON 
3D OCT-2000, Kowa VX-10, and TOPCON TRC-NW300—and each image was 
meticulously labeled by two senior retina specialists. The use of multiple imaging devices 
and expert annotations enhances both the diversity and reliability of the dataset. 

The fact that the images were obtained from different devices increases the 
generalization capability of the deep learning models by reducing dependency on a 
specific device or lighting condition. Additionally, the dataset’s wide range of disease 
classes facilitates the development of models capable of detecting multiple retinal 
disorders simultaneously. For the purpose of this study, three classes were selected: 
DR, MH, and Healthy (No Disease). These classes are commonly encountered in clinical 
settings and exhibit a relatively balanced distribution within the dataset, allowing for more 
consistent and reliable results during model training and evaluation. 

From the 1,397 fundus images selected for this study, a total of 1,043 images were 
allocated to the training set, comprising 349 DR, 293 MH, and 401 healthy images. The 
remaining 354 images were used for testing, including 120 DR, 100 MH, and 134 healthy 
images. Accordingly, approximately 75% of the data was used for training and 25% for 
testing. Figure 3 illustrates representative fundus images from each of the three selected 
classes. 
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Figure 3.  Sample fundus images from Retinal Disease Classification dataset. From left 
to right: Macular Hole, Diabetic Retinopathy, No Disease 

4.1.1 Image Preprocessing 

Various image preprocessing steps were applied to ensure high accuracy and 
generalization capability of the trained deep learning models. Fundus images were 
resized to 299×299 pixels to be compatible with the input layers of the deep learning 
models. In addition, the pixel values of the images were normalized to the range [0, 1] to 
facilitate the training process of the models. 

In this study, data augmentation strategies were also included in the training processes. 
Figure 4 shows the data augmentation process used in the training scenarios where the 
data augmentation strategy was applied. Data augmentation aims to diversify the limited 
amount of training data and increase the robustness of the models against different 
variations. The operations in the data augmentation process were randomly applied to 
the images at each iteration. The applied methods include random rotation up to 30 
degrees (rotation_range=30), horizontal and vertical shift up to 20% 
(width_shift_range=0.2, height_shift_range=0.2), shear up to 20% (shear_range=0.2), 
zoom in up to 20% (zoom_range=0.2), random change of brightness values within a 20% 
range (brightness_range=[0.8, 1.2]) and random flip on the horizontal axis 
(horizontal_flip=True). 

 

 

 

 

 

 

Figure 4. Data augmentation process 

4.2 Deep Neural Networks 

Deep learning, as one of the cornerstones of modern artificial intelligence research, has 
achieved significant advances in image processing and classification. In particular, 
convolutional neural networks (CNNs) have demonstrated remarkable success in 
analyzing and classifying visual data, and these models have evolved to become more 
efficient and effective over time [10], [18]. In this study, three different CNN-based deep 
learning architectures were employed for retinal image classification: ResNet50, 
InceptionV3, and Xception. 
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ResNet50, developed by He et al. in 2015, is a CNN architecture designed to address 
the vanishing gradient problem encountered during the training of deep neural networks 
[8]. It introduces residual connections that allow the output of a layer to be added to 
the input of a deeper layer, enabling more effective training of very deep architectures. 
ResNet50 consists of a total of 50 layers and has demonstrated high performance in 
complex image classification tasks. 

InceptionV3 is a CNN model developed by Google that applies convolutional filters of 
varying sizes in parallel, allowing for the extraction of image features at multiple spatial 
scales [9]. This multi-scale filtering approach enables the model to capture visual 
patterns at different levels of detail while improving parameter efficiency and reducing 
computational cost. Thanks to this design, InceptionV3 achieves high classification 
accuracy and is widely adopted across various computer vision applications. 

Xception is a CNN architecture designed as an enhanced version of the Inception model 
[10]. It utilizes depthwise separable convolutions to reduce the number of parameters 
and improve computational efficiency compared to traditional CNN structures. Xception 
has outperformed InceptionV3 on large-scale datasets such as ImageNet (ILSVRC) and 
JFT. Furthermore, it has proven highly effective in transfer learning scenarios, achieving 
strong performance across diverse classification tasks. 

5. Training and Results 

In this study, three different CNN based models—ResNet50, InceptionV3, and 
Xception—were used, and a total of 15 training scenarios were evaluated, combining 
three different hyperparameters (end-to-end learning, data augmentation, and learning 
rate) for each architecture. All models were trained using the Adam optimization 
algorithm for 50 epochs, with learning rates set at 0.001 and 0.0001. The detailed training 
and test accuracy results, along with loss values for each scenario, are summarized in 
Table 1. Additionally, Figure 6 illustrates the epoch-based test accuracy progression for 
each model throughout the training phase, while Figure 7 presents corresponding 
accuracy curves for the training sets. Further insights into model convergence and 
stability can be observed in the loss curves presented in Figures 8 and 9, showing test 
and training loss, respectively. Moreover, Table 2 provides a more comprehensive 
evaluation, detailing precision, recall, and F1-score metrics for each class and scenario, 
enabling deeper analysis beyond overall accuracy. 

In each model architecture, the original output layers were removed, and a Global 
Average Pooling layer was added to the end of the base model to adapt it to the target 
dataset. This approach converts the output feature maps into a one-dimensional vector, 
helping reduce the number of parameters while preserving high-level feature 
representations. Following this, a Dense layer with 256 neurons and ReLU activation 
was added, along with 30% Dropout to prevent overfitting. Finally, a Softmax-activated 
output layer was used for classification into three classes: Diabetic Retinopathy, Macular 
Hole, and Healthy. The block diagram illustrating this modified CNN architecture is 
shown in Figure 5. 

 

Figure 5. Modified CNN Architecture 
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In Table 1, when the "End to End Learning" parameter is "-", the base model weights are 
frozen, and only the newly added layers are trained. When the parameter is "+", training 
is performed end-to-end. All models were initialized with pre-trained weights from the 
ImageNet dataset. In scenarios where data augmentation was applied, the strategy 
illustrated in Figure 4 was used to evaluate the robustness of the models against image 
variations. 

Table 1. Training and Test Results 

Model End to End 
Learning 

Augmentation Learning Rate Loss Acc Test-
Loss 

Test-
Acc 

ResNet_1 - - 0.0010 1.0291 0.4382 1.0527 0.4209 
ResNet_2 - + 0.0010 1.0568 0.4267 1.0506 0.4379 
ResNet_3 - - 0.0001 1.0240 0.4861 1.0628 0.4237 
ResNet_4 + - 0.0001 0.0033 0.9990 0.2751 0.9379 
ResNet_5 + + 0.0001 0.1276 0.9569 0.6505 0.8559 

Inception_1 - - 0.0010 0.0379 0.9895 0.4572 0.8814 
Inception_2 - + 0.0010 0.2624 0.8907 0.3732 0.8701 
Inception_3 - - 0.0001 0.0732 0.9818 0.3131 0.8870 
Inception_4 + - 0.0001 0.0122 0.9971 0.4580 0.8870 
Inception _5 + + 0.0001 0.0856 0.9732 0.3672 0.8729 

Xception_1 - - 0.0010 0.0179 0.9952 0.4203 0.9040 
Xception_2 - + 0.0010 0.1965 0.9271 0.2570 0.9153 
Xception_3 - - 0.0001 0.1036 0.9703 0.2301 0.9181 
Xception_4 + - 0.0001 0.0950 0.9962 0.4866 0.9294 
Xception_5 + + 0.0001 0.0203 0.9942 0.2378 0.9294 

 

Table 2. Test set evaluation metrics 

 DR MH No_Disesase 
Model Precision Recall F1 Precision Recall F1 Precision Recall F1 

ResNet_1 0.20 0.02 0.03 0.61 0.14 0.23 0.41 0.99 0.58 
ResNet_2 0.00 0.00 0.00 0.65 0.22 0.33 0.42 0.99 0.59 
ResNet_3 0.50 0.03 0.05 0.64 0.14 0.23 0.41 0.99 0.58 
ResNet_4 0.97 0.92 0.94 0.92 0.94 0.93 0.92 0.96 0.94 
ResNet_5 1.00 0.66 0.79 0.89 0.93 0.91 0.77 0.98 0.86 

Inception_1 0.96 0.78 0.86 0.85 0.86 0.86 0.85 0.99 0.91 
Inception_2 0.96 0.78 0.86 0.92 0.81 0.86 0.79 0.99 0.88 
Inception_3 0.93 0.83 0.88 0.91 0.83 0.87 0.85 0.98 0.91 
Inception_4 0.98 0.82 0.89 0.77 0.95 0.85 0.93 0.90 0.92 
Inception _5 0.99 0.81 0.89 0.89 0.84 0.87 0.79 0.96 0.86 

Xception_1 0.96 0.89 0.92 0.91 0.84 0.88 0.86 0.96 0.91 
Xception_2 0.93 0.90 0.92 0.92 0.87 0.89 0.90 0.96 0.93 
Xception_3 0.94 0.89 0.91 0.89 0.90 0.90 0.92 0.96 0.94 
Xception_4 0.95 0.95 0.95 0.98 0.84 0.90 0.89 0.98 0.93 
Xception_5 0.98 0.87 0.92 0.90 0.94 0.92 0.91 0.98 0.94 

 

 

Figure 6. Test set accuracies of the models over 50 epochs 
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Figure 7. Training set accuracies of the models over 50 epochs 

 

Figure 8. Test set loss of the models over 50 epochs 

 

 Figure 9. Training set loss of the models over 50 epochs 

The results obtained from the training scenarios presented in Table 1 reveal important 
insights into the performances of the three convolutional neural network (CNN) 
architectures (ResNet50, InceptionV3, and Xception) across different hyperparameter 
configurations. 

For the ResNet50 model, training scenarios utilizing a learning rate of 0.001 did not yield 
satisfactory results, especially when the base layers of the network were frozen. In these 
configurations, test accuracies remained notably low. However, reducing the learning 
rate to 0.0001 and performing end-to-end training of all layers dramatically improved the 
test accuracy, reaching 93.79%, which was the highest among all evaluated 
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configurations. This significant improvement indicates that ResNet50 requires careful 
adjustment of learning rate and complete fine-tuning to achieve optimal performance. 

The experiments conducted using the InceptionV3 architecture showed relatively 
consistent but limited variation in performance across different hyperparameter 
combinations, with accuracy typically around 88.70%. Interestingly, scenarios that 
involved end-to-end training and data augmentation—despite theoretical expectations of 
enhanced robustness—demonstrated fluctuating accuracy levels without substantial 
improvements. This observation implies that InceptionV3 has inherent stability in training 
dynamics but may have reached a saturation point in extracting discriminative features 
from the fundus image dataset, limiting further performance gains. 

On the other hand, the Xception architecture consistently demonstrated high and stable 
performance across all evaluated scenarios. It not only achieved higher average test 
accuracy compared to ResNet50 and InceptionV3 but also showed robust generalization 
and sensitivity to hyperparameter changes. Particularly, training the base layers with a 
lower learning rate notably enhanced its performance, underscoring the adaptability and 
robustness of the Xception architecture. 

Beyond accuracy, additional metrics provided in Table 2 (precision, recall, and F1-score) 
offer deeper insight into the classification performance across each disease category 
(Diabetic Retinopathy, Macular Hole, and Healthy). Analysis of these metrics further 
highlights the superiority of Xception. Across all classes, Xception consistently 
outperformed the other architectures, achieving precision, recall, and F1-scores 
frequently exceeding 0.90 in configurations involving end-to-end learning and data 
augmentation. These findings reinforce Xception’s suitability for accurate multi-class 
classification tasks in ophthalmological applications. 

 

Figure 10. Confusion matrices of the models with high classification performance 

Figure 10 presents the confusion matrices of the best-performing models trained with 
identical hyperparameter configurations. When evaluating class-wise performance 
based solely on the confusion matrices, the Xception model demonstrates the highest 
number of correct classifications for the DR class. Xception produced fewer 
misclassifications in this class compared to the other two models, indicating greater 
reliability in distinguishing DR cases. For the MH class, the most successful results were 
achieved by the InceptionV3 model, which attained the highest number of correct 
predictions, distinguishing itself from the other architectures. Although ResNet50 
performed comparably to InceptionV3 in the MH class, it was observed that Xception 
made noticeably more classification errors in this category. In the no_disease class, 
Xception once again stood out, delivering the highest number of correct classifications 
and exhibiting strong performance in identifying healthy individuals. In contrast, 
InceptionV3 produced more misclassifications in this class, frequently confusing it with 
MH. In summary, the confusion matrices indicate that while Xception achieved superior 



60                                                                                                                                                                   B. Kabataş and E. Ölmez 

 

results in the DR and no_disease classes, InceptionV3 was the most effective in 
classifying MH cases. ResNet50, on the other hand, displayed a balanced performance 
across all classes with relatively low misclassification rates. 

In contrast, ResNet50 exhibited significant performance variability between different 
scenarios. While scenarios involving frozen base layers and higher learning rates 
resulted in poor precision and recall scores, the architecture successfully recovered in 
configurations that involved end-to-end training with a reduced learning rate. This pattern 
suggests that ResNet50 requires a carefully controlled training environment to mitigate 
overfitting and achieve its full potential. 

InceptionV3, while maintaining moderate stability, demonstrated competitive yet 
generally lower overall performance compared to Xception. Particularly, its precision, 
recall, and F1-scores for the Macular Hole and Healthy classes were commendable, but 
it was less consistent across the Diabetic Retinopathy class, highlighting a limitation in 
effectively distinguishing between visually challenging classes. 

The training dynamics presented in Figures 6 and 7 further illustrate differences in 
learning behaviors among the architectures. Notably, Xception exhibited smoother and 
more consistent progression in both training and test accuracies throughout the epochs. 
Additionally, the loss trajectories shown in Figures 8 and 9 complement these 
observations, demonstrating more stable loss convergence for Xception, whereas 
ResNet50 and InceptionV3 experienced noticeable fluctuations, indicative of overfitting 
tendencies, particularly when training base layers were frozen or when higher learning 
rates were employed. 

Collectively, these detailed analyses underscore the robustness, stability, and superior 
generalization capabilities of the Xception model. Its consistently high performance 
across various metrics and configurations makes it particularly suitable as the basis for 
reliable and effective clinical decision support systems in the early diagnosis of retinal 
diseases. 

6. Conclusion and Future Work 

This study provides a comparative analysis of the classification performance of deep 
learning-based models for the diagnosis of retinal diseases such as diabetic retinopathy 
(DR) and macular hole (MH). Three different CNN architectures—ResNet50, 
InceptionV3, and Xception—were trained and evaluated under various hyperparameter 
configurations. According to the findings, ResNet50 achieved the highest test accuracy 
(93.79%) among the models used in the study. However, as illustrated in Figure 6, the 
Xception model demonstrated more stable performance across different training 
scenarios. InceptionV3, while exhibiting more consistent performance than ResNet50, 
achieved lower accuracy than Xception. The results also indicate that both InceptionV3 
and Xception models converged more rapidly during the early training stages compared 
to ResNet50, achieving high accuracy values in a shorter time frame, as depicted in 
Figure 6. 

These results highlight the strong potential of deep learning methods in ophthalmologic 
image analysis and diagnostic decision support systems. Such systems, developed as 
alternatives to time-consuming and expert-dependent manual evaluations, can expedite 
clinical decision-making, reduce the workload on healthcare professionals, and enable 
earlier intervention for patients at risk of vision loss. 
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For future work, we plan to evaluate the current models on larger and more imbalanced 
datasets involving multi-class disease classification. Additionally, we aim to integrate 
explainable AI (XAI) techniques such as Grad-CAM and LIME to improve the 
interpretability of the models' decision-making processes. Exploring lightweight and 
optimized architectures (e.g., MobileNet, EfficientNet) suitable for real-time applications 
will also be a crucial step toward integration into portable medical devices. Furthermore, 
training models using multi-center, multi-device fundus image datasets is expected to 
improve the generalizability and reliability of decision support systems. 

In conclusion, this study highlights the effectiveness of deep learning-based models in 
classifying retinal diseases using fundus images, providing a foundation for future 
research toward more reliable and interpretable clinical decision support systems in eye 
care. 

Acknowledgement  

We would like to thank Izmir Bakırçay University, The Center for Artificial Intelligence Studies and Research 
in Healthcare, for the resources and support provided for the implementation of the study 

References 

[1] B. Vatansever, H. Aydın, and A. Çetinkaya, “Genetik Algoritma Yaklaşımıyla Öznitelik Seçimi 
Kullanılarak Makine Öğrenmesi Algoritmaları ile Kalp Hastalığı Tahmini,” Journal of Scientific 
Technology and Engineering Research, Nov. 2021, doi: 10.53525/jster.1005934. 

[2] Ş. Aykat et al., “Derin Öğrenme Kullanılarak Fundus Görüntülerinden Katarakt ve Diyabetik 
Retinopati Tespiti Detection of Cataract and Diabetic Retinopathy from Fundus Images Using Deep 
Learning,” 2023. 

[3] Q. Wei et al., “Development and Validation of an Automatic Ultrawide-Field Fundus Imaging 
Enhancement System for Facilitating Clinical Diagnosis: A Cross-sectional Multicenter Study,” 
Engineering, Oct. 2024, doi: 10.1016/j.eng.2024.05.006. 

[4] K. Jin and J. Ye, “Artificial intelligence and deep learning in ophthalmology: Current status and future 
perspectives,” Nov. 01, 2022, Elsevier Inc. doi: 10.1016/j.aopr.2022.100078. 

[5] Y. B. Özçelik and A. Altan, “Diyabetik Retinopati Teşhisi için Fundus Görüntülerinin Derin Öğrenme 
Tabanlı Sınıflandırılması,” European Journal of Science and Technology, Dec. 2021, doi: 
10.31590/ejosat.1011806. 

[6] E. Yaşar, N. Erol, M. D. Bilgeç, and A. İ. Çakmak, “Coexistence of peripheral retinal diseases with 
macular hole,” Turk J Ophthalmol, vol. 49, no. 4, pp. 209–212, Aug. 2019, doi: 
10.4274/tjo.galenos.2019.06706. 

[7] S. Pachade et al., “Retinal fundus multi-disease image dataset (Rfmid): A dataset for multi-disease 
detection research,” Data (Basel), vol. 6, no. 2, pp. 1–14, Feb. 2021, doi: 10.3390/data6020014. 

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” Dec. 2015, 
[Online]. Available: http://arxiv.org/abs/1512.03385 

[9] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception Architecture 
for Computer Vision,” in Proceedings of the IEEE Computer Society Conference on Computer Vision 
and Pattern Recognition, IEEE Computer Society, Dec. 2016, pp. 2818–2826. doi: 
10.1109/CVPR.2016.308. 

[10] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in Proceedings - 30th 
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Institute of Electrical 
and Electronics Engineers Inc., Nov. 2017, pp. 1800–1807. doi: 10.1109/CVPR.2017.195. 

[11] F. S. Sorrentino et al., “Novel Approaches for Early Detection of Retinal Diseases Using Artificial 
Intelligence,” Jul. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 
10.3390/jpm14070690. 

[12] R. Lee, T. Y. Wong, and C. Sabanayagam, “Epidemiology of diabetic retinopathy, diabetic macular 
edema and related vision loss,” Dec. 01, 2015, BioMed Central Ltd. doi: 10.1186/s40662-015-0026-
2. 

[13] D. Mikhail et al., “The role of artificial intelligence in macular hole management: A scoping review,” 
Jan. 01, 2024, Elsevier Inc. doi: 10.1016/j.survophthal.2024.09.003. 



62                                                                                                                                                                   B. Kabataş and E. Ölmez 

 

[14] A. Kori, S. S. Chennamsetty, M. S. K. P., and V. Alex, “Ensemble of Convolutional Neural Networks 
for Automatic Grading of Diabetic Retinopathy and Macular Edema,” Sep. 2018, [Online]. Available: 
http://arxiv.org/abs/1809.04228 

[15] J. Sahlsten et al., “Deep Learning Fundus Image Analysis for Diabetic Retinopathy and Macular 
Edema Grading,” Sci Rep, vol. 9, no. 1, Dec. 2019, doi: 10.1038/s41598-019-47181-w. 

[16] J. de la Torre, A. Valls, and D. Puig, “A deep learning interpretable classifier for diabetic retinopathy 
disease grading,” Neurocomputing, vol. 396, pp. 465–476, Jul. 2020, doi: 
10.1016/j.neucom.2018.07.102. 

[17] S. N. Polater et al., “Diyabetik Retinopati Tespiti İçin Derin Öğrenmeye Dayalı Sınıflandırma Deep 
Learning-Based Classification for Diabetic Retinopathy Detection,” 2024. 

[18] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” May 27, 2015, Nature Publishing Group. doi: 
10.1038/nature14539. 

  

 

 

 

 

 

 

  


