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1. Introduction 

Swallowing is a fundamental physiological function 
essential for nutrition and hydration. However, for 
individuals with dysphagia, this simple act becomes a daily 
challenge, leading to significant physiological, 
psychological, and social difficulties [1]. Although 
dysphagia itself is not immediately life-threatening if left 
untreated, it can result in severe complications such as 
malnutrition, dehydration, and pneumonia due to impaired 
swallowing function [2], [3], [4]. Therefore, early and 
accurate diagnosis is crucial to improving patients’ quality 
of life and preventing potentially life-threatening 
consequences. 

Conventional methods, such as nasopharyngeal endoscopy 
and video fluoroscopy, are commonly used to assess 
swallowing function [5], [6]. While effective, these 
techniques can be invasive, uncomfortable, and require 
specialized clinical settings. As a result, there is an 
increasing demand for non-invasive and accessible 
alternatives for dysphagia detection and monitoring. Recent 
research highlights brain activity analysis as a promising 
approach for identifying swallowing-related impairments 
without direct intervention. 

Among these methods, EEG stands out due to its non-
invasiveness, high temporal resolution, affordability, and 

ease of application in clinical settings [7]. EEG records 
electrical brain activity through scalp electrodes, capturing 
voltage fluctuations associated with neuronal activity. 
Modern EEG systems can detect signals exceeding 1 kHz, 
enabling the recording of rapid neural changes critical for 
analyzing phenomena like epileptiform spike waves [8], 
[9], [10], [11] . 

EEG has been used to diagnose various neurological 
and psychiatric disorders, including schizophrenia, 
Alzheimer’s disease, depression, and epilepsy [12], [13], 
[14], [15]. In recent years, significant progress has also been 
made in utilizing EEG to analyze brain activity related to 
motor control [16]. In particular, motor imagery (MI) has 
emerged as a valuable paradigm for exploring cortical 
mechanisms involved in voluntary movement and for 
developing brain-computer interface (BCI) applications in 
neurorehabilitation [17]. 

Within the domain of swallowing research, MI has been 
effectively used to examine the cortical dynamics 
underlying swallowing control and to design EEG-based 
BCI systems for dysphagia rehabilitation [18]. In addition 
to these recent advancements, earlier foundational studies 
have offered critical insights into the neural basis of 
swallowing [19]. Yang et al. proposed that swallowing is 
initiated by tongue movement and suggested that gaps in 
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Dysphagia often makes eating and drinking painful, stressful, and socially isolating, potentially leading to 

malnutrition, dehydration, weight loss, and respiratory infections. In this study, the relationship between 

swallowing and brain signals was examined to contribute to the electrophysiological understanding of the 
imagination of swallowing and rehabilitation of dysphagia patients. To examine the swallowing event, 

three different experiments were conducted. The experiments included (i) natural water swallowing, (ii) 

swallowing saliva in an induced manner, and (iii) swallowing a sip of water in an induced manner. Visual 
cues on a computer monitor were used to induce the perception of swallowing and imagination. EEG data 

from 16 channels obtained during 15 trials of these experimental paradigms from 30 subjects (15 men) 

were subjected to different processes such as noise removal, selection of signal segments corresponding 
to the imagination of swallowing, extraction of frequency domain features, and statistical analysis. Eleven 

features such as spectral centroid, mean and median frequency, delta, theta, alpha and beta band powers, 

and relative band powers obtained from 16 channels (a total of 176 features) were first subjected to the 
Shapiro-Wilks normality test individually. As a result of this test, the statistical analyses were carried out 

with the help of repeated measures one-way ANOVA test for the features with normal distribution (spectral 
centroid from 11 channels), and the Friedman test for the features with non-normal distribution (spectral 

centroid from the remaining 5 channels and all other features from 16 channels). As a result of these tests, 

it is seen that 76.7% of all features yield statistically significant differences between 3 different swallowing 

approaches. We suggest that identifying discriminative EEG-based features could significantly contribute 

to the development of novel brain-machine interface applications for dysphagia rehabilitation. 
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brain activity could indicate the absence of swallowing 
initiation[20], [21]. Jestrovic et al. explored how 
distractions influence brain activity during swallowing [22], 
while Huckabee et al. investigated the role of the cerebral 
cortex in motor planning and initiation of swallowing [23]. 

Building upon these developments, a recent systematic 
review by Alexandropoulou et al. emphasized that EEG-
based studies on swallowing have increasingly revealed the 
cortical involvement not only during the preparatory but 
also during pharyngeal and esophageal phases of 
swallowing, challenging the earlier notion of these phases 
as purely reflexive. The review also highlighted using 
motor imagery (MI) paradigms in eliciting movement-
related cortical potentials (MRCPs), mu rhythm 
desynchronization, and distinct connectivity patterns within 
sensorimotor networks. Moreover, swallowing-related 
EEG activity is modulated by factors such as stimulus type, 
bolus volume, and task complexity, and exhibits non-
stationary dynamics and lateralized activation, which are 
relevant for developing brain-computer interfaces for 
dysphagia rehabilitation [24]. 

However, many previous studies have focused either on 
spontaneous swallowing or single-task MI protocols 
without clearly distinguishing among different imagined 
swallowing types, such as natural vs. induced swallowing 
or saliva vs. water. Furthermore, most existing EEG studies 
have been limited to narrow feature sets or few electrode 
sites, lacking comprehensive multichannel frequency-
domain analysis. 

In contrast to prior work limited to spontaneous or 
distraction-based swallowing tasks, this study aims to 
explore the relationship between brain function and 
swallowing through multichannel EEG recordings using 
controlled experimental paradigms. Specifically, 
swallowing was examined under three distinct conditions: 
natural water swallowing, induced water swallowing, and 
saliva swallowing. The study involved thirty right-handed 
participants of varying ages, all of whom had no history of 
neurological disorders or speech and swallowing 
impairments. EEG signals recorded from 16 channels 
underwent preprocessing, noise reduction, selection of 
swallowing imagination segments, and frequency-domain 
feature extraction before statistical analysis. We 
hypothesize that imagining swallowing water and saliva 
under different conditions exhibits distinct 
electrophysiological characteristics. Identifying 
discriminative EEG-based features may contribute to the 
development of novel brain-machine interface applications 
for dysphagia rehabilitation, offering a non-invasive and 
effective alternative for clinical assessment and treatment. 

2. Materials And Methods 

2.1 Participants 

Our experiments were conducted with 30 participants (15 

men and 15 women) aged between 19 and 56, with an 

average age of 30 and a standard deviation of 12. All 

participants were free from any swallowing disorders or 

related medical conditions. The study utilized three 

experimental paradigms approved by the Erciyes 

University Ethics Committee on July 12, 2023, under 

approval number 2023/461. 

2.2 Materials 

In our experiments, we utilized a 16-channel Nautilus 

research-grade wearable EEG headset (g.tec medical 

engineering, Schiedlberg, Austria) to acquire EEG signals 

(Figure 1). Due to its wearable design, the headset with dry 

electrodes was comfortably fitted onto the participant’s 

head. The EEG electrodes were positioned following the 

International 10-20 system, and the signals were recorded 

at a sampling frequency of 500 Hz. The electrode 

placements on the participants' skulls are illustrated in 

Figure 2. EEG data were collected within 0.5–200 Hz. range 

using MATLAB Simulink on a Windows operating system. 

 

Figure 1. Nautilus research-grade wearable EEG headset. 

2.3 Experimental Procedure 

In this study, no additional devices or sensors were attached 

to the neck or other body parts to detect swallowing; all 

analyses were conducted solely using EEG signals. To 

examine brain activity associated with swallowing, we not 

only focused on the swallowing process itself but also 

incorporated conditions that could potentially influence 

neural activity, such as pre-swallowing rest and imagined 

swallowing, into our experimental protocols. Consequently, 

our analyses were carried out across three distinct 

experimental conditions. 

 

Figure 2. International 10-20 electrode placement 

system. 
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2.3.1 Paradigm 1: Natural Water Swallowing 

Our first experimental paradigm aimed to examine the EEG 

signals of the spontaneous and natural imagination state in 

the brain before swallowing, without giving the subject an 

imagined swallowing warning (no induced swallowing). 

The subject was seated in front of the computer for the 

experiment, and the EEG electrodes were placed over the 

subject's skull. The subject was given a bottle of water and 

a straw and asked to follow the warnings/cues that appeared 

on the screen at regular intervals to draw a sip of water from 

the bottle and drink. This experiment started with the beep 

sound, and 2 seconds after the beep sound, the water 

inscription appeared on the screen for 5 seconds, and the 

subject drank the water in the bottle using a straw in his/her 

mouth during this time without any further visual cue, with 

minimal or no movement. Then, the subject was asked not 

to perform any activity for 3 seconds. This experiment 

consisted of 15 trials and took 150 seconds in total. The 

graphic showing a trace of our first experiment, which we 

call natural swallowing, can be seen in Figure 3.  

 

Figure 3. Natural swallowing test procedure with 

corresponding timing information. 

2.3.2 Paradigm 2: Induced Saliva Swallowing 

In contrast to the first paradigm, this experiment required 

participants to first rest, then imagine swallowing, and 

finally swallow without consuming any food or liquid. 

Referred to as the saliva swallowing experiment, its 

objective was to examine the effects of swallowing without 

ingestion on EEG signals. The experiment consisted of 

three phases: resting, imagination, and swallowing. During 

the resting phase, participants focused on a plus symbol 

displayed on the screen for 2 seconds. Following this, a 

beep sound signaled the start of the imagination phase, 

where participants envisioned swallowing for 3 seconds 

while viewing the prompt "imagination." In the final stage, 

the word "swallow" appeared on the screen, prompting 

participants to perform actual saliva swallowing. Each trial 

in this experiment lasted 9 seconds, with 15 trials totaling 

135 seconds. Figure 4 illustrates a graphical representation 

of a 9-second segment of the dry swallowing test. 

 

Figure 4. Saliva swallowing test procedure with 

corresponding timing information. 

2.3.3 Paradigm 3: Induced Water Swallowing 

In our final experimental paradigm, referred to as induced 

water swallowing, we aimed to investigate the impact of 

imagining the act of swallowing a sip of water held in the 

mouth on EEG signals. This experiment comprised four 

stages: water intake, resting, imagination, and actual 

swallowing. Participants were provided with a bottle of 

water and a straw and instructed to follow the cues 

displayed on the screen. Unlike the previous experiments, 

this paradigm involved the presence of water in the mouth 

during the imagination phase. 

In the first stage, upon seeing the cue "draw water" on the 

screen, participants took a sip of water using the straw. 

Next, a plus symbol appeared for 2 seconds, during which 

participants engaged in the resting phase by focusing on the 

symbol. In the third stage, the screen displayed the word 

"imagination," prompting participants to mentally simulate 

swallowing the water for 3 seconds. Finally, in the last 

stage, they were instructed to perform an actual swallow. 

Each trial lasted 13 seconds, with a total of 15 trials, 

amounting to 195 seconds. Figure 5 illustrates a 13-second 

segment of this experiment. 

 

Figure 5. Water swallowing test procedure with 

corresponding timing information. 

3. Data Analysis 

3.1 Filtering 

First, we performed denoising on the EEG data obtained 

from each subject since swallowing may cause different 

artifacts. We filtered EEG signals with a bandpass filter in 

the range of 2-30 Hz to remove low-frequency motion 

artifacts and high-frequency muscle artifacts. The 2–30 Hz 

band was selected to minimize the effects of swallowing-

related artifacts. Swallowing-induced movement artifacts 

typically dominate frequencies below 2 Hz due to head and 

neck motions, while muscle activity artifacts often affect 

frequencies above 30 Hz. Therefore, this bandpass range 

was chosen to retain cortical activity while suppressing 

peripheral noise. 

Artifact removal was performed using Independent 

Component Analysis (ICA), implemented via the FastICA 

algorithm with the 'gauss' nonlinearity function, where the 

number of independent components was set equal to the 

number of EEG channels. After ICA decomposition, each 

independent component (IC) was subjected to Continuous 

Wavelet Transform (CWT) analysis to detect abrupt high-

frequency fluctuations (spikes) associated with ocular and 

muscle artifacts (e.g., eye blinks, facial movements). Peaks 

identified on CWT coefficient curves were used to 

automatically mark artifact-contaminated time intervals. 

These segments were suppressed (set to zero), and the 

cleaned EEG signals were reconstructed by recombining 

the remaining ICs through the mixing matrix A. 

As a result of these processes, we have cleaned our EEG 

signals from artifacts. An example of filtered and unfiltered 

EEG signals can be seen in Figure 6. 
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The signal shown in Figure 6a represents a one-channel raw 

EEG signal (Channel 13) from one subject during 15 trials 

of an induced saliva swallow experiment. Figure 6b shows 

the filtered version of the same signal depicted in Figure 6a. 

 

Figure 6. a) Raw signal and b) filtered signal after 

bandpass filtering and ICA. 

3.2 Selection of Signal Segments Corresponding to 

Imagination 

In our first experiment, natural water swallowing, the 

subjects were not shown any imagination-related 

commands and were not given specific imagination onset 

time information. In the natural water swallowing 

experiment, we aimed to analyze our data regarding how 

subjects imagine spontaneous swallowing before the actual 

swallowing movement. Since each subject's swallowing 

onset and finishing time instants differed from each other 

while performing the experiments, we examined the EEG 

signals from 30 people individually. Considering that each 

person's reaction time to actions was different in each trial, 

we decided to manually determine the dynamic onset time 

for swallowing using the motion and muscle artifacts on the 

EEG signals. Each person had different pre-swallow times 

in each trial. We considered the signal segments from our 

individually analyzed signals to the actual swallowing onset 

time manually as the imagination segment. We selected and 

recorded the part of the imagination that we determined 

from our EEG signals. We thought that the signal values 

with an imagination time of less than 0.5 seconds did not 

represent a valid signal for the Fourier analysis, which we 

have employed in the feature selection part of the study. 

Therefore, we did not include the trials whose imagination 

durations were less than 0.5 seconds for further analysis. 

Figure 7 shows the signals from different channels and 

different trials of 4 different subjects acquired during the 

natural water swallowing experiment. We included the 

signals shown in Figures 7a, b, and c, but not d, which had 

an imagination duration of less than 0.5 seconds. After this 

selection and elimination process, we were left with 190 

trials and 3040 (190x16, number of trials x number of 

channels) imagination segments.  

 

A 

 

B 

 

C 

 

D 

Figure 7. The selected segments corresponding to the 

imagination process from 4 different subjects, from 

different channels, and trials. Imagination durations were 1 

second in (A), 1.2 seconds in (B), 0.6 seconds in (C), and 

0.4 seconds in (D). 
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In the other two experiments, induced saliva and induced 

water swallowing experiments, the subjects were shown the 

visual cue on the screen to initiate and end the imagination 

of swallowing, unlike the first experiment. The imagination 

segments of these two experiments, of which we were 

certain about the imagination onset and finishing time 

instants, were selected and recorded. After this selection 

process, we obtained 450 trials and 7200 imagination 

segments (30 subjects x 15 trials x 16 channels).  

Finally, for a consistent comparison and statistical analysis, 

if the imagination segments from a trial obtained during a 

natural water swallowing experiment for a subject were 

eliminated due to short signal duration, we eliminated the 

segments from the same trial number obtained during 

induced saliva and induced water swallowing experiments 

for the same subject. Therefore, 190 trials and 3040 

imagination segments were also left for the induced saliva 

and induced water swallowing experimental paradigms 

individually. 

3.3 Feature Extraction 

We extracted the features from the EEG signals 

corresponding to the imagination of different swallowing 

approaches/paradigms. The feature extraction approach 

was based on the frequency domain. The frequency-domain 

features were mean frequency (in the power spectrum), 

median frequency (in the power spectrum), spectral 

centroid, band power in the delta band, band power in the 

theta band, band power in the alpha band, band power in the 

beta band, relative power in delta band, relative power in 

the theta band, relative power in the alpha band, and relative 

power in the beta band.  

The mean frequency of a spectrum is calculated using 

Equation (1). In this equation, n is the number of frequency 

bins in the spectrum, fi is the spectrum frequency in the ith 

bin, and Ii represents the intensity of the spectrum (in dB 

scale) in the ith bin. 

𝑓𝑚𝑒𝑎𝑛 =
∑ 𝐼𝑖
𝑛
𝑖=0 ⋅ 𝑓𝑖
∑ 𝐼𝑖
𝑛
𝑖=0

 (1) 

The median frequency of a spectrum is calculated in two 

steps. First, the intensity in the signal across the entire 

spectrum is summed and divided by two. Next, a frequency 

is chosen where the cumulative intensity (i.e., all intensity 

values for lower frequencies, including focal intensity) 

exceeds the value calculated in the first step for the first 

time. 

The spectral centroid is a measure used to characterize a 

spectrum and indicates where the center of mass of the 

spectrum is. As shown in equation (2), mi represents the 

magnitude of the bin number, and fi represents the center 

frequency of the bin. 

𝜇 =
∑ 𝑓𝑖
𝑁
𝑖=1 ⋅ 𝑚𝑖

∑ 𝑚𝑖̇
𝑁
𝑖=1

 (2) 

Powers in delta (0-3.9 Hz), theta (3.9-7.8 Hz), alpha (7.8-

15.63 Hz), and beta (15.63-31.25 Hz) bands were calculated 

using a 6-level decomposition of the discrete wavelet 

transform. The relative power of bands was derived using 

the power values in each band divided by the power 

summed over these frequency bands. To obtain a 

percentage, we multiplied the ratios by 100. Thus, the 

relative power values were computed using the ratio of a 

specific band power to the total spectral power in the signal 

under consideration. 

We extracted these 11 features in the frequency domain for 

16 channels for each imagination segment. Therefore, for 

each segment, we obtained a total of 176 features (11 x 16). 

3.4 Statistical Tests 

The aim of the final stage of this research was to investigate 

which of these features were significantly different from 

each other in these different experiments using appropriate 

statistical tests. For values with a p-value greater than 0.05, 

the difference between groups is considered not significant. 

p-values less than 0.05 are categorized as significant, p-

values less than 0.01 as very significant, and p-values less 

than 0.001 as highly significant. 

3.4.1 Normality Check for Features  

It is possible to use various normality tests to reveal whether 

the feature we are interested in is suitable for a normal 

distribution. The most well-known tests are the Chi-Square, 

Kolmogorov-Smirnov, Lilliefors, and Shapiro-Wilk 

normality tests. We decided to use the Shapiro-Wilk test 

because it is the most powerful test of the normality 

assumption [25]. We conducted our experiments with less 

than 50 subjects. First of all, with the Shapiro-Wilk test, we 

determined which features have normal or non-normal 

distribution among 176 features. Then, we performed a 

parametric test (repeated measures one-way analysis of 

variance, ANOVA) for normally distributed variables and a 

non-parametric test (Friedman test) for variables that have 

non-normal distribution.  

3.4.2 Analysis of Features with Normal Distribution  

ANOVA is a tool used to test whether there is a statistically 

significant difference between the means of independent 

groups. Repeated measures ANOVA is the extension of the 

dependent t-test and is the counterpart of the one-way 

ANOVA, but for related groups. We used the repeated 

measures ANOVA test to analyze the features that had a 

normal distribution. As a result of this test, we were able to 

find the features that had statistical significance, including 

the level of significance (according to the p-value) between 

three swallowing approaches/paradigms. 

3.4.3 Analysis of Features with Non-normal Distribution  

The Friedman test is the non-parametric equivalent of the 

one-way repeated ANOVA test. The Friedman test is used 

if the data are not normally distributed, the number of 

groups/conditions is three or more, and the same subjects 

are used in all groups/conditions. We subjected features 

with non-normal distribution to the Friedman test and were 

able to find the features that had statistical significance 
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including the level of significance between three 

swallowing approaches/paradigms. 

3.5 Classification 

Classification analysis was performed using a set of 135 
significant features selected from the original dataset. 
Feature matrices corresponding to the three classes were 
concatenated for each paradigm, and the resulting data were 
standardized using z-score normalization to ensure 
comparable scales across features. 

To evaluate classification performance, both binary and 
multi-class tasks were considered. Specifically, class 
combinations included binary pairs (Paradigm 1 vs 2, 
Paradigm 2 vs 3, and Paradigm 1 vs 3) as well as a multi-
class scenario involving all three paradigms 
simultaneously. 

For each class combination, the relevant subset of data was 
extracted. In binary classification cases, class labels were 
relabeled as 1 and 2 for consistency. A 10-fold cross-
validation strategy was employed to assess model 
generalizability and prevent overfitting. 

Four different classifiers were evaluated: Random Forest, 
Support Vector Machine (SVM) with Radial Basis Function 
(RBF) kernel, K-Nearest Neighbors (KNN), and Decision 
Tree. To optimize classifier performance, a grid search was 
conducted over relevant hyperparameters for each model: 

• Random Forest: Number of learning cycles (100, 
200, 300) and maximum number of splits per tree 
(20, 50, 100). 

• SVM: Kernel scale parameters ([0.1, 0.5, 1, 2, 5, 
10]) for the RBF kernel. 

• KNN: Number of neighbors ([3, 5, 7, 9]). 

• Decision Tree: Maximum number of splits ([10, 
20, 50]) and minimum leaf size ([1, 5, 10]) within 
an ensemble framework using 100 learning cycles. 

During each fold of cross-validation, classifiers were 
trained on the training subset and evaluated on the test 
subset. The best accuracy across hyperparameter 
combinations was recorded per fold for each classifier. 
Final reported accuracies represent the average 
performance over all folds. 

The combined use of cross-validation and hyperparameter 
tuning ensured robust and unbiased estimates of 
classification accuracy across different class combinations 
and models. 

4. Results 

As the outcome of the normality test, we determined that 11 

of 176 features have a normal distribution, and the rest have 

a non-normal distribution. These 11 features were spectral 

centroid values from 11 channels. The remaining spectral 

centroid features from 5 channels and all other frequency 

domain features from 16 channels followed a non-normal 

distribution. Figure 8 shows the distribution of 4 sample 

features, 2 of which had normal distribution, and 2 of which 

had non-normal distribution.  

When the spectral centroid features from 11 channels with 

normal distribution were subjected to a one-way repeated 

measures ANOVA test, 10 features were found to be very 

significant, and 1 value was found to be significant. In other 

words, this result means that all p-values were less than 

0.05. This indicates that there is statistical significance 

between the three different paradigms for the imagination 

of swallowing in terms of spectral centroid features from 11 

channels. 

When we examined the features with non-normal 

distribution using the Friedman test, features such as mean 

frequency, median frequency, spectral centroid, delta band 

power, and beta band showed statistically significant 

differences between imagination paradigms in all 16 

channels. On the contrary, a feature such as the power of the 

theta band showed non-significant differences in all 

channels. Features such as the power of the alpha band, the 

relative power of theta band, the relative power of the alpha 

band, and the relative power of the beta band showed 

significant and non-significant differences. Table 1 shows 

how many channels for each feature with a non-normal 

distribution have which level of statistical significance.  

The p-values in the ANOVA and Friedman tests, which we 

applied for our features with normal and non-normal 

distributions, show that the group mean differences are not 

significant or significant. In these test results, 11 features 

with normal distribution and 124 with non-normal 

distribution seem statistically significant. We also 

performed multiple comparison tests to determine which 

groups were groups with different means for the 41 non-

normally distributed and non-significant features. As a 

result of the test, we calculated the mean and standard 

deviation values between the groups. The comparison 

results of 41 non-significant features that we obtained are 

shown in Table 2. Although the features in Table 2 did not 

reach statistical significance, the observed trends in mean 

values across paradigms reveal subtle but potentially 

meaningful neural differences. These trends, particularly in 

frontal and parietal regions, suggest differentiated cortical 

engagement during various swallowing imagination 

conditions. Such latent patterns may contribute to 

classification success, highlighting the utility of 

multivariate approaches beyond univariate statistical 

thresholds. 

The classification results for different class combinations 
using 135 significant features and various classifiers are 
summarized in Table 3. The binary classification tasks 
involving pairs of paradigms (Paradigm 1 vs 2, Paradigm 2 
vs 3, and Paradigm 1 vs 3) consistently achieved higher 
accuracies compared to the multi-class classification 
involving all three paradigms simultaneously (Paradigms 1 
vs 2 vs 3). Among the classifiers, Random Forest 
demonstrated the best overall performance, achieving the 
highest average accuracy in all binary tasks, with accuracies 
of 75.26%, 71.58%, and 76.58% for Paradigm 1 vs 2, 
Paradigm 2 vs 3, and Paradigm 1 vs 3 classifications, 
respectively. Similarly, Decision Tree showed competitive 
results, particularly in the Paradigm 1 vs 3 classification 
with an accuracy of 77.11%. 
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A 

 

B 

 

C 

 

D 

Figure 8. Histograms of two features with normal 

distributions (A and B) and two features with non-normal 

distributions (C and D). A) the Spectral centroid of 

channel 5, B) the spectral centroid of channel 15, C) the 

band power in the delta band of channel 11, and D) the 

mean frequency of channel 14. 

The multi-class classification involving all three paradigms 
simultaneously yielded lower accuracy values across all 
classifiers, with the highest accuracy being 60.18% for 
Random Forest. This decrease is expected due to the 
increased complexity of distinguishing among three classes 
instead of two. 

Support Vector Machine (SVM) with RBF kernel and K-
Nearest Neighbors (KNN) classifiers showed moderate 
performance in all cases, with SVM slightly outperforming 
KNN in most tasks. 

Overall, these results indicate that binary classification 
between pairs of paradigms is more reliable for this dataset, 
and ensemble methods like Random Forest are well-suited 
for the task. The reduced accuracy in multi-class 
classification suggests that further feature engineering or 
more advanced classification methods may be needed to 
improve performance when distinguishing among all three 
paradigms simultaneously. 

5. Conclusions and Discussion 

In this study, we tried to determine the relationship between 

swallowing and brain signals to contribute to the treatment 

of dysphagia patients with swallowing difficulties. While 

examining this relationship, we not only depended on the 

act of swallowing but also applied different paradigms 

before and after each experiment. We collected EEG signals 

of imagination of swallowing, waiting for swallowing, and 

actual swallowing events from 3 different experiments. By 

filtering each of the EEG signals from 16 channels in these 

experiments, we removed noise and unwanted components. 

In this article, we have focused specifically on the 

imagination states of the filtered signals. We extracted 176 

features from the EEG signal segments corresponding to the 

imagination of swallowing. As a result of statistical 

analysis, we observed that 135 of 176 features (76.7%) 

revealed significant differences between the three 

experiments. We obtained these results from 30 subjects, 

clearly showing the relationship between the imagination of 

swallowing events and brain signals. One of the key 

novelties of this study is the integration of statistical 

analysis with machine learning, where significant features 

were used to classify the three swallowing paradigms with 

over 77% accuracy in binary settings. 

To address dysphagia effectively, it is essential to examine 

swallowing from an electrophysiological perspective.  

Investigating electrophysiological processes enhances our 

understanding of swallowing control networks and provides 

a valuable tool for assessing the effects of various 

treatments on pharyngeal sensory function. In the literature, 

[26]. ERPs are signals derived from EEG recordings that 

measure time-dependent neural activity in response to 

sensory, motor, or cognitive events [27]. The swallowing 

process involves the neural transmission and cerebral 

integration of oropharyngeal sensory inputs, which can be 

investigated through ERP studies [26]. 
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Table 1. Friedman test results for features with non-normal distribution. NS: Non-significant, S: Significant, HS: 

Highly Significant, VHS: Very Highly Significant. 

Feature NS S HS VHS Total 

Mean Frequency    16 16 

    
Cz, Fp2, F3, Fz, F4, T7, C3, Fp1, 
C4, T8, P3, Pz, P4, Po7, Po8, Oz  

Median Frequency    16 16 

    
Cz, Fp2, F3, Fz, F4, T7, C3, Fp1, 
C4, T8, P3, Pz, P4, Po7, Po8, Oz  

Centroid Fft  1 2 2 5 

  Oz Fp1, C4 T8, P3  

Power Delta  4 11 1 16 

  

Cz, Fz, F4, Oz 

 

Fp2, F3, T7, C3, Fp1, C4, 

T8, P3, Pz, P4, Po8 

Po7 

  

Power Theta 16    16 

Power Alpha 5 5 6  16 

  Fz, C4, T8, P3, P4 Fp2, F3, Pz, Po7, Po8, Oz   

Power Beta    16 16 

    

Cz, Fp2, F3, Fz, F4, T7, C3, Fp1, 

C4, T8, P3, Pz, P4, Po7, Po8, Oz  

Relative Power Delta  1  15 16 

  

Cz 

  

Fp2, F3, Fz, F4, T7, C3, Fp1, C4, 

T8, P3, Pz, P4, Po7, Po8, Oz  

Relative Power Theta 6 9 1  16 

  

Cz, Fp2, F3, Fz, T7, 

C3, Fp1, C4, T8 

F4 

   

Relative Power Alpha 12 4   16 

  Pz, P4, Po7, Po8    

Relative Power Beta 2 5 1 8 16 

  F3, Fz, F4, T7, C3 Fp1 C4, T8, P3, Pz, P4, Po7, Po8, Oz  

Total 41 29 21 74 165 

Additionally, electrophysiological research on swallowing 

provides crucial insights into dysphagia. For instance, one 

study was conducted to evaluate dysphagia at the 

oropharyngeal stage of swallowing and to investigate the 

underlying pathophysiological mechanisms in patients with 

myasthenia gravis [28]. Another study explored the 

relationship between multiple sclerosis (MS) and dysphagia 

using electrophysiological methods [29]. Furthermore, 

research examining stroke patients and individuals with 

swallowing difficulties helped establish a connection 

between these conditions [30]. 

Considering these findings, we believe that EEG-based 

motor imagery can help identify distinct 

electrophysiological features, potentially advancing brain-

machine interface applications for dysphagia rehabilitation. 

The unique neural patterns observed during motor 

imagery—such as imagining swallowing water versus 

saliva—highlight the significance of EEG-based feature 

extraction. These findings emphasize the crucial role of 

mental practice and physical therapy in motor 

rehabilitation, illustrating the interplay between brain 

activity, treatment approaches, and recovery in dysphagia 

patients. 

Numerous studies have been conducted on the 

rehabilitation of swallowing disorders; however, research 

specifically focusing on the potential of motor imagery (MI) 

as a standalone approach for improving swallowing 

rehabilitation remains limited. Existing studies suggest that 

motor imagery can elicit neural responses and that mentally 

simulating swallowing-related actions may enhance 

swallowing motor performance [18]. 

This study used different experimental protocols to explore 

the relationship between motor imagery and swallowing. 

By examining whether motor imagery of swallowing varies 

across different conditions, we aimed to identify practical, 

cost-effective, and accessible applications that could 

enhance the effectiveness of active exercises in dysphagia 

rehabilitation. While motor imagery exercises cannot fully 

replace active exercises, they are recommended as a 

complementary approach to enhance motor learning and 

performance, particularly following neurological 

impairment. The most effective rehabilitation outcomes are 

achieved when physiotherapy is combined with motor 

imagery [31], [32], [33]. 

Furthermore, while previous studies have investigated 

various methodologies of swallow motor imagery [19], 

[34], [35]. They often lacked statistical analyses of the data. 

One of the key contributions of this study is the systematic 

statistical analysis of EEG signals obtained from different 

experimental paradigms. The results indicate that the neural 

responses associated with swallowing motor imagery differ 

significantly across experimental conditions. 

In previous studies, several aspects of swallowing-related 

brain activity have been explored. For instance, Yang et al. 

demonstrated that motor imagery of swallowing activates 

motor-related cortical areas and suggested that gaps in brain 

activity may reflect the absence of swallow initiation [20], 

[21], [34], [36], [37], [38]. Similarly, Huckabee et al. 

highlighted the role of the supplementary motor area in the 

preparatory phase of voluntary swallowing [23]. 
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Table 2. The mean estimates, standard errors, and corresponding channel and feature names for comparisons. 

Channel Feature name 
Paradigm 1 Paradigm 2 Paradigm 3 

(Mean ± STD) (Mean ± STD) (Mean ± STD) 

CZ theta band power 5.22×10⁻⁵ ± 2.68×10⁻⁴ 

 

5.22×10⁻⁵ ± 2.68×10⁻⁴ 

 

5.22×10⁻⁵ ± 2.68×10⁻⁴ 

 

CZ  alpha band power c 3.28×10⁻⁵ ± 1.36×10⁻⁴ 

 

3.28×10⁻⁵ ± 1.36×10⁻⁴ 

 

3.28×10⁻⁵ ± 1.36×10⁻⁴ 

 

CZ relative alpha band power 0.20±0.12 0.23±0.11 0.22±0.14 

CZ relative beta band power 0.23±0.16 0.21±0.13 0.19±0.13 

Fp2 theta band power 0.00±0.01 0.00±0.01 0.00±0.00 

Fp3 relative alpha band power 0.19±0.12 0.20±0.11 0.19±0.13 

Fp4 relative beta band power 0.22±0.16 0.19±0.13 0.17±0.13 

F3 theta band power 0.04±0.16 0.02±0.07 0.02±0.06 

F3 relative alpha band power 0.18±0.12 0.18±0.11 0.17±0.12 

FZ theta band power 0.29±0.84 0.16±0.34 0.19±0.34 

FZ relative alpha band power 0.18±0.12 0.16±0.11 0.16±0.12 

F4 theta band power 1.16±2.71 0.69±1.09 0.84±1.33 

F4  alpha band power b 0.53±1.11 0.30±0.27 0.50±1.45 

F4 relative alpha band power 0.17±0.12 0.16±0.11 0.15±0.12 

T7 theta band power 3.22±6.38 2.00±2.61 2.52±3.81 

T7 alpha band power 1.41±2.30 0.87±0.78 1.40±3.61 

T7 relative alpha band power 0.17±0.12 0.15±0.11 0.15±0.11 

C3 theta band power 6.79±12.08 4.40±5.05 5.63±8.43 

C3 alpha band power 2.94±3.79 1.95±1.76 3.04±7.40 

C3 relative alpha band power 0.17±0.12 0.15±0.11 0.15±0.11 

Fp1 theta band power 11.60±19.30 7.76±8.27 10.04±15.17 

Fp1 alpha band power 5.07±5.39 3.57±3.27 5.46±13.07 

Fp1 relative alpha band power 0.18±0.12 0.15±0.11 0.15±0.11 

C4 theta band power 16.90±27.17 11.59±11.84 15.24±23.45 

C4 relative alpha band power 0.18±0.12 0.15±0.11 0.15±0.11 

T8 theta band power 21.88±35.10 15.33±15.34 20.20±31.74 

T8 relative alpha band power 0.18±0.12 0.15±0.11 0.15±0.10 

P3  theta band power c 25.76±42.23 18.30±18.21 24.09±38.70 

P3  relative theta band power b 0.24±0.14 0.22±0.11 0.20±0.11 

P3 relative alpha band power 0.18±0.13 0.15±0.10 0.15±0.10 

PZ theta band power 27.76±47.01 19.82±19.74 26.01±42.79 

PZ relative theta band power 0.24±0.14 0.21±0.11 0.20±0.11 
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Channel Feature name 
Paradigm 1 Paradigm 2 Paradigm 3 

(Mean ± STD) (Mean ± STD) (Mean ± STD) 

P4 theta band power 27.43±48.32 19.48±19.46 25.42±43.00 

P4 relative theta band power 0.23±0.14 0.21±0.11 0.20±0.10 

PO7 theta band power 25.02±46.90 17.39±17.46 22.61±39.66 

PO7 relative theta band power 0.23±0.13 0.20±0.11 0.19±0.10 

PO8 theta band power 21.50±45.68 14.13±14.33 18.92±37.49 

PO8 relative theta band power 0.22±0.13 0.20±0.10 0.19±0.10 

OZ  theta band power c 18.28±48.10 10.77±11.53 16.41±52.06 

OZ relative theta band power 0.21±0.12 0.19±0.09 0.19±0.09 

OZ relative alpha band power 0.19±0.11 0.16±0.09 0.17±0.10 

     
a: p-value <0.05 for paradigm 1 vs. paradigm 2, 

b: p-value <0.05 for paradigm 1 vs. paradigm 3, 

c: p-value <0.05 for paradigm 2 vs. paradigm 3. 

Table 3. Classification accuracies (%) of different 

classifier paradigms for various class combinations using 

135 significant features. 

Classifier/Paradigm 1 vs 2 2 vs 3 1 vs 3 1 vs 2 vs 3 

Random Forest 75.26% 71.58% 76.58% 60.18% 

SVM (RBF) 70.79% 63.95% 70.00% 51.40% 

KNN 69.21% 62.37% 68.16% 51.75% 

Decision Tree 74.74% 70.26% 77.11% 59.47% 

Our findings are consistent with these observations, as we 

also identified significant differences in spectral centroid 

and frequency band powers during the imagination of 

swallowing under different conditions, reflecting distinct 

cortical engagement. 

Jestrovic et al. reported that attentional modulation can 

influence EEG activity during swallowing tasks, indicating 

that task design may affect cortical activation patterns [22]. 

In our study, the use of visual cues for imagination phases 

(in induced saliva and induced water paradigms) allowed us 

to observe more temporally controlled cortical responses 

compared to the natural swallowing condition, where 

imagination onset was more spontaneous. 

Furthermore, previous studies, such as those by Kober et al., 

primarily used hemodynamic measurements (e.g., NIRS) or 

did not provide detailed statistical analyses of motor 

imagery EEG data [39]. In contrast, our study employed 

comprehensive frequency-domain feature extraction 

combined with statistical evaluation (ANOVA and 

Friedman tests), which revealed that 76.7% of features 

exhibited significant differences across conditions. This 

systematic analysis contributes novel insights into the 

electrophysiological characterization of swallowing motor 

imagery and supports the feasibility of using EEG-based 

biomarkers for dysphagia rehabilitation. 

As a novel approach to swallowing rehabilitation, this study 

was conducted on healthy individuals. We chose this 

approach based on the rationale that an initial focus on 

healthy participants would provide a clearer understanding 

of the natural swallowing process before extending the 

research to individuals with dysphagia. Including 

individuals with swallowing disorders at this stage could 

introduce confounding factors that might obscure the 

fundamental characteristics of motor imagery-related 

neural activity. 

Overall, the findings of this study contribute to the growing 

body of knowledge on dysphagia rehabilitation and provide 

a foundation for developing more effective motor imagery-

based therapeutic strategies. This research offers promising 

insights that may help optimize dysphagia rehabilitation 

programs and improve educational approaches for both 

clinicians and patients. 

The primary limitation of this study was the variability in 
the timing of motor imagery across individuals. As a result, 
we had to analyze each trial separately, which made it 
challenging to establish a generalized structure with high 
external validity. Additionally, since the act of swallowing 
introduces significant noise in EEG signals, denoising the 
data proved to be a major challenge. However, the statistical 
analyses performed in this study have contributed to a better 
understanding of the neural mechanisms underlying the 
swallowing process. One limitation of the natural water 
swallowing paradigm was the absence of externally 
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provided cues for motor imagery onset, which may 
introduce subjective variability in determining the 
imagination periods. Although segment selection was based 
on visual inspection of muscle artifacts to identify pre-
swallowing periods, potential inter-observer variability may 
affect the consistency of these segments. 

For future studies, we aim to further improve the distinction 
between swallowing, rest, and imagination states by 
employing advanced classification methods. Moreover, we 
plan to expand our experimental design by incorporating 
additional experimental paradigms that allow for a clearer 
comparison between different conditions. Another crucial 
direction for future research is to extend this work to 
individuals with dysphagia, allowing for a comparative 
analysis between healthy participants and patients. This will 
provide a deeper insight into the motor imagery of 
swallowing and its potential applications in rehabilitation. 
Additionally, in future studies, we would like to use 
additional objective measurements such as 
electromyography (EMG) or laryngeal sensors to more 
accurately detect pre-swallow onset during natural 
swallowing paradigms. 

Additionally, we intend to develop a novel brain-machine 

interface (BMI) based EEG decoding approach specifically 

tailored for dysphagia patients. Such advancements may 

facilitate the creation of more effective motor imagery-

based rehabilitation strategies, ultimately improving 

therapeutic outcomes for individuals with swallowing 

disorders. 
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