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Abstract Asthma is one of the most common chronic respiratory diseases worldwide, and early and accurate
diagnosis is critical for effective clinical management. In this study, we evaluated the diagnostic potential
of machine learning models based on voice analysis as a non-invasive approach for asthma diagnosis.
Using audio samples containing seven different phonetic units, the performances of 13 different machine-
learning algorithms were comprehensively analyzed. The StandardScaler and SMOTE techniques were
applied in the data preprocessing stage, and a 5-fold cross-validation methodology was adopted to
evaluate the models. Accuracy, F1-score, sensitivity, precision, specificity, and area under the curve
(AUC) metrics were used for performance evaluation. The results demonstrate that ensemble learning
approaches, particularly the stacking ensemble model, exhibit superior discriminative capacity for all
phonetic units. Individual models, such as neural networks and support vector machines, also produced
remarkable results, whereas simpler models were limited in terms of capturing complex patterns in audio
data. This study demonstrated the promising diagnostic potential of voice analysis-based ensemble
learning approaches for asthma diagnosis; however, it emphasizes the need for an optimal balance
between sensitivity and specificity in clinical applications.
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Introduction
Asthma is a prevalent chronic respiratory condition that affects millions of people globally, leading to

severe morbidity and mortality if not effectively managed. As recognized as a priority area for intervention
by the World Health Organization’s Global Action Plan for the Prevention and Control of Noncommunicable
Diseases and the United Nations 2030 Agenda for Sustainable Development, asthma is a significant global
health concern (World Health Organization, 2024). This heterogeneous respiratory disease is characterized
by chronic inflammation and airway narrowing (bronchoconstriction) (GINA 2023). This pathological process
manifests as clinical symptoms, such as recurrent wheezing, dyspnea, chest tightness, and coughing
episodes (Barnes, 2008). Structural changes, including increased mucus production, smooth muscle hyper>
trophy, and epithelial damage, also contribute to asthma pathophysiology (Holgate et al., 2015). These
symptoms are typically exacerbated at night or in the early morning and can be triggered by exposure to
various factors, such as allergens, infections, exercise, and environmental stimuli (Lambrecht & Hammad,
2015).

The burden of asthma on the global health economy is considerable. The WHO estimates that 262 million
individuals were living with asthma in 2019 (World Health Organization, 2024), and 455,000 deaths were due
to the disease in the same year (Ministry of Health, General Directorate of Public Health, 2024). Most deaths
occur in low> and lower>middle>income countries, emphasizing the critical need for improved diagnosis and
management strategies in these regions (World Health Organization, 2024).

The data obtained from Türkiye also show a similar picture. In a 2017 study, 6.9% of adults aged 15
years and older were diagnosed with asthma, and this rate was higher in women (8.7%) than in men (5.0%)
(Republic of Türkiye Ministry of Health, General Directorate of Public Health, 2024). Furthermore, data from
the Turkish Statistical Institute (TUIK) for 2022 show that respiratory system diseases are the third leading
cause of death, with asthma accounting for 0.3% of these deaths (Ministry of Health, General Directorate of
Public Health, 2024).

In addition to statistics, asthma profoundly impacts an individual’s quality of life, affecting their ability
to participate in daily activities and significantly altering their general wellbeing. Speech is an area consid>
erably affected by asthma. Speech production is a complex physiological process involving coordinated
interactions among multiple systems. The air expelled from the lungs vibrates the vocal cords in the larynx
to produce sounds. This sound is shaped and modulated by articulators in the oral cavity, including the
tongue, teeth, and palate, and the resonance spaces of the sinuses and nasal cavity (Sezer & Akıl, 2020).
Airway narrowing and inflammation caused by asthma disrupt this complex process (Fesci & Görgülü, 2005).
Consequently, individuals with asthma experience difficulty breathing, resulting in changes in voice quality,
decreased speech intelligibility, and voice fatigue.

Pulmonary function tests, such as spirometry and peak flowmetry, have long been used as standard
methods in clinical practice for the diagnosis and follow>up of asthma. These methods are applied in clinical
settings under the supervision of specialized healthcare professionals and are insufficient for continuously
monitoring changes in patients’ daily lives. These limitations in the follow>up of the disease highlight the
need for more comprehensive and dynamic approaches to asthma management.

Technological developments in recent years have paved the way for innovative asthma prediction and
monitoring approaches in the healthcare field (Saygılı, 2019). These new methods enable real>time or out>
of>clinic monitoring of patients’ clinical observations. Research has shown that the respiratory acoustic
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characteristics of patients with asthma differ from those of healthy individuals (Schreur et al., 1994). These
differences are manifested especially in the form of high>frequency wheezing and low>frequency crackles
(Reichert et al., 2008; Schreur et al., 1994). In a study conducted by Malmberg et al. in 1994, spectral
analyses showed an increase in power in certain frequency ranges of breath sounds in patients with asthma
(Malmberg et al., 1994).

The unique contribution of this study is that it provides an innovative approach for asthma diagnosis
by analyzing speech signals. While several studies have explored asthma diagnosis and risk analysis using
speech signals (e.g., Alam et al., 2022; Chen et al., 2025; Yadav et al., 2018; Yadav et al., 2020), a comprehensive
investigation comparable in scale and methodology to the present research, specifically, one utilizing data
collected from Turkish>speaking individuals diagnosed in a hospital setting according to GINA criteria, and
evaluating the performance of 13 different machine learning algorithms across seven distinct phonetic units,
had not been reported in the literature at the time this study was conducted. This research aims to go
beyond current diagnostic methods that are only applied in standardized clinical settings and develop a
methodology that offers the potential for non>invasive and continuous monitoring of patients in their daily
lives. The aim of our study was to determine whether a patient had asthma using acoustic analysis of voice
recordings and to identify machine learning models that can achieve the highest accuracy.

The developed acoustic analysis method detects possible asthma symptoms by analyzing various
parameters, such as frequency, amplitude, and spectral features (graphical representation of the power
distribution of sound waves) in sound signals. The proposed approach is less invasive than conventional
methods and offers continuous monitoring. For example, analyzing respiratory sounds recorded during the
night may be useful for detecting asthma symptoms that occur during sleep.

These innovative sound analysis methods can potentially lead to a paradigm shift in asthma manage>
ment. Continuous and non>invasive monitoring may enable early detection and prevention of asthma
attacks. It can also improve patients’ quality of life and reduce healthcare costs by helping create person>
alized treatment plans.

However, further research and validation studies are required to fully integrate these technologies into
clinical practice. Issues such as data security, algorithm reliability, and cost>effectiveness should be carefully
addressed before their widespread use. In addition, comprehensive training programs should be developed
to enable healthcare professionals and patients to effectively use these new technologies.

Machine learning techniques have been widely used in the field of bioinformatics to exploit disease
hallmarks in the gene, proteomic, and metabolic expression of samples to build accurate prediction models.
In conclusion, the asthma prediction model developed in this study can help individuals who cannot
immediately visit a diagnostic doctor due to a lack of infrastructure and other health resources. Furthermore,
this model can advance the prediction of other diseases affecting the pulmonary system.

Literature Review
The use of machine learning algorithms for asthma diagnosis has recently attracted considerable

attention recently. In particular, the effectiveness of artificial intelligence has been observed in the analysis
of lung imaging and the interpretation of pulmonary function tests (Kaplan et al., 2021). A comprehensive
literature review revealed that various researchers have examined different machine>learning models to
improve the clinical diagnosis of asthma (Bolat, 2021). These studies have generally been conducted on
large>scale patient datasets and have yielded promising results for the automatic diagnosis of asthma.
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Yadav et al. (2018) investigated the classification of asthmatic patients and healthy subjects using
sustained phonations (/A:/, /i:/, /u:/, /eI/, /oU/, /s/, /z/) and nonspeech sounds (cough, wheeze) from 47
asthmatic and 48 healthy participants. Using MFCC statistics and Support Vector Machines (SVM), wheeze
achieved the highest classification accuracy of 90.25%, whereas among sustained vowels, /i:/ achieved
80.79% accuracy (Yadav et al., 2018).

In a subsequent study, Yadav et al. (2020) employed INTERSPEECH 2013 Computational Paralinguistics
Challenge baseline (ISCB) acoustic features from a similar dataset for more detailed analysis. Using ISCB
features, /oU/ phonemes achieved 75.4% accuracy (18.28% improvement over baseline), while exhale
achieved the highest classification accuracy of 77.8%. The loudness and MFCC feature groups have been
identified as the most important contributors to asthma classification (Yadav et al. 2020).

Alam et al. (2022) developed machine>learning approaches to predict lung function from voice recordings
of patients with asthma. In total, 323 voice recordings were collected from 26 patients with asthma who
underwent bronchoprovocation tests. A threshold>based mechanism was designed to separate speech and
breathing segments, and 23 features were extracted. The random forest regression model showed the best
performance, with the lowest root mean square error (RMSE = 10.86) for predicting FEV1%. The Random
Forest algorithm achieved 85% accuracy in binary classification to predict abnormal lung function (Alam et
al., 2022).

Sterling et al. (2014) developed an Automated System for Asthma Monitoring (ADAM) that operates on a
mobile platform. The system uses an iOS application to detect cough sounds using an external microphone.
Using the hidden Markov model (HMM)>based Viterbi decoder and MFCC features, the system achieved 63%
sensitivity with three false positives per hour (Sterling et al., 2014). This study demonstrated the potential
of mobile technology for the objective monitoring of asthma symptoms, particularly among adolescents.

Deep learning methods, particularly convolutional neural networks (CNNs) and long short>term memory
(LSTM) architectures, are prominent approaches for the classification of lung sounds. Aykanat et al. (2020)
obtained an 86% accuracy rate by combining Mel>Frequency Log Energy (MFCC) features with the (GB)
algorithm (Aykanat et al., 2020). Similarly, Zhang et al. (2024) developed a hybrid CNN>LSTM model using
spectrogram images as inputs and achieved 99.01% accuracy and 99.13% sensitivity (Zhang et al., 2024). These
findings confirm that time>frequency representations (e.g., spectrograms) provide an effective framework
for the automatic analysis of pathological respiratory sounds (wheezes and crackles).

Beyond the success of spectrogram>based analyses, Petmezas et al. (2022) achieved an accuracy of 76.39%
using a hybrid CNN>LSTM architecture (Petmezas et al., 2022). Research emphasizes that visual representa>
tions of spectrograms in the frequency>time domain are critical sources of features for both traditional and
deep learning models.

To provide practical solutions for asthma screening in resource>constrained areas, Gunawardana et al.
(2024) evaluated 13 different machine>learning algorithms using data collected in the Sri Lanka Health and
Aging Study (SLHAS). This study found that the hybrid model of Logistic Regression and LightGBM performed
best with a sensitivity of 79.85% and AUC value of 0.9062. These results indicate that a low>cost model can
be developed for community>based health screening and clinical settings can be developed (Gunawardana
et al., 2024).

Topaz et al. (2022) conducted a study using audio>recorded patient>primary care provider encounters to
evaluate the level of shared decision>making (SDM) and predict inhaled corticosteroid adherence in primary
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care settings. Speech>to>text algorithms were used to automatically transcribe 80 audio>recorded encoun>
ters (ROUGE F>score = 0.9), and machine learning algorithms (Naive Bayes, Support Vector Machines, Decision
Tree) were applied. The highest F>score achieved was 0.88 for SDM evaluation (Naive Bayes) and medication
adherence prediction (Support Vector Machines) (Topaz et al., 2022). This study represents pioneering work
demonstrating that speech data can be used to predict patient adherence to asthma treatment.

Rivas>Navarrete et al. (2025) developed an edge>computing>based system for detecting chronic respira>
tory diseases (COPD and asthma) by analyzing cough and breath sounds. The system operates on Raspberry
Pi devices and smartphones by using MFCC and Chromagram features. Trained on a dataset collected
from 86 participants (53 with respiratory conditions and 33 healthy), the system achieved 90% sensitivity,
93.55% specificity, and 91.75% balanced accuracy in detecting chronic respiratory diseases (Rivas>Navarrete
et al., 2025). This study represents a significant step forward in the development of low>cost and portable
diagnostic tools suitable for resource>limited areas.

Chen et al. (2025) developed an AI>based system that uses voice analysis to predict the risk of asthma.
Using 1500 speech samples from the Saarbrucken Voice Database (high>pitch, normal>pitch, and low>pitch
recitations of phonemes [i, a, u]), the Long>Term Average Spectrum (LTAS) and Single>Frequency Filtering
Cepstral Coefficients (SFCCs) were extracted as features. Seven machine>learning algorithms (Decision Tree,
Random Forest, Gradient Boosting, SVM, ANN, CNN, LSTM) were employed in this study. The decision Tree,
CNN, and LSTM models achieved average accuracy values greater than 80%, and the decision tree model
demonstrated the best accuracy for high pitch phonemes (accuracy: 98.66%) (Chen et al., 2025).

Mayr et al. (2025) analyzed the speech characteristics of patients with COPD during and after exacerba>
tion. Using machine learning (SVM) on speech data from 50 patients with COPD, they achieved 84% accuracy
in classifying patient status, which was significantly higher than the 65% accuracy obtained using CAT and
BORG scores alone. After exacerbation, patients exhibit reduced voice breathiness, more stable loudness
and phonation, fewer pauses, and more regular reading rhythms (Mayr et al., 2025).

Material and Methods
This study applied a comprehensive methodology for asthma diagnosis based on the analysis of audio

signals. The methodological approach comprises three main stages: data collection, feature extraction, and
machine learning model development.

Data Collection

This study was conducted in a single center with a cross>sectional design between January 2024 and July
2024 at the University of Health Sciences Istanbul Yedikule Chest Diseases and Thoracic Surgery Training
and Research Hospital. Thus, 344 participants, comprising 284 patients diagnosed with asthma by a pulmo>
nologist according to the GINA 2023 asthma guidelines and 60 healthy individuals without any history of
chronic disease (Figure 1), were included in the study and were volunteers aged between 18 and 64 years
(Figure 2). The study was conducted in accordance with the principles of the Declaration of Helsinki and
was approved by the Clinical Research Ethics Committee of Istanbul Yedikule Chest Diseases and Thoracic
Surgery Training and Research Hospital (Approval date: December 14, 2023, Approval number 2023>433).
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Figure 1
Distribution of study subjects.

Figure 2
Distribution of Subject Age Groups

A physician detailed the purpose and processes of the study to all participants. Participants were
matched by age and sex, and records of unmatched participants were excluded from the study. All individ>
uals who agreed to participate signed a written informed consent form. During the enrollment process, the
participants' age, sex, and additional diagnostic information, if any, were systematically recorded.

Data collection was carried out by asking participants to read predetermined sound phrases for 10 s on
an iPhone 14 Pro mobile phone, positioned 10 cm away from their mouths, in the presence of an expert
physician. The phrases vocalized by the participants consisted of the phonetic sound ‘aaa’ and the words
‘ana, ’ ‘araba, ’ ‘ordu, ’ ‘gelecek, ’ ‘titiz’ and’ ünlem.’ Each participant provided seven distinct 10>s voice
recordings, resulting in seven audio samples per user, and the phonetic features of the selected words
were specifically chosen to reveal acoustic differences in the voices of asthma patients. The data collection
process was standardized by applying the same recording procedure to all participants. The collected voice
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data were labeled by the attending physician as ‘Asthma’ or ‘Healthy’ according to the GINA criteria. Because
a separate dataset was created for each of the seven phonetic units, each individual dataset comprised
344 samples (audio recordings), with 284 samples from patients with asthma and 60 from healthy controls.
Machine learning models were developed on these datasets, and their performance was evaluated using
the 5>fold cross>validation methodology detailed in section "2.5 Experimental Design.” According to this
methodology, the dataset for each phonetic unit was divided into 80% (approximately 275 samples) training
data and 20% (approximately 69 samples) test data at each iteration.

To ensure the confidentiality of the participants, all data were anonymized and stored on a secure
software platform developed by MedCase Yazılım Teknolojileri A.Ş. The data were grouped using unique
identification numbers (ID) assigned to each participant and stored on a secure server. Only authorized
administrators have access to the server. Figure 3 shows the time>domain data slice of the healthy and
asthmatic data.

Figure 3
Sample data of subjects within the TIME domain: asthma patient (red) and healthy subject (green)

Feature Inference

Participants provided audio data for seven distinct phonetic units (‘aaa,’ ‘ana,’ ‘araba,’ ‘ordu,’ ‘gelecek,’
‘titiz,’ and ‘ünlem’), which were specifically selected due to their inclusion of diverse Turkish vowels, poten>
tially reflecting vocal tract alterations. These recordings were captured using an iPhone 14 Pro mobile device
at a 44.1>kHz sampling rate and underwent a comprehensive pre>processing and feature extraction pipeline.
The Python programming language and the Librosa library were utilized for this process. To ensure compu>
tational consistency and adhere to standard feature extraction practices, all audio files were resampled to
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a 22.05>kHz sampling rate using the Librosa library before feature extraction. The initial pre>processing step
before specific feature calculation involved steps such as silence removal from the signals and application of
noise>reduction techniques to enhance signal quality. Figure 3 provides a visual example of a pre>processed
audio waveform.

Subsequently, Mel>Frequency Cepstral Coefficient (MFCC) extraction was performed to convert the audio
data into numerical features (Logan, 2000). MFCC is an effective technique widely used in audio processing
and speech recognition; it models the frequency perception of the human ear and transforms audio signals
into multidimensional feature vectors (Davis & Mermelstein, 1980; Rabiner & Schafer, 2007). The MFCC
features were extracted by the following systematic steps (Figure 4):

1. Preprocessing: Silence segments were removed from the signals, and noise>reduction techniques were
applied.

2. Windowing: The audio signal was divided into short time intervals suitable for analysis. For the MFCC
calculation, the default parameters of the Librosa library were used: a frame size of 2048 samples
(n_fft=2048), a hop length of 512 samples (hop_length=512), and a Hamming window

3. Fourier transform: The time>domain signals are transformed into frequency domains.

4. Mel Filter Application: The frequency spectrum was converted to the Mel scale to model the human
hearing system.

5. Logarithmic Transform and Discrete Cosine Transform (DCT): Spectral information was processed by
logarithmic transformation and DCT to obtain the final MFCC coefficients.

Figure 4
Algorithm for creating MFCC

Mel-Frequency Cepstral Coefficients (MFCCs) and Dynamic Features

For each audio signal, 12 basic MFCC coefficients were extracted and optimized to model the spectral
characteristics of the human voice. These coefficients represent the amplitude information in the frequency
spectrum of the audio signal (Young et al., 2006). To capture temporal dynamics within the audio signal,
which is crucial as vocal characteristics may change over time due to disease, dynamic features, such as
delta (first>order temporal derivative) and delta>delta (second>order temporal derivative) coefficients, were
calculated from these 12 basic MFCCs and included in the analysis. This approach provided 36 MFCC>based
features (12 basic coefficients, 12 delta coefficients, and 12 delta>delta coefficients).
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Additional Acoustic Features and Statistics

To complement the MFCC features and enable more sensitive detection of potential disease markers, the
following additional acoustic features were extracted:

• Spectral Centroid: Indicates the "brightness" center of the sound.

• Spectral bandwidth: shows the energy spread in the frequency spectrum.

• Spectral Rolloff: This parameter specifies the frequency below which a large portion (default 85%) of the
spectral energy is concentrated, providing information about the high>frequency content.

• Zero-Crossing Rate:  Indicates the frequency at which the signal crosses the zero axis, which is often
related to the degree of noisiness or periodicity.

The mean and standard deviation values of the extracted additional acoustic features were calculated
to enrich the feature vectors. For instance, instability or tonal shifts in the voice caused by respiratory
illness might manifest as increases in the standard deviation of these features, whereas shifts in mean
values could indicate overall changes in vocal characteristics. This resulted in 4*2 = 8 additional features
from these four acoustic properties and their statistics. By combining the 36 MFCC>based features and the 8
features derived from additional acoustic properties, a total feature vector of 44 dimensions was created for
each audio sample. This comprehensive and multidimensional feature extraction strategy aims to capture
in more detail the spectral variations (diversity and changes) in the voices of patients with asthma, which
might reflect the subtle and complex effects of diseases like asthma, thereby aiming to establish a more
robust and discriminative basis for disease diagnosis. For each participant, recordings with seven different
words (‘aaa,’ ‘ana,’ ‘araba,’ ‘ordu,’ ‘gelecek,’ ‘titiz,’ ‘ünlem’) were systematically pre>processed, and MFCC and
other acoustic features were extracted and saved in CSV files with their labels (asthma or healthy). As a
result, a separate dataset was created for each word. In addition, exploratory data analyses were performed,
and class distributions were examined in detail to understand the statistical properties of the generated
datasets and provide a basis for the classification models.

Performance Metrics

The precision, Recall, F1 Score, and accuracy metrics were used to evaluate the performance of the
proposed system.

The inputs used in these equations reflect the relationship between the model predictions and actual
situations.

• True Positive (TP > True Positive): Cases in which the model predicts asthma and is actually asthma.

• True Negative (TN > True Negative): Cases in which the model predicts as healthy and are actually healthy.

• False Positive (FP > False Positive): Cases in which the model predicts asthma but is actually healthy.

• False Negative (FN > False Negative): Cases that the model predicts as healthy but actually have asthma.

These classifications form the basis for calculating the metrics used to evaluate the performance of the
model and allow us to measure its ability to detect asthma cases and correctly classify healthy individuals.

The metrics used to evaluate the performance of an asthma>detection system are crucial. Precision,
Recall, Specificity, F1 Score, and Accuracy help us comprehensively evaluate the system’s success.
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• Precision: Indicates the proportion of cases predicted by the model as asthma, which is actually asthma.
Precision is important for minimizing false positives (FPs), and high>precision values are desirable.

• Recall: Refers to the proportion of actual asthma cases correctly detected by the model. A high sensitivity
is important for reducing false negatives (FN).

• Specificity: The proportion of healthy individuals correctly identified by the model. Specificity is impor>
tant for reducing false positives (FP). High specificity helps prevents healthy individuals from receiving
unnecessary treatment.

• F1 Score (F1 Score): this is the harmonic mean of the sensitivity and specificity. This metric provides
balanced assessment of sensitivity and specificity.

• Accuracy: Indicates the proportion of correct predictions among all predictions. A high>accuracy value
represents the overall accuracy of the model. However, it can be misleading on unbalanced datasets;
therefore, it should be evaluated together with other metrics.

In medical applications such as asthma diagnosis, there is often a trade>off between sensitivity and
specificity. High sensitivity increased the ability to identify patients with asthma, whereas high specificity
increased the ability to correctly identify healthy individuals. In a clinical context, the most important metric
may vary depending on the potential risks of false>positive or false>negative diagnoses.

Models Used

In this study, various machine>learning models for asthma diagnosis via voice analysis were developed
and evaluated. The classification algorithms used in this study and their specific parameters are described
below.

1. Naive Bayes (NB): The NB is a computationally efficient classifier based on probability theory that works
under the assumption of feature independence.

2. K-Nearest Neighbor (K-NN): This is a classification algorithm based on sample similarity. Predictions
were made according to the classes of the five nearest neighbors of each sample using the k=5
parameter values.

3. Decision Tree (Decision Tree): Based on hierarchical decision rules, this classifier was optimized with
the parameter’s maximum depth=5, minimum sampling split=5, and minimum leaf sample=2.

4. Neural Network: A neural network architecture consisting of four hidden layers with (256, 128, 64, 32)
neuron numbers was used and trained with ‘relu’ activation function and adaptive learning rate.

5. Extreme gradient boosting (XGBoost): An optimized version of the gradient boosting technique in terms
of computational efficiency and performance.

6. Categorical Boost (CatBoost): A gradient boosting algorithm designed for categorical variables was
used with parameters of 100 iterations, five maximum tree depths, and a learning rate of 0.1.

7. Adaptive Boosting (AdaBoost): An ensemble learning algorithm was applied with decision trees with a
maximum depth of three, trained using 200 iterations, and a learning rate of 0.1.

8. Gradient Boosting: An ensemble learning algorithm configured with 100 trees, 0.1 learning rate, 3
maximum depth of three, and five minimum split value parameters.

9. Random Forest: An ensemble learning algorithm optimized with 100 trees, 10 maximum depths and
‘balanced’ class weights.
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10. Support Vector Machines (SVM): This classifier separates data points with hyperplanes, and is config>
ured with regularization parameter C=1.0, kernel function ‘rbf’ and gamma parameter ‘scale.’

11. Logistic Regression: A binary classification model configured with maximum iteration=2000, regular>
ization intensity C=0.1, regularization l2, optimization algorithm ‘saga’ and class weights ‘balanced’ was
applied.

In addition, various ensemble models were developed using the five best>performing models for each
phonetic unit.

1. Voting Ensemble: An ensemble model was implemented in which the five best>performing models for
each phoneme were combined with equal weights, and predictions were generated using a ‘soft’ voting
strategy (averaging probability estimates).

2. Stacking Ensemble: This is an advanced meta>learner that uses the predictions of the top five models for
each voice as input and applies Logistic Regression (maximum iteration=2000, C=0.5) as a meta>learner.
It generates probability predictions with 5>fold cross>validation and the ‘predict_proba’ method.

3. Weighted Voting Ensemble: An ensemble model was developed in which the top five models for each
voice were weighted according to their AUC performance metric; thus, the higher>performing models
had more influence on the final classification decision.

The selection of these models was guided by the dataset size and the need for robustness in clinical
applications. Deep>learning architectures (e.g., CNNs, LSTMs, Transformers) were excluded because of their
requirement for large>scale datasets to achieve optimal performance (Goodfellow, Bengio, & Courville,
2016). With only 284 patients with asthma and 60 healthy controls, the sample size is significantly below
the thousands or tens of thousands of examples typically required for effective deep learning training
(Zhang et al., 2021). Furthermore, high>dimensional voice data combined with limited samples increases
the risk of overfitting, where models memorize training data rather than generalize to new cases (Shorten,
Khoshgoftaar, & Furht, 2019). Traditional machine learning and ensemble methodologies were chosen to
prioritize the generalizability and reliability of medical diagnostics. These approaches have demonstrated
robust performance on small> to medium>scale datasets (Dietterich, 2000; Ganaie et al., 2022). Ensemble
models (Voting Ensemble, Stacking Ensemble, Weighted Voting Ensemble) were specifically developed using
the top five base models for each phonetic unit, leveraging soft voting and meta>learning strategies.

Future studies should systematically assess deep learning architectures for asthma diagnosis using
expanded and heterogeneous datasets.

Experimental Design

In this study, a 5>fold cross>validation methodology was adopted to evaluate the performance of the
developed machine learning models. The proposed approach is based on the principle of dividing the
dataset into five equal parts, training the model with four parts, and testing the remaining parts. In each
iteration, a different piece of data was used as a test set; thus, all data points were evaluated in both the
training and testing phases (Kohavi, 1995). By averaging the results of five iterations, the generalization
performance of the models was measured in a more reliable and objective manner. The standard deviation
of the results across these folds was also calculated to assess the stability of model performance.

In the data preprocessing stage, StandardScaler was applied to normalize the scale differences between
the features. This standardization process optimized the performance of the algorithms by removing the
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imbalance between the attributes of different sizes. In addition, the SMOTE (synthetic minority oversam>
pling technique) algorithm was used to address the sample distribution imbalance between asthma and
healthy classes (Chawla et al., 2002). By generating synthetic samples of the minority class, SMOTE ensures
that classification models have equal learning opportunities for both categories. Importantly, in terms of
methodological rigor, the SMOTE technique was applied only to the training data, while the test data were
retained in their original form, preserving their true distribution. This strategic approach enables a more
realistic assessment of model performance under real>world conditions in clinical settings.

The data preprocessing steps (standardization and SMOTE) and model training procedures were inte>
grated into the cross>validation cycle. This integration was realized through the ImbPipeline structure of the
Scikit>learn library, ensuring that the data preprocessing and model training phases were independently
and methodologically consistent.

The model training and evaluation processes were performed on a MacBook Pro (2023) computer with an
Apple M3 Pro processor (36 GB RAM) running on a macOS Sonoma operating system in a high>performance
computing environment. The following specific libraries were used to implement the algorithms developed
in the Python 3.11.9 programming language using Spyder Integrated.

Development Environment:

1. Scikit>learn 1.5: Used to implement machine learning models and cross>validation procedures.

2. Librosa 0.10, provides specialized audio data processing and acoustic feature extraction functions.

3. Matplotlib: Used for visualizing research findings and model performance.

This comprehensive technological and methodological framework maximized the scientific reproducibil>
ity of the study’s experimental design and its potential for integration into clinical practice.

Results
This study comprehensively evaluated the diagnostic performance of voice analysis>based machine>

learning models for asthma diagnosis. The classification efficiency of the developed algorithms was
systematically tested on audio samples containing various phonetic units (‘aaa, ‘ ‘ana,’ ‘araba,’ ‘gelecek, ‘
‘ordu, ‘ ‘titiz,’ ‘ünlem’), and the quantitative results obtained are presented in detail in Tables 1–7. The results
are reported as mean ± standard deviation from the 5>fold cross>validation to reflect the consistency of
model performance across different data folds. The analyses demonstrate that ensemble models perform
better than individual classifiers, with the Stacking Ensemble and Voting Ensemble approaches in particular
showing superior performance in terms of diagnostic accuracy.

Analyzing the sound “aaa”

When the performance metrics of the machine learning models applied on the ‘aaa’ sound presented
in Table 1 and Figure 5 are analyzed, it can be seen that the Stacking Ensemble model exhibits superior
classification capacity. This meta>learning model achieved the highest overall performance, with an accuracy
of 80.2% ± 2.6% and an AUC of 0.627 ± 0.107. Similarly, the Neural Network model showed equivalent
discriminative ability with an AUC value of 0.628 ± 0.141, followed by the Gradient Boosting algorithm with
an AUC value of 0.607 ± 0.065.

When we evaluated model performance from the perspective of classification algorithms, it is observed
that ensemble learning methods produced more consistent results than individual classifiers. The Voting
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Ensemble and Weighted Voting Ensemble models exhibited almost identical performance profiles (AUC
values of 0.649 ± 0.112 and 0.649 ± 0.113, respectively), suggesting that the model weighting strategy did not
provide a clear advantage for the ‘aaa’ sound.

The simpler classification approaches, Naive Bayes (57.0% ± 4.6% accuracy, 0.564 ± 0.083 AUC) and K>NN
(57.2% ± 7.8% accuracy, 0.620 ± 0.088 AUC) algorithms, demonstrated limited discrimination capacity com>
pared with the complex models. This suggests that voice analysis for asthma diagnosis requires nonlinear
models and capable of capturing complex relationships.

In terms of performance metrics, although the Random Forest model achieved high accuracy (75.8%
±5.5%) and an F1 score (0.856 ± 0.039), it showed potential limitations in clinical applications due to its
low specificity (0.183 ± 0.062). This suggests that the model has difficulty correctly categorizing healthy
individuals and, therefore, may produce a high rate of false positive results under real conditions.

In terms of the balance of sensitivity and specificity, the Stacking Ensemble model (sensitivity: 0.874 ±
0.035, specificity: 0.443 ± 0.096) was highly successful in detecting patients with asthma, but it performed
moderately in discriminating healthy individuals. This profile has potential value for screening purposes by
detecting high>risk individuals with minimal false negatives.

The results of the ‘Aha’ sound analysis demonstrated the feasibility of voice>based asthma diagnosis and
revealed the limiting factors of a single phonetic unit. The AUC values of the models were generally in the
range of 0.60>0.65, suggesting that the ‘aaa’ sound alone is not sufficient for a definitive diagnosis; however,
in combination with other phonetic units, its diagnostic value may increase.

Table 1
Machine learning model performance evaluation metrics for the sound “aaa”

Model Accuracy F1-Score Precision Recall Specificity AUC

Naive_Bayes 0.570±0.046 0.693±0.033 0.845±0.045 0.588±0.035 0.483±0.170 0.564±0.083

KNN 0.572±0.078 0.674±0.081 0.892±0.040 0.549±0.100 0.683±0.143 0.620±0.088

Decision_Tree 0.500±0.080 0.613±0.091 0.831±0.029 0.493±0.103 0.533±0.100 0.528±0.067

Neural_Network 0.761±0.063 0.854±0.042 0.858±0.035 0.852±0.061 0.333±0.175 0.628±0.141

CatBoost 0.755±0.065 0.852±0.045 0.846±0.022 0.859±0.070 0.267±0.062 0.570±0.052

AdaBoost 0.691±0.087 0.801±0.066 0.845±0.033 0.764±0.094 0.350±0.097 0.577±0.086

GradientBoost 0.764±0.055 0.855±0.038 0.861±0.021 0.852±0.059 0.350±0.082 0.607±0.065

Random_Forest 0.758±0.055 0.856±0.039 0.836±0.011 0.880±0.073 0.183±0.062 0.577±0.076

SVM 0.755±0.066 0.850±0.047 0.851±0.019 0.852±0.082 0.300±0.085 0.649±0.120

Logistic_Regression 0.613±0.063 0.731±0.045 0.858±0.050 0.637±0.041 0.500±0.175 0.624±0.100

Voting_Ensemble 0.761 ± 0.081 0.850 ± 0.060 0.865 ± 0.032 0.841 ± 0.098 0.383 ± 0.163 0.649 ± 0.112

Stacking_Ensemble 0.802 ± 0.026 0.885 ± 0.017 0.849 ± 0.016 0.926 ± 0.041 0.217 ± 0.113 0.627 ± 0.107

Weighted_Voting_Ensemble 0.761 ± 0.081 0.850 ± 0.060 0.865 ± 0.032 0.841 ± 0.098 0.383 ± 0.163 0.649 ± 0.113

Acta Infologica, 9 (1), 223–252   235



Voices from the Lungs: An Innovative Approach to Asthma Diagnosis using Machine Learning   Gezer et al., 2025

Figure 5
Radar graphic for the sound “aaa”

Analysis of the word ‘ana’

In the performance evaluation of the classification models on the word ‘ana’ presented in Table 2 and
Figure 6, the Stacking Ensemble algorithm showed the highest discriminative performance with an accuracy
of 78.8% ± 1.6% and an AUC value of 0.639 ± 0.056. The Neural Network model ranked second, with an accuracy
of 77.9 ± 3.4% and an AUC value of 0.600 ± 0.072.

In the model>based evaluation, the Random Forest algorithm showed a high capacity to correctly identify
asthmatic patients, with a sensitivity of 87.0% ± 6.1%. However, this model has a significant limitation in
identifying healthy individuals, with a specificity of 0.233 ± 0.082. This unstable performance profile, similar
to the Random Forest results for the ‘aaa’ sound, suggests that the model is prone to producing a high rate
of false positives in clinical applications.

The Logistic Regression algorithm showed moderate success in discriminating between asthmatic and
healthy individuals, with an AUC of 0.628 ± 0.100 and specificity of 0.550 ± 0.113. This model provides
a more balanced performance between sensitivity and specificity, making it a reliable option for clinical
applications.
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The K>NN algorithm demonstrated unbalanced performance with an accuracy of 55.8% ± 5.7%, precision of
0.887 ± 0.034, and sensitivity of 0.535 ± 0.084. These results indicate that a high proportion of cases classified
as positive by the K>NN model were indeed asthmatic (high precision); however, it was only able to detect
half of all asthmatic patients (moderate precision). This profile is consistent with the limited discriminative
capacity of the simple algorithms observed in the ‘aaa’ sound.

Analyzing the ensemble learning approaches, the Voting Ensemble and Weighted Voting Ensemble algo>
rithms showed almost identical performance values for the word ‘ana’ (both AUC 0.650 ± 0.080). This result
suggests that for the phonetic unit ‘ana,’ as for the sound ‘aaa,’ different model>weighting strategies do not
provide a clear advantage.

In terms of the F1>score metric, the Stacking Ensemble (0.879 ± 0.009) and XGBoost (0.858 ± 0.021) models
yielded the highest values. These results demonstrate that these models can achieve an optimal balance
between sensitivity and precision, particularly in datasets with class imbalance.

The results of the analysis of the word ‘ana,’ similar to the findings for the sound ‘aaa,’ show the limita>
tions of the classification performance of a single phonetic unit but reveal that ensemble>based approaches
in particular produce promising results. AUC values in the range of 0.600>0.650 indicate the potential value
of this phonetic unit as an auxiliary biomarker for asthma diagnosis.

Table 2
Machine learning model performance evaluation metrics for the sound “ana”

Model Accuracy F1-Score Precision Recall Specificity AUC

Naive_Bayes 0.680 ± 0.030 0.787 ± 0.022 0.872 ± 0.019 0.718 ± 0.028 0.500 ± 0.075 0.629 ± 0.077

KNN 0.558 ± 0.057 0.663 ± 0.063 0.887 ± 0.034 0.535 ± 0.084 0.667 ± 0.139 0.587 ± 0.068

Decision_Tree 0.608 ± 0.029 0.730 ± 0.025 0.846 ± 0.037 0.645 ± 0.045 0.433 ± 0.162 0.529 ± 0.081

Neural_Network 0.779 ± 0.034 0.869 ± 0.023 0.851 ± 0.009 0.887 ± 0.040 0.267 ± 0.033 0.600 ± 0.072

CatBoost 0.753 ± 0.016 0.854 ± 0.011 0.833 ± 0.008 0.877 ± 0.022 0.167 ± 0.053 0.586 ± 0.052

AdaBoost 0.709 ± 0.029 0.820 ± 0.020 0.836 ± 0.015 0.806 ± 0.035 0.250 ± 0.091 0.629 ± 0.051

GradientBoost 0.738 ± 0.056 0.840 ± 0.038 0.843 ± 0.019 0.838 ± 0.059 0.267 ± 0.062 0.591 ± 0.052

Random_Forest 0.759 ± 0.050 0.855 ± 0.033 0.843 ± 0.017 0.870 ± 0.061 0.233 ± 0.082 0.637 ± 0.068

SVM 0.753 ± 0.025 0.851 ± 0.019 0.848 ± 0.021 0.856 ± 0.048 0.267 ± 0.143 0.620 ± 0.093

Logistic_Regression 0.651 ± 0.051 0.760 ± 0.040 0.876 ± 0.030 0.673 ± 0.051 0.550 ± 0.113 0.628 ± 0.100

Voting_Ensemble 0.756 ± 0.047 0.850 ± 0.033 0.857 ± 0.010 0.845 ± 0.066 0.333 ± 0.075 0.650 ± 0.080

Stacking_Ensemble 0.788 ± 0.016 0.878 ± 0.010 0.833 ± 0.011 0.930 ± 0.027 0.117 ± 0.085 0.639 ± 0.056

Weighted_Voting_Ensemble 0.756 ± 0.047 0.850 ± 0.033 0.857 ± 0.010 0.845 ± 0.066 0.333 ± 0.075 0.650 ± 0.080
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Figure 6
Radar graphic for sound “ana”

Analysis of the word ‘araba’

In the classification analyses of the word ‘araba’ presented in Table 3 and Figure 7, the Stacking Ensemble
model exhibited the highest discriminative performance among all models, with an accuracy of 82.3 ±
1.5% and an AUC of 0.684 ± 0.076. This result confirms the superiority of ensemble learning approaches in
generalizing complex acoustic patterns, as in previous phonetic units (‘aaa’ and ‘ana’). In the model>based
evaluation, the Random Forest algorithm showed superior sensitivity in detecting asthma cases (sensitivity:
95.1% ± 2.8%. However, the low specificity value of 0.167 ± 0.075% maintains the similarity limitation observed
for the words ‘aaa’ and’ ana.’ This suggests that the model can produce a high rate of false>positive results
in clinical applications. When the ensemble learning approaches were examined, the Voting Ensemble and
Weighted Voting Ensemble models showed high discriminative performance for the word ‘araba’ with AUC
values of 0.704 ± 0.081 and 0.703 ± 0.081, respectively. These results show that, unlike previous findings for
phonetic units, the ensemble models achieved higher AUC values for the word ‘araba.’ This suggests that
the acoustic features of the word ‘araba’ may be more discriminative for asthma detection. The Logistic
Regression algorithm showed a balanced performance, with an AUC of 0.685 ± 0.078 and a specificity value of
0.600 ± 0.133. This model exhibits a more balanced profile between sensitivity and specificity than previous
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word analyses, thereby providing a reliable option for clinical applications. The CatBoost algorithm demon>
strated strong predictive capacity with an accuracy of 79.9 ± 3.4% and an AUC value of 0.673 ± 0.092. This
result demonstrates that the proposed algorithm, which is optimized for processing categorical variables,
can also effectively model complex patterns in audio data. In contrast, the K>NN model demonstrated the
lowest performance among all models, with an accuracy of 48.8% ± 6.5% and an AUC value of 0.521 ± 0.048.
This result confirms the limitations of neighborhood>based approaches in high>dimensional and complex
datasets, such as voice analysis, as observed in previous “wording” analyses.

The results of the analysis of the word ‘araba’ showed that, compared with previous phonetic units, the
ensemble models achieved higher AUC values (0.684>0.704), indicating that this word may be a stronger
acoustic biomarker for asthma diagnosis. This suggests that phonetic units containing multiple vowel and
consonant combinations may more clearly reflect the effects of asthma on the voice.

Table 3
Machine learning model performance evaluation metrics for the sound “araba”

Model Accuracy F1-Score Precision Recall Specificity AUC

Naive_Bayes 0.648 ± 0.065 0.765 ± 0.053 0.845 ± 0.022 0.701 ± 0.075 0.400 ± 0.062 0.556 ± 0.083

KNN 0.488 ± 0.065 0.600 ± 0.070 0.837 ± 0.044 0.472 ± 0.076 0.567 ± 0.143 0.521 ± 0.048

Decision_Tree 0.616 ± 0.045 0.728 ± 0.040 0.874 ± 0.035 0.627 ± 0.058 0.567 ± 0.143 0.604 ± 0.071

Neural_Network 0.796 ± 0.040 0.879 ± 0.025 0.859 ± 0.025 0.901 ± 0.041 0.300 ± 0.135 0.655 ± 0.041

CatBoost 0.799 ± 0.034 0.882 ± 0.020 0.855 ± 0.023 0.912 ± 0.020 0.267 ± 0.122 0.673 ± 0.092

AdaBoost 0.747 ± 0.045 0.842 ± 0.029 0.867 ± 0.028 0.820 ± 0.049 0.400 ± 0.143 0.673 ± 0.075

GradientBoost 0.770 ± 0.041 0.862 ± 0.026 0.852 ± 0.019 0.873 ± 0.037 0.283 ± 0.085 0.683 ± 0.056

Random_Forest 0.814 ± 0.029 0.894 ± 0.017 0.844 ± 0.014 0.951 ± 0.028 0.167 ± 0.075 0.639 ± 0.081

SVM 0.805 ± 0.020 0.885 ± 0.013 0.861 ± 0.014 0.912 ± 0.025 0.300 ± 0.085 0.663 ± 0.052

Logistic_Regression 0.686 ± 0.055 0.786 ± 0.044 0.893 ± 0.034 0.704 ± 0.063 0.600 ± 0.133 0.685 ± 0.078

Voting_Ensemble 0.796 ± 0.027 0.881 ± 0.016 0.850 ± 0.015 0.915 ± 0.023 0.233 ± 0.082 0.704 ± 0.081

Stacking_Ensemble 0.823 ± 0.015 0.899 ± 0.009 0.847 ± 0.010 0.958 ± 0.018 0.183 ± 0.062 0.684 ± 0.076

Weighted_Voting_Ensemble 0.796 ± 0.027 0.881 ± 0.016 0.850 ± 0.015 0.915 ± 0.023 0.233 ± 0.082 0.703± 0.081
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Figure 7
Radar graphic for “araba”

Analysis of the word ‘gelecek’

In the classification analyses performed on the word ‘gelecek’ presented in Table 4 and Figure 8, the
Stacking Ensemble model exhibited the highest discriminative performance with an accuracy of 82.0% ±
3.1% and an AUC value of 0.702 ± 0.028. This result confirms the superior ensemble learning approaches
observed in the previous phonetic units for the word ‘gelecek.’ The voting ensemble and weighted voting
ensemble models demonstrated similarly high performance, with AUC values of 0.717 ± 0.062 and 0.716 ±
0.062, respectively.

In the model>based evaluation, the Logistic Regression algorithm exhibited remarkable discriminative
power, with an AUC value of 0.709 ± 0.049. This result, similar to the Logistic Regression performance for the
word ‘araba,’ suggests that this model can effectively discriminate vocal characteristics between the asthma
and control groups. However, a specificity value of 0.583 ± 0.091 indicates that false>favorable rates may
increase.

The SVM algorithm demonstrated strong performance with an accuracy of 79.1% ± 2.0% and an AUC value
of 0.643 ± 0.069. This model is characterized by its capacity to effectively separate complex sound features
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in high>dimensional spaces. Consistent with its performance in previous phonetic units, the discriminative
power of the SVM for the word ‘gelecek’ was moderate to high.

Remarkably, the Decision Tree algorithm showed limited performance with an accuracy of 55.3% ± 7.4%
and an AUC of 0.551 ± 0.053. This confirms the inability of a single decision tree to model complex audio
features, which has been observed in previous studies. Similarly, the K>NN model also showed limited
discriminative capacity, with an accuracy of 59.6 ± 6.5% and an AUC value of 0.606 ± 0.071. This result supports
the limited effectiveness of neighborhood>based approaches in complex datasets, such as voice analysis,
as observed for the words ‘aaa’, ‘ana’ and’ araba.’

The analysis results of the word ‘gelecek’ show that compared with the previous phonetic units, the
ensemble models reach higher AUC values (0.702>0.717), indicating that this word may be a stronger acoustic
biomarker. In particular, the 0.717 AUC value of the Voting Ensemble model is the highest discriminative value
among all the phonetic units analyzed thus far. This suggests that the variety of vowel and consonant sounds
and the complexity of articulatory movements in the word ‘gelecek’ may capture the effects of asthma on
the voice more clearly.

The high AUC values observed for the word ‘gelecek’ suggest that words with multiple syllables and
different phonetic features are more effective biomarkers for asthma diagnosis. This finding emphasizes
the diagnostic value of phonetic diversity in clinical practice.

Table 4
Machine learning model performance evaluation metrics for the sound “gelecek”

Model Accuracy F1-Score Precision Recall Specificity AUC

Naive_Bayes 0.657 ± 0.028 0.769 ± 0.020 0.864 ± 0.024 0.694 ± 0.022 0.483 ± 0.097 0.587 ± 0.062

KNN 0.596 ± 0.065 0.709 ± 0.060 0.867 ± 0.033 0.603 ± 0.077 0.567 ± 0.097 0.606 ± 0.071

Decision_Tree 0.553 ± 0.074 0.671 ± 0.079 0.838 ± 0.022 0.567 ± 0.104 0.483 ± 0.111 0.551 ± 0.053

Neural_Network 0.788 ± 0.031 0.872 ± 0.019 0.870 ± 0.018 0.873 ± 0.023 0.383 ± 0.085 0.664 ± 0.050

CatBoost 0.782 ± 0.032 0.871 ± 0.018 0.852 ± 0.023 0.891 ± 0.014 0.267 ± 0.122 0.644 ± 0.085

AdaBoost 0.724 ± 0.012 0.829 ± 0.007 0.850 ± 0.028 0.810 ± 0.029 0.317 ± 0.162 0.669 ± 0.031

GradientBoost 0.764 ± 0.017 0.857 ± 0.010 0.863 ± 0.030 0.852 ± 0.032 0.350 ± 0.186 0.684 ± 0.021

Random_Forest 0.782 ± 0.017 0.871 ± 0.008 0.853 ± 0.022 0.891 ± 0.017 0.267 ± 0.133 0.677 ± 0.047

SVM 0.791 ± 0.020 0.878 ± 0.011 0.847 ± 0.014 0.912 ± 0.015 0.217 ± 0.085 0.643 ± 0.069

Logistic_Regression 0.689 ± 0.063 0.789 ± 0.051 0.889 ± 0.026 0.711 ± 0.069 0.583 ± 0.091 0.709 ± 0.049

Voting_Ensemble 0.785 ± 0.050 0.870 ± 0.033 0.867 ± 0.024 0.873 ± 0.049 0.367 ± 0.113 0.717 ± 0.062

Stacking_Ensemble 0.820 ± 0.031 0.895 ± 0.018 0.861 ± 0.023 0.933 ± 0.017 0.283 ± 0.125 0.702 ± 0.028

Weighted_Voting_Ensemble 0.788 ± 0.047 0.871 ± 0.031 0.870 ± 0.021 0.873 ± 0.049 0.383 ± 0.100 0.716 ± 0.062
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Figure 8
Radar graphic for “gelecek”

Analysis of the word ‘ordu’

In the classification analyses performed on the word ‘ordu’ presented in Table 5 and Figure 9, the Stacking
Ensemble model exhibited the highest overall performance with an accuracy of 79.6% ± 3.0% and an AUC of
0.678 ± 0.043. This result confirms the superiority of ensemble learning approaches for generalizing complex
acoustic patterns, as observed in previous phonetic units. In the model>based evaluation, the SVM algorithm
showed strong discriminative capacity with an accuracy of 79.0% ± 4.6% and an AUC value of 0.686 ± 0.077.
This result confirms that SVM can discriminate effectively in high>dimensional acoustic feature space, as
observed for the word ‘gelecek.’ However, the limitation in the specificity values is a factor to be considered
in clinical applications. The Random Forest model showed high sensitivity in detecting asthma cases, with a
sensitivity of 88.7 ± 5.4%. However, it showed a significant limitation in identifying healthy individuals, with
a specificity of 0.200 ± 0.067%. This unbalanced performance profile is consistent with the low specificity
problem observed for Random Forest in previous “wording” analyses. This highlights the risk of producing a
high rate of false positive results in clinical applications. The Logistic Regression algorithm showed moderate
success in discriminating between asthmatic and healthy individuals, with an AUC of 0.665 ± 0.035 and
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specificity value of 0.533 ± 0.135. This result is consistent with the Logistic Regression performance observed
for the words ‘gelecek’ araba’ araba,’ confirming that the model has balanced discriminative power in voice>
based biomarkers. When the ensemble learning approaches were analyzed, the Weighted Voting Ensemble
model with an AUC value of 0.681 ± 0.041 minimally exceeded the AUC value of 0.680 ± 0.041 for the Voting
Ensemble model. This demonstrates that, as in previous word analyses, the model weighting strategy for the
word ‘ordu’ only maximizes classification performance. The K>NN algorithm exhibited limited discriminative
capacity, with an accuracy of 54.5% ± 6.4% and an AUC value of 0.573 ± 0.106. This result confirms the limited
effectiveness of neighborhood>based approaches in high>dimensional and complex datasets, such as voice
analysis, which has been consistently observed in all previous word analyses. The results of the analysis of
the word ‘ordu’ show that, compared to the last phonetic units, the community models exhibit slightly lower
discriminative power than the word ‘gelecek’ (0.702>0.717), but higher discriminative power than the words
‘aaa’ (0.627>0.649) and ‘ana’ (0.639>0.650), with AUC values in the range 0.678>0.686. This suggests that the
phonetic features of the word ‘ordu’ may reflect the effects of asthma on the voice at a medium>high level.

Table 5
Machine learning model performance evaluation metrics for the sound “ordu”

Model Accuracy F1-Score Precision Recall Specificity AUC

Naive_Bayes 0.673 ± 0.054 0.783 ± 0.044 0.860 ± 0.015 0.721 ± 0.064 0.450 ± 0.041 0.613 ± 0.076

KNN 0.545 ± 0.064 0.661 ± 0.059 0.851 ± 0.044 0.544 ± 0.073 0.550 ± 0.145 0.573 ± 0.106

Decision_Tree 0.682 ± 0.047 0.787 ± 0.035 0.879 ± 0.031 0.714 ± 0.044 0.533 ± 0.135 0.624 ± 0.070

Neural_Network 0.758 ± 0.026 0.855 ± 0.016 0.848 ± 0.017 0.862 ± 0.026 0.267 ± 0.097 0.625 ± 0.085

CatBoost 0.752 ± 0.027 0.852 ± 0.018 0.840 ± 0.018 0.866 ± 0.035 0.217 ± 0.113 0.642 ± 0.034

AdaBoost 0.723 ± 0.026 0.825 ± 0.021 0.862 ± 0.015 0.791 ± 0.041 0.400 ± 0.097 0.630 ± 0.042

GradientBoost 0.752 ± 0.044 0.847 ± 0.032 0.858 ± 0.012 0.837 ± 0.057 0.350 ± 0.062 0.641 ± 0.042

Random_Forest 0.767 ± 0.051 0.862 ± 0.033 0.839 ± 0.017 0.887 ± 0.054 0.200 ± 0.067 0.687 ± 0.060

SVM 0.790 ± 0.046 0.875 ± 0.027 0.858 ± 0.026 0.894 ± 0.033 0.300 ± 0.135 0.686 ± 0.077

Logistic_Regression 0.679 ± 0.027 0.784 ± 0.027 0.880 ± 0.023 0.710 ± 0.055 0.533 ± 0.135 0.665 ± 0.035

Voting_Ensemble 0.781 ± 0.025 0.870 ± 0.015 0.851 ± 0.015 0.890 ± 0.021 0.267 ± 0.082 0.680 ± 0.041

Stacking_Ensemble 0.796 ± 0.030 0.884 ± 0.018 0.834 ± 0.013 0.940 ± 0.026 0.117 ± 0.067 0.678 ± 0.043

Weighted_Voting_Ensemble 0.781 ± 0.025 0.870 ± 0.015 0.851 ± 0.015 0.890 ± 0.021 0.267 ± 0.082 0.681 ± 0.041
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Figure 9
Radar graphic for “ordu”

Analysis of the word ‘titiz’

In the classification analyses performed on the word ‘titiz’ presented in Table 6 and Figure 10, the Voting
Ensemble and Weighted Voting Ensemble models exhibited the highest discriminative performance with
AUC values of 0.736 ± 0.067 and 0.736 ± 0.068, respectively. These results confirm the superiority of ensemble
learning approaches in generalizing complex acoustic patterns for the word ‘fastidious,’ as observed for all
previous phonetic units. The Stacking Ensemble model showed superior performance, with an accuracy of
79.9% ± 4.0% and an AUC of 0.731 ± 0.064. In the model>based evaluation, the Neural Network algorithm
exhibited a discriminative power close to that of the ensemble models with an accuracy of 79.9% ± 6.0%
and an AUC value of 0.734 ± 0.056. This result shows that artificial neural networks can effectively model the
acoustic features of the word ‘titiz.’ The SVM algorithm also demonstrated a strong classification capacity,
with an accuracy of 76.4 ± 2.9% and an AUC of 0.718 ± 0.066. This performance profile confirms that the SVM
can discriminate effectively in high>dimensional acoustic feature space, as observed for the words ‘gelecek’
and’ ordu.’ The Logistic Regression algorithm showed remarkable performance with an AUC of 0.710 ± 0.095
and specificity value of 0.567 ± 0.226. This result is very close to the AUC value of 0.709 obtained for the word’
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palecek, demonstrating that the Logistic Regression model exhibits consistent discriminative power across
different phonetic units.

As observed in all previous wording analyses, the Random Forest model showed high sensitivity in
detecting asthma cases, with a sensitivity of 87.7 ± 3.7%. However, it had a marked limitation in identifying
healthy individuals, with specificity of 0.200 ± 0.085%. This unbalanced performance profile was also consis>
tently observed for the words ‘aaa’, ‘ana, ’ ‘araba, ’ ‘gelecek’ and ‘ordu, ’ indicating that the Random Forest
model tends to produce a high rate of false positives in clinical applications.

Simpler models, such as K>NN and Decision Tree, exhibited limited discriminative capacity with AUC
values of 0.583 ± 0.088 and 0.577 ± 0.051, respectively. This result confirms that simple algorithms are
inadequate for complex and high>dimensional datasets, such as voice analysis, as consistently observed in
all previous word analyses.

The analysis results of the word ‘rigorous’ show that, compared to the previous phonetic units, the
ensemble models exhibit the highest discriminative power among all the words analyzed thus far, with AUC
values in the range of 0.731>0.736. These values also exceed the AUC range of 0.702>0.717 obtained for the
word ‘gelecek,’ indicating that ‘titiz’ may be the most powerful acoustic biomarker for asthma diagnosis. This
suggests that the complexity of consonant sound combinations and articulatory movements in the word
‘titiz’ may reflect the effects of asthma on the voice more clearly.

Table 6
Machine learning model performance evaluation metrics for the sound “titiz”

Model Accuracy F1-Score Precision Recall Specificity AUC

Naive_Bayes 0.698±0.040 0.804±0.025 0.863±0.031 0.754±0.029 0.433±0.143 0.641±0.104

KNN 0.553 ± 0.088 0.663 ± 0.085 0.857 ± 0.035 0.546 ± 0.101 0.583 ± 0.075 0.583 ± 0.088

Decision_Tree 0.654 ± 0.033 0.769 ± 0.026 0.856 ± 0.031 0.701 ± 0.041 0.433 ± 0.143 0.577 ± 0.051

Neural_Network 0.799 ± 0.060 0.881 ± 0.037 0.861 ± 0.024 0.901 ± 0.052 0.317 ± 0.097 0.734 ± 0.056

CatBoost 0.773 ± 0.027 0.865 ± 0.019 0.848 ± 0.006 0.884 ± 0.041 0.250 ± 0.053 0.689 ± 0.066

AdaBoost 0.744 ± 0.019 0.841 ± 0.013 0.864 ± 0.020 0.820 ± 0.025 0.383 ± 0.113 0.693 ± 0.048

GradientBoost 0.721 ± 0.018 0.829 ± 0.014 0.838 ± 0.007 0.821 ± 0.029 0.250 ± 0.053 0.644 ± 0.019

Random_Forest 0.759 ± 0.033 0.857 ± 0.022 0.838 ± 0.015 0.877 ± 0.037 0.200 ± 0.085 0.711 ± 0.062

SVM 0.764 ± 0.029 0.860 ± 0.016 0.845 ± 0.024 0.877 ± 0.019 0.233 ± 0.133 0.718 ± 0.066

Logistic_Regression 0.715 ± 0.038 0.812 ± 0.025 0.894 ± 0.049 0.747 ± 0.041 0.567 ± 0.226 0.710 ± 0.095

Voting_Ensemble 0.793 ± 0.043 0.878 ± 0.028 0.853 ± 0.011 0.905 ± 0.048 0.267 ± 0.033 0.736 ± 0.067

Stacking_Ensemble 0.799 ± 0.040 0.885 ± 0.025 0.839 ± 0.012 0.937 ± 0.047 0.150 ± 0.062 0.731 ± 0.064

Weighted_Voting_Ensemble 0.793 ± 0.043 0.878 ± 0.028 0.853 ± 0.011 0.905 ± 0.048 0.267 ± 0.033 0.736 ± 0.068
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Figure 10
Radar graphic for “titiz”

Analysis of the word ‘ünlem’

In the classification analyses performed on the word ‘ünlem’ presented in Table 7 and Figure 11, the
Stacking Ensemble model exhibited the highest overall performance with an accuracy of 81.4% ± 4.1% and
an AUC of 0.716 ± 0.070. This result confirms the superiority of ensemble learning approaches in generalizing
complex acoustic patterns for the word ‘ünlem,’ as observed for all previous phonetic units. The Voting
Ensemble and Weighted Voting Ensemble models showed similarly high discriminative power, with AUC
values of 0.726 ± 0.084 and 0.726 ± 0.083, respectively. In the model>based evaluation, the Logistic Regression
algorithm performed remarkably well, with an AUC of 0.723 ± 0.085 and a specificity value of 0.633 ± 0.135. This
result is similar to the values obtained for the words ‘titiz’ (0.710 AUC) and ‘gelecek’ (0.709 AUC), confirming
that the Logistic Regression model can effectively discriminate voice characteristics between the asthma
and control groups.

The SVM algorithm demonstrated strong classification capacity, with an accuracy of 79.4 ± 2.7% and an
AUC value of 0.713 ± 0.041. This performance profile confirms that the SVM can discriminate effectively in
high>dimensional acoustic feature space, as observed for the words ‘titiz’ (0.718 AUC) and ‘gelecek’ (0.643
AUC). The Random Forest model showed superior sensitivity in detecting asthma cases, with a sensitivity
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of 88.4 ± 2.7%, as consistently observed in all previous wording analyses. However, it exhibited a marked
limitation in identifying healthy individuals, with a specificity of 0.300 ± 0.145%. This uneven performance
profile suggests that the Random Forest model tends to produce a high rate of false positives in clinical
applications.

Remarkably, unlike the previous phonetic units, the Decision Tree algorithm showed a relatively higher
specificity for the word ‘ünlem’ with an AUC of 0.659 ± 0.132 and a specificity value of 0.700 ± 0.215. This
suggests that decision>tree>based approaches may be advantageous in terms of specificity for words with
certain phonetic features.

The K>NN algorithm exhibited limited discriminative capacity, with an accuracy of 55.8 ± 4.8% and an AUC
value of 0.652 ± 0.043. This result confirms the limited effectiveness of neighborhood>based approaches
on high>dimensional and complex datasets, such as voice analysis, as consistently observed in all previous
wording analyses.

The results of the analysis of the word ‘ünlem’ show that, compared to the previous phonetic units, the
ensemble models exhibit a discriminative power slightly lower than the word ‘titiz’ (0.731>0.736), but close
to the word ‘gelecek’ (0.702>0.717), with AUC values in the range 0.716>0.726. This suggests that the vowel and
consonant combinations contained in the word ‘ünlem’ can significantly reflect the effects of asthma on
the voice.

The overall performance profile of the models for the word ‘ünlem,’ particularly high sensitivity but
limited specificity in most models, emphasizes the importance of balancing sensitivity and specificity in the
diagnosis of asthma. This balance requires the development of optimized models that can detect a high
proportion of true asthma cases while minimizing false>positives in clinical practice.

Table 7
Machine learning model performance evaluation metrics for the sound “ünlem”

Model Accuracy F1>Score Precision Recall Specificity AUC

Naive_Bayes 0.698±0.041 0.802 ± 0.027 0.872 ± 0.030 0.743 ± 0.027 0.483 ± 0.122 0.699 ± 0.085

KNN 0.558 ± 0.048 0.666 ± 0.048 0.880 ± 0.027 0.539 ± 0.064 0.650 ± 0.097 0.652 ± 0.043

Decision_Tree 0.607 ± 0.042 0.710 ± 0.040 0.910 ± 0.062 0.588 ± 0.063 0.700 ± 0.215 0.659 ± 0.132

Neural_Network 0.753 ± 0.030 0.851 ± 0.020 0.844 ± 0.016 0.859 ± 0.033 0.250 ± 0.091 0.713 ± 0.063

CatBoost 0.779 ± 0.042 0.868 ± 0.027 0.854 ± 0.023 0.884 ± 0.046 0.283 ± 0.125 0.687 ± 0.072

AdaBoost 0.756 ± 0.036 0.848 ± 0.021 0.875 ± 0.037 0.824 ± 0.019 0.433 ± 0.193 0.694 ± 0.085

GradientBoost 0.753 ± 0.055 0.847 ± 0.035 0.862 ± 0.036 0.834 ± 0.046 0.367 ± 0.172 0.655 ± 0.077

Random_Forest 0.782 ± 0.019 0.870 ± 0.012 0.858 ± 0.023 0.884 ± 0.027 0.300 ± 0.145 0.703 ± 0.087

SVM 0.794 ± 0.027 0.878 ± 0.017 0.856 ± 0.012 0.901 ± 0.029 0.283 ± 0.067 0.713 ± 0.041

Logistic_Regression 0.697 ± 0.041 0.795 ± 0.029 0.902 ± 0.036 0.711 ± 0.032 0.633 ± 0.135 0.723 ± 0.085

Voting_Ensemble 0.773 ± 0.043 0.863 ± 0.031 0.857 ± 0.010 0.869 ± 0.052 0.317 ± 0.033 0.726 ± 0.084

Stacking_Ensemble 0.814 ± 0.041 0.893 ± 0.025 0.850 ± 0.017 0.940 ± 0.037 0.217 ± 0.085 0.716 ± 0.070

Weighted_Voting_Ensemble 0.773 ± 0.043 0.863 ± 0.031 0.857 ± 0.010 0.869 ± 0.052 0.317 ± 0.033 0.726 ± 0.083
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Figure 11
Radar graphic of “ünlem”

Discussion
In this study, the performance of 13 machine learning models for asthma diagnosis using different

sound samples (‘aaa, ‘ ‘ana,’ ‘araba,’ ‘gelecek, ‘ ‘ordu, ‘ ‘titiz,’ ‘ünlem’) was evaluated using Accuracy, F1>Score,
Precision, Recall, Specificity and AUC (area under the curve) metrics. The findings revealed that ensemble
models (Stacking Ensemble, Voting Ensemble, Weighted Voting Ensemble) generally demonstrate superior
performance. For example, the Stacking Ensemble model achieved the best results with 82.3% accuracy and
0.684 AUC for the word ‘araba’ and 82.0% accuracy and 0.702 AUC for the word ‘gelecek.’ This result confirms
that the ensemble models can better generalize complex patterns. In addition, complex models such as
neural networks and random forests have yielded remarkable results. In particular, the neural network
model demonstrated high sensitivity with 90.1% recall rates for the words ‘araba’ and ‘titiz’ respectively.
However, the low specificity values of these models resulted in limitations in practical applications due
to the increase in false>positive rates. Models such as SVM and Logistic Regression also performed well,
with generally high precision and AUC values. For example, the SVM model ranked second for the word
‘gelecek, ’ with an AUC value of 0.643. In contrast, simpler models, such as the naive Bayes and K>NN models,
demonstrated limited performance owing to low accuracy and specificity values. In particular, K>NN had
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low values, such as 59.6% accuracy and an AUC of 0.606 for the word ‘gelecek.’ This indicates that they are
inadequate for capturing complex patterns in audio data. In conclusion, the Stacking Ensemble model stood
out as the most promising asthma diagnostic model, with high recall and AUC values.

However, the low specificity values of some models emphasize the need to control false>positive rates.
Furthermore, the use of MFCC and additional acoustic features confirmed that MFCC is an effective feature
extraction method for asthma diagnosis. On the other hand, the fact that deep learning techniques could
not be evaluated in this study owing to the limited dataset provides an opportunity for future research.

Conclusions
In this study, the effectiveness of voice analysis>based machine learning models for asthma diagnosis

was comprehensively evaluated. Within the scope of the study, a total of 13 different machine learning
models were developed for different sound samples (‘aaa, ‘ ‘ana,’ ‘araba,’ ‘gelecek, ‘ ‘ordu, ‘ ‘titiz,’ ‘ünlem’),
and their performances were compared. The findings showed that ensemble learning approaches (ensemble
models) exhibit superior performance in asthma diagnosis.

The stacking ensemble model obtained the best overall performance. In particular, it achieved high
AUC values (68.4% and 70.2%) for sound examples such as ‘araba’ and ‘gelecek.’ This result confirms that
ensemble models can better generalize complex sound patterns. The Voting Ensemble and Weighted Voting
Ensemble models showed similar performances; however, low specificity values were identified as a limita>
tion to be considered in practical applications.

Complex models, such as Neural Networks and Gradient Boosting, have also demonstrated remarkable
results. In particular, the Neural Network model provided high sensitivity with recall rates of 90.1% for the
‘araba’ and ‘titiz’ sound samples. However, the low specificity of these models should be considered a factor
that may increase false>positive results in clinical applications.

The use of Mel>Frequency Cepstral Coefficients (MFCCs) and additional acoustic features (spectral center,
spectral bandwidth, etc.) was confirmed to be an effective feature extraction method for asthma diagnosis.

The important limitations of our study include the limited and single>center dataset of 284 patients with
asthma diagnosed using the GINA criteria and 60 healthy volunteers. This may have affected the generaliz>
ability of the models to larger and more diverse populations. Nevertheless, this study demonstrates the
potential of voice analysis>based approaches as cost>effective screening tools for early detection, especially
in areas with limited access to health services. The high>sensitivity values of the community models support
this potential.

This study has important implications for clinical practice. In particular, the high sensitivity values of
the community models suggest that they can be used as asthma screening tools. A voice analysis>based
diagnostic approach may provide a cost>effective alternative for early diagnosis, particularly in areas with
limited access to healthcare services. It may also enable remote and continuous monitoring of asthma
symptoms in patients’ daily lives through smartphone applications.

Several directions for future research are identified. First, validating the models in multicenter, larger,
and more diverse populations (differing in age, ethnicity, and asthma phenotypes) is critical for enhancing
generalizability, a need also highlighted by community>based studies, such as Gunawardana et al. (2024).
Second, expanding the dataset could further improve model performance by enabling the application of
deep learning techniques (e.g., CNN, RNN, Transformer architectures), as studies such as Chen et al. (2025)
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demonstrated the potential of DNNs in related tasks, albeit with different datasets and objectives. Adapting
existing models to other respiratory diseases (e.g., COPD, pneumonia, and bronchitis) using a transfer
learning approach has emerged as a valuable research area.
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