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Existence and approximation for nonlinear dynamic equations using monotone iteration method

Nour H. M. Alsharif

Department of Mathematics, Graduate School of Natural and Applied Sciences, Dokuz EylUl University, Izmir, Turkiye.

Abstract

This paper improves a generalized monotone iterative technique for solving dynamic initial value problems (IVPs) on time scales, using the
method of coupled lower and upper solutions. We construct monotone sequences of iterates, each of which corresponds to a solution of the
dynamic IVP on time scales. Under suitable conditions, we establish the uniform and monotonic convergence of sequences to the extremal
(minimal and maximal) solutions of the problem. The results provide a unified framework for analyzing dynamic equations on time scales via

monotone iteration.

Keywords: Comparison result, Monotone iterative technique, Coupled upper and lower solutions

INTRODUCTION

In recent decades, the theory of dynamic equations on time
scales has played a pivotal role in unifying and extending the
frameworks of differential and difference equations [2,4].

The monotone iterative technique, coupled with the method
of lower and upper solutions, has proven to be a powerful and
flexible tool for establishing existence results for nonlinear
differential equations [3,5,6,7]. In 2002 and 2004, Bhaskar
[1] and West [10] advanced this methodology by developing
a generalized monotone iterative technique for initial value
problems (IVPs). Their work demonstrated the existence
of minimal and maximal solutions for differential equations
where the nonlinear function decomposes into the sum of a
monotone non-decreasing and a monotone non-increasing
function. At this stage, Ramirez and Vatsala [8] extended
these results to Caputo fractional differential equations with
periodic boundary conditions via an initial value problem
approach. Meanwhile, Wang and Tian [9] introduced an
alternative method to derive unique solutions for boundary
value problems.

In this study, we employ the method of coupled lower and
upper solutions for dynamic initial value problems on a time
scale T By constructing monotone iterative sequences from
corresponding linear IVPs, we establish the uniform and
monotone convergence of these sequences to the coupled
minimal and maximal solutions of the nonlinear dynamic IVP.

Our results hold under the assumption that the nonlinear
function f is rd-continuous and can be expressed as the
difference of two monotone non-decreasing functions.

The paper is organized as follows. In Section 2, we review
some basic concepts and preliminary results. The main results
are presented in Section 3 followed by their proofs in Section
4. In Section 5 we present numerical examples to motivate
the applicability and relevance of the main results. Concluding
remarks are provided in Section 6.

PRELIMINARIES

In this section, we mention some basic concepts and theories
used in subsequent references.

A time scale T is any nonempty closed subset of R. The
intervals with a subscript T are used to indicate the ordinary
interval intersects with T, ie, [a,b]; =[a,b]NT. The
forward jum’E operator 0: T — T and backward jump
operatorp - 1 — T are defined respectively by
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o(t) =inf {s > t:s€ T} and p(t) =sup {s < t:s €T}

A point is called right-scattered, right-dense, left-scattered
and left-dense if o(t) > t,0(t) =t, p(t) < t and P(t) =1
; respectively. Points that are both right- and left-scattered
are isolated, while those that are both right- and left-dense
are dense. The graininess function p* : T — [0, 00)is given
by u*(t) = o(t) — t. The mapping f : T — R" is said to be
differentiable, if f has exactly one derivative fA(t); that is,
given any € > 0, there exists a neighborhood U; of ¢ such
that f satisfies

|f(a(t)) - f(s) - fA(t) (a(t) — s)‘ <celo(t) — s| for s € Uy

The set T* is defined as

T* {']T \ (p(T),sup T}, ifsup T < oo;
T, if sup T = oo.

A function f: T — R is regulated if it has finite left-sided
limits at left-dense points. A function f : T X R™ — R"js rg-
continuous (denoted f € %rd[’]r X Rn,Rn]if it is continuous
at each right-dense ¢ € T, and the left sided limit f(t7a$)
exists in each left-dense. A function F': T — R is an
antiderivative of f : T* = R if FA(t) = f(t) forallt € T*.
Inthis case, the delta integral of fis fat f(s) As = F(t) — F(a)
,teT.
Consider the dynamic initial value problem (IVP)

u? = f(t,u) for t € [ty,00)y m

with u(tg) = wg As usual here the time scale T is assumed to
havet = t( as the minimal element and ¢t = t as the maximal
element which is not left scattered.

We need the following definitions before we proceed further.

Definition1.Afunctionf 1€ [T X R"aRn] is quasi-monotone
non-decreasing if < y and ; = y; for some © € Nimplies
filt,z) < filt,y).

Definition 2. A function u € € [tg, 00)1, R"] is a solution of
(1) for some s € [tg, 00)y if it differentiable on [s, 00) and
satisfies (1) identically on [s, 00) with u(tg) = uo.

Now, let us introduce comparison theorem.
Theorem 1 ([4]). Let T be a time scale with tp > 0 as its

minimal elemen’{ no maximal element). Suppose
@@ v,we€ Erd|T,R"| for each t € T and satisfy the
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following inequalities

A0 < (), vlto) <
W) tu(d), wlio) > u
(i) feGa[TxR"R", f(t,u) is quasi-monotone

non-decreasing in % and for each 1€ N, 1<i<mn,
fi(t, w)p*(t) + u;, is non-decreasing in u; fort € T.

2

Moreover, let f(t,u) satisfies the following condition
filt:z) = fi(ty) SLYL, (2 —yi) forz >y, L>0. (3)
Then v(tg) < w(to) implies that v(t) < w(¢) fort € T.

We conclude the following corollaries which will be useful in
our main results.

Corollary 1.1f g € %' [T, R™] satisfies g™ () < 0and 9(to) <0
,then 9(t) < Oforallit € T.
Corollary 2.1fg € G [T, R"] satisfies g® (t) > 0and 9(to) > 0
.then9(t) > Oforallt € T.

Now, consider the nonlinear dynamic initial value problem

u(t) = At u(t)) - Lo(tu(), w(0) =w, @

where fi(t,u) and f,(t,u) may be non-decreasing functions.

Firstly, we introduce four types of coupled lower and upper
solutions for (4).

Definition 3. Let vy, wy € G [T,R]. Then vg, wy are said to
be forallt € T.

(i) natural lower and upper solutions of (4), if
v (t) < fi(t,vo(t)) — fa(t w0 (2)), v0(0) < wo
wo? (t) > f1(t,wo(t)) — fa(t, wo(t)), wo(0) > uo

(ii) coupled lower and upper solutions of Type | of (4), if
vo? (t) < fi(t,vo(t)) — f2(t, wo(t)), vo(0) < ug
woﬂ(t) > fl(tywo(t)) - fz(tyvo(t)), wo(O) > ug

(iii) coupled lower and upper solutions of Type Il of (4), if
w2 (t) < filt,wo(t)) — fa(t,v0(t)), vo(0) < uo
wo? () > fi(t,vo(t)) — f2(t,wo(t)), wo(0) > ug

(iv) coupled lower and upper solutions of Type Il of (4) if
UOA(t) S fl(ta IR wﬂ(t)) - f2(t7 K wO(t))7 UO(O) S Uo
wOA(t) 2 fl(ty ) 7U0(t)) - fZ(tv ) ,’Uo(t)), wU(O) 2 Uo

MAIN RESULTS

In this section, we now present our main results on the
existence and convergence of solutions to the nonlinear
dynamic equation (4). Our approach leverages coupled
lower and upper solutions to construct monotone iterative
sequences that converge uniformly to extremal solutions.
Theorem 2 employs Type | coupled solutions, we derive
natural monotone sequences that converge uniformly and
monotonically to the coupled minimal and maximal solutions
of Type | of (4). We can also give result using coupled lower
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and upper solutions of Type | and Type Ill, however it require
an additional assumption to obtain intertwined monotone
sequences which converge uniformly to coupled minimal and
maximal solutions of (4).

Theorem 2. Assume the following conditions hold

(A1) the functions wvg,wo are coupled lower and upper
solutions of Type | for (4) satisfying vo(t) < u < wy(t) for all
teT,

(A2) the functions fuf€ C*(T*xR"R")  fi(t,u) and
fa(t,u) are non-decreasing in u foreach t € T.

Then, there exist monotone sequences (v;(t)) and (w;(t))
generated by the iterative scheme such that v;(t) — a(t) and
wj(t) - ﬂ(t) are uniformly convergent and monotonically,
where a, B are coupled minimal and maximal solutions of (4),
respectively. Moreover, they satisfy the coupled system

ab = fl(t,a) fo(t,ﬁ), a(O) =y
BA = f1(t,6) — fa(t, @), B(0) = uo

forallt € T.

Theorem 3. Assume conditions (A1) and (A2) of Theorem 2
hold. Consider the iterative scheme

via® = filt,w)) — f2(t,v)), vi1(0) = uo = w;(to), .
wi® = fi(tv;) — fo(tw;),  wjs1(0) = ug = v;(to). ©)

Then, the iterates generate monotone sequences {v2;}, {v2j+1
}, {wa;} and {w2;;1} satisfying

vo Swy <. Sy Swgjpg S Vi Swa <L < v Swy

foralJ€ENon T, provided vy < u < wy. Furthermore, the
sequences converge {v2;} and {wz;+1} converge uniformly to
a, and {vy;41} and {wa;} converge uniformly to B, where o
and B are coupled minimal and maximal solutions of Type I,
respectively, of the system

aA:fl t,a) — fi(t, B), 05022%
M=ﬁ&5—ﬁ&$,ﬂ0:w ®
PROOF OF THE MAIN RESULTS

Here, we present proof of the our main results.
Proof of Theorem 2. For each j > 0, consider the system

v ? = filt,om) = faltwg), v (0) =uo, 9y
'wj+1A = fi(t,w;) — fa(t,v5), wjs (0) = Uo-

By assumption, v(0) < ug < wg(0). From (7), we have

v = fi(t,v0) — falt, wo), v1(0) = ug,
w1 = fi(t,wo) — fa(t,v), wi(0) = uo.

We now show that vg <v; <u<w; <wy on T. Let
Y = w1 —wo, Then, ¥(0) <0, and

B4 = wy D — wd

< filt,wo) — falt,vo) — fi(t,wo) + fa(t, vo)

=0.
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By Corollary 1, ¥(t) <0, so wy(t) < wo(t) on T. Similarly,
we can show that v; > vg on T. Next, let ¢ = u — wy. Since
#(0) =0and

¢A = g8 _ A

filt,w) = fa(t,u) = fi(t,wo) + fa(t,vo)
0

<

it follows that w(t) < wy(t) on T. Similarly, u(t) > v1(¢). Thus,
vy < v <u < wy < wpholds for k = 1. Assume by induction
that for some k > 1,

Vg1 Svp Su < wp < wyq (8)
holds on T. We now prove

v S SuLwpyr <wy oonT 9

Let ¥ = Wiy1 — Wk, Then, ¥(0) = 0 and
PA = whig — why
= f* 1(t7wk) - f, Z(t, ’Uk) - f, 1(ta wkfl) + f, Z(t, /kal)
<0.
Thus, wr.1(t) < wg(t). Similarly, ver1(t) > vi(t).
¢ =u— w1, Since $(0) = 0 and

804 =uf - wAIHl
f—l(ta ’LL) - f—2(t7 u) - f—l(tv wk) + f—2(t7 Uk)
0,

Now, let

<
we have wu(t) <wgq(t). Similarly, u(t) > vgs1(t). By
induction, we conclude that

vogvlg...gngugwjg...gwl S’LU()OI’]T. 10)
To show uniform convergence of {v;} and {w;}, we prove
they are uniformly bounded and equicontinuous. From (10)
both sequences are uniformly bounded. For equicontinuity,
let0 <t <tyonT.Forj>0,

wj(t) = wita)| = | [} [fa(s,w5-1(5)) — fals,v51(s)) As|
< [2fi(s,wim1(9)) = fals,v5-1(5))|As:

Since {v;} and {w;} are uniformly bounded and f1, f2 are
bounded on T, there exists v > 0 such that

[w;(t1) — wj(ta)| < vty —taf

Thus, for any &€>0, choosing d=<% ensures
|wj(t1) — w;(t2)] < e whenever [t; —to| < d Similarly, {v;}
is equicontinuous. By the Arzela-Ascoli theorem, there exist
subsequences {v;, } and {w;, } converging uniformly to c(¢)
and B(t). respectively. The monotonicity of {v;} and {w;}
implies uniform convergence of the entire sequences. To
show that « and B are coupled solutions of Type | for (4),
integrate (7)

vy (t) = w0+ fi [fi(s,v3(s)) = fals,wy(s))As

. an
wia(t) = o+ fy [Fu(swy(s)  fals,v; () As
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Taking J— ®and using uniform convergence, we obtain
aft) =g+ [y Lfa(s,als)) — fals, B(s))] s,

(12)
B(t) = wo+ fy [f1(s, B(s)) = fals, a(s)))As

Differentiating yields

aA = fl(tya) - f2(taﬁ)a a([)) = Uy,

ﬂA = fl(t7ﬂ) - f2(t7a)7 ﬂ(o) = Ug*
Finally, since vo < v; < u < w; < wy for all J, taking J = 0
givesvg < a<u < f<wyonT. Thus, a and B are coupled

minimal and maximal solutions of Type | for (4), respectively.
This completes the proof.

Proof of Theorem 3. By assumption, vg < u < wgy on . From
the iterative scheme (5), we derive the first iterates

vi® = fi(t,wo) — fo(t,v0),  v1(0) = uo,
wi® = fi(t,v0) — fo(t,wo), wi(0) = uo.

We first show w; < wgon T. Let ¢ = w1 — wo, Then ¢(0) <0
and

A A A

¢ =w1” —w
< fultyvo) — falt,wo) — fi(t, wo) + fa(t, vo)
z E) 1(t,v0) — fi(t,wo)) + (f2(t, vo) — fa(t, wo))

since $v9 < wy and f1, fa are nondecreasing. By Corollary 1,
o(t) < 0, proving wy < wy. Similarly, vy < v1. Next, we verify
the ordering vy < wy < vy < wp. Let ¥ =v1—Wo. Then,
¥(0) <0 and
¢A S f(t777w0) _f(tnav(]) _f(tanw()) +f(t7171}0) =0
Thus, v1 < wy. Let® = W1 — V1, Then, 0(0) = 0, and
0% = (fi(t,v0) — f1(t,wo)) + (fa(t,v0) — falt, wp)) <0
Hence, wy < v1. Assume for some k > 1,
vap—2 < Wop—1 < vgp < wap < vgp—1 < wap—z on T.
We show the ordering extends to k + 1
Vo, < Wops1 < Vaprg < Woprg < Vopr < wop on T
Let ¥ = Vak — Wag+1. Then,
P2 < filt,wan—1) — fi(t,var) + falt,war) — fa(t,var-1) <0,
since wog—1 < Vo and wai < Vog_1.
Analogously, ¥ = W2k+1 — V2k+1 yields <pA < 0. By induction,
we get
Vo Swy < - Sy Swgjpg S Vg4 Swy <o < v <woonT.
(13)
As in Theorem 2, the sequences {va;, woj+1} and {vgji1, we;}

converge uniformly to a and B, respectively, satisfying the
coupled system
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A= f (t, a) — (t,ﬂ), a(o) .
P 1(09) - e (0)

For all J, vaj <wajy1 < u < wg1 < wyy. Taking limits as
J = 00, we obtain

w<a<u<B<wionT.

proving aand 8 are coupled minimal and maximal solutions
of Type | for (4).

ILLUSTRATIVE EXAMPLES
We give some examples which are application of Theorem 2
and Theorem 3.

Example 1.
Consider the nonlinear dynamic equation

uP(t) = L (¢) — (¢) fort € (0,1)R (14)

with the initial condition u(0) = —1. Define the functions
v, wp : [0,1]z = R by

vo(t)=—-1 and wy(t)=t—1 forall ¢te]0,1]p.
Observe that wo(t) <wg(t) for all [0,1]g, and
1)0(0) = 11)0(0) =-1= ’LL(O)

We now verify that vg and wqg are coupled lower and upper
solutions of Type | for (14). Then,

vo®(t) =0 < % - % forall te (0,1)g

and

wed(t) =1> L 4 L forall te(0,1)p
Thus, vg, wg satisfy the conditions for coupled lower and
upper solutions of Type | for (14). Furthermore, assumptions
(A1) and (A2) are readily verified. By Theorem 2, there exist
monotone sequences that converge uniformly to the extremal
solutions of (14) in the sector [—l,t — 1], and, by Theorem 3,
alternating sequences also converge to the extremal solutions.

Example 2.
Let T =Ny = {0,1,2,...}, and consider the nonlinear dynamic
equation

ul(t) = u(t) +t—te ™™ for tec|0,,,00)r (I5)

with the initial condition u(0) = 1. Define the functions
vg,wg : T — R by

vo(t) =0 and wo(t) =2 forall teT.

Obviously, vo(t) < wq(t) for t € T. Moreover, we verify that
Vo and wy are coupled lower and upper solutions of Type | for
(15). Indeed,

vp2(t) =0 < t(l - e’zt) forall teT
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and
wol(t) =2t >2¢ forall teT

It is straightforward to check those conditions (A1) and (A2)
are satisfied. By Theorem 2, we conclude the existence of
monotone sequences that converge uniformly to the extremal
solutions of (15) within the sector [0, Qt]. Additionally, by
Theorem 3, there exist alternating sequences that also
converge to extremal solutions.

CONCLUSION

In this work, we have developed a comprehensive monotone
iterative method for dynamic equations with initial value
problems on time scales. Our approach, based on the
fundamental concepts of coupled lower and upper solutions,
successfully constructs natural and intertwined monotone
sequences that converge uniformly to coupled extremal
solutions. We make our final comments to conclude the paper.

Corollary 3. In addition to assumption of the Theorem 2, if for
uy > up and f1, f2 satisfy

filt,ur) = fi(t,ug) < L
falt,ur) = fa(t,ug) < L

where L1, Ly>0. Then af(t)
solution.

Proof. We know that ;
p(t) = B(t) -
that

1(u1 - U2),

2 (U1 - U2), a4

=u(t) = B(t) is the unique

and so, we need to prove that . Let
a(t) then P(0) = 0 and by using (14), it follows

t) = 62(t) — a?(t)
1(t,8(t) - fz(t a(t) -

1(B(t) — aft)) + Ly (B(t) —
(L1+L2) (t)

At (b)) + flt, B(2))
a(t))

P
<
<

Thus, we get by Theorem 1that 2(t) < 0 which proves that

B(t) < a(t) Hence, a(t) = u(t) = A(t).

The next theorem utilizes Type Il coupled solutions, we obtain
natural monotone sequences that converge uniformly and
monotonically to the coupled minimal and maximal solutions
of Type | of (4).

Theorem 4. Assume the following conditions hold

(C1) the functions wvg,wo are coupled lower and upper
solutions of Type Il for (4) satisfying vg < wq forallt € T;
(C2) the functions f1,f2€% _ua ET“ X R R™) #1(t,u)
and fo(t, u) are non-decreasing in u for each t € T.

Then, there exist two monotone sequences {v;(t)} and
{w;(t)} defined by

vin? = fi(t,v))
win? = fi(t,w;)

satisfy the monotonicity property

— fa(t,w;), vj41(0) = ug
= fa(t,v5), wjs1(0) = uo,

vo(t) Swit) < -
forall teT

<vit) <wjt) < -

< wi(t) < wo(t)
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provided vy <w; and w; <wy on T. Furthermore, the
sequences {v;(t)} and {w;(t)} converge uniformly to a(t), 5(t)
, respectively, where a, 8 are coupled minimal and maximal
solutions of (4) such that they satisfy the coupled system,

ab = fl(t,a) — fg(t,ﬂ), a(O)
B2 = fi(t,B) — fo(t,a), B(0)

0

U
U

forallteT.

Remark 1. In Theorem 3,
(i) if f1(t,u) — fo(t,u) is non-increasing on T, then there exists
a unique solutionon T.

(i) if fo =0, then the conclusion of Theorem 3 is true.
Theorem 5. Assume that

(H1) vy, wy are coupled lower and upper solutions of Type I
for (4) withvg <u<wyonteT;

(H2) fi,f2 €Ca(T" xRR), fi(t,u)
nondecreasing in u for each t € T.

and  fa(t,u) are

Then the sequences defined by

UjHA =f (t,w]-) —f (t, U]'), Uj+1 (0) = U
wj+1A =fi (t,’Uj) - f (t7 w]-), Wi+l (O) = U0

give alternating monotone sequences {wyj,wy41} and
{waj,va541} in %.a' (T, R™) where the sequences are given by

vy Swy <o <y Swgjp SuL vy Swyy <o <vg <wyonT

provided that vg <w; <u<wv; <wy ont € T. Furthermore,

the monotone sequences {'U2]'7'w2j+1} converge to a and
{waj,v9511} converge to B, where a, 8 are coupled minimal
and maximal solutions of (4) respectively, such that they
satisfy the coupled system

at = fl(t7a) _fZ(t’B)» 01(0) =1y
BA = f(t,B) - f2(t,a), B(0)=uponT.

Future research should extend this method to nonlinear
functional dynamic equations. As this relatively new field
continues to develop rapidly, significant opportunities exist
for advancing both theoretical foundations and applications,
particularly in hybrid dynamical systems.
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