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Abstract

Background: This study aimed to predict the recurrence of differentiated thyroid cancer and identify its most represent-
ative risk factors using an explainable artificial intelligence model.

Methods:: The publicly available Differentiated Thyroid Cancer Recurrence dataset from the University of California
Irvine Machine Learning Repository, comprising 383 patients and 17 features, was employed. Five classifiers, -Random
Forest, Gradient Boosting, AdaBoost, Support Vector Classifier and Logistic Regression-, were employed to predict the
recurrence. Permutation feature importance (PFI) and SHapley Additive exPlanations (SHAP) explainable artificial intel-
ligence methods were used to determine the features that had the most impact on the prediction result.

Results: The Random Forest algorithm outperformed others, achieving an accuracy of 97.39% and an Area under the
Curve of 0.993. Response to treatment, ATA risk stratification, tumor stage and patient age were determined as the fac-
tors with the highest contribution to the model prediction process through SHAP and permutation importance analyses,

and this finding was consistent with the prognostic markers stated in the literature.

Conclusion: The proposed explainable machine learning framework has shown satisfactory results in predicting DTC
recurrence while identifying clinically important features. This approach can offer valuable support to clinicians in early
identification of high-risk patients and personalization of surveillance strategies.
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INTRODUCTION

Differentiated thyroid cancer (DTC) arising from folli-
cular thyroid cells represents approximately 90% of all
thyroid cancers (1). Despite the excellent 10-year surviv-
al rate of over 90% for DTC, recurrence remains a signif-
icant concern for both patients and healthcare systems.
The risk of recurrence, ranging from 5% to 30%, can result
in additional health problems, increased treatment costs
and a serious psychological burden on patients (2-3).
Early and accurate prediction of recurrence can improve
patient outcomes and the efficiency of health systems by
helping clinicians deliver personalized care and timely
interventions (4). However, the high number of clinical
variables and the complex relationships between them
limit the effectiveness of traditional statistical methods
in predicting DTC recurrence (5, 6). Machine learning
(ML) algorithms offer advantages in this context, as they
can capture both linear and non-linear patterns in large
clinical datasets. These models can support the develop-
ment of data-driven decision support systems by reveal-
ing hidden patterns in medical data (7, 8). Despite this
potential, the use of ML for DTC recurrence prediction
remains limited. Most existing studies focus mainly on
performance metrics, without adequately addressing
how these models can be interpreted and integrated into
clinical decision-making processes (9-12). Moreover,
the decision-making processes of these models general-
ly remain in the form of a “black box”, making it diffi-
cult for clinicians to trust the model output and rely on
it to make their decisions. Therefore, it is essential not
only to develop high-performance models, but also to
illuminate decision-making processes to increase clinical
applicability and physician confidence in ML-enabled
models. Explainable Artificial Intelligence (XAI) meth-
ods have been introduced in recent years to provide a
more understandable and interpretable understanding
of the decision processes of ML models. Such methods
improve clinical reliability by clarifying which variables
play a role in the predictions of the models and thus can
contribute to clinicians making more informed, transpar-
ent and patient-specific decisions (13-15).

This study presents a ML-based framework for pre-
dicting recurrence of differentiated thyroid cancer.
Furthermore, it focuses on the utilization of XAI tech-
niques to improve the clinical interpretability of the de-
cision-making processes of ML models. In this way, it is
aimed to identify the main risk factors contributing to
the development of recurrence and to provide valuable

contributions to clinical decision-making processes.

MATERIALS AND METHODS

Since this study was conducted on a publicly available
clinical data set, Ethics Committee approval is not re-
quired. An XAl-based model was introduced to predict
the probability of DTC recurrence. The proposed model
starts with the data pre-processing phase, encompassing
label encoding, and feature selection. Five distinct ML
algorithms were employed in the prediction process.
Diverse performance metrics were applied to obtain the
optimal prediction outcome. Lastly, XAI techniques were
utilized to determine the features that provide the most
significant impacts on the probability of DTC recurrence.

The proposed framework is illustrated in Figure 1.

Dataset

The dataset examined in this study was obtained from
a previous study conducted by Borzooei et al. (10). The
title of the dataset is Differentiated Thyroid Cancer Re-
currence and it is accessible via the Machine Learning
Repository at University of California Irvine, which
is a publicly available (16). It contains 16 independent
features and 1 target feature that pertain to 383 thyroid
cancer patients who were monitored for a minimum of
10 years and up to 15 years. The target feature was cate-
gorized as no recurrence and recurrence. In the dataset
used in this study, the age of patients with DTC recur-
rence was 47.11+18.27 years and 38+12.95 years for those
without recurrence. The features in the dataset and their

descriptions are presented in Table 1.

Machine Selecting Explainable
Dataset Data pre-processing e best artificial
learning Jaccife . e

classifier intelligence

Figure 1: The framework of the proposed ML-based prediction model for DTC recurrence shows the steps of data preprocessing, model
training, performance evaluation and XAI analysis.
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Table 1. The features and descriptions of dataset

No Features Description Unique V
1 Age Represents the age of individuals in the
dataset.
2 Gender Indicates the gender of individuals [Female, Male]
3 Smoking Possibly an attribute related to smoking [No, yes]
behaviour.
4 Hx Smoking Indicates whether individuals have a [No, yes]
history of smoking
5 Hx Radiotherapy Indicates whether individuals have a [No, yes]
history of radiotherapy treatment
6 Thyroid Function Possibly indicates the status or function [Clinical, Euthyroid,
of the thyroid gland. Subclinical]
7 Physical Describes the results of a physical [Single nodular goiter-left,
Examination examination Multinodular goiter,

Normal, Single nodular goiter-right]

8 Adenopathy Indicates the presence and location of [No, Right, Extensive,
adenopathy Left, Bilateral, Posterior]

9 Pathology Describes the types of thyroid cancer [Micropapillary, Papillary,
based on pathology examinations Follicular, Hurthle cell]

10 Focality Indicates whether the thyroid cancer is [Uni-Focal, Multi-Focal]

unifocal or multifocal.

11 Risk Represents the risk category associated [Low, Intermediate, High]
with thyroid cancer.

12 Tumor (T) Represents the tumor stage of thyroid [T1a, T1b, T2, T3a, T3b,
cancer, indicating the size and extent of T4a, T4b]
the primary tumor.

13 Lymph Nodes (N) Represents the N (Node) stage of thyroid [NO, N1b, N1a]
cancer, indicating the involvement of
nearby lymph nodes.

14 Metastasis Represents the M (Metastasis) stage of [MO, M1]

thyroid cancer, indicating whether the
cancer has spread to distant organs.

15 Stage Represents the overall stage of thyroid [I, IO, IVB, IIL, IVA]
cancer based on the combination of T, N,
and M stages.

16 Treatment Response Describes the response to treatment, [Indeterminate, Excellent, Structural
including categories Incomplete,

Biochemical Incomplete]

17 Recurred Indicates whether thyroid cancer has recurred | [No, yes]
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Data Pre-processing

Data pre-processing is an essential step before building
ML-based models. Making suitable data for the mod-
els has a significant impact on the prediction perfor-
mances. In the initial preprocessing stage, the dataset
was checked for missing data and no missing data was
found in the data set. In the next stage, considering
that most of the categorical variables in the dataset are
unordered and the dataset is relatively small, label en-
coding—a method that converts each categorical value
into a unique numeric label—was applied. This process
transforms categorical variables into numeric values,
enabling the model to process them more effectively.
The subsequent stage is the feature selection process.
Not all features in the dataset contribute equally to the
performance of the model, and some may provide re-
dundant information, increasing the risk of model over-
fitting. Therefore, feature selection is critical to ensure
that only the most meaningful and informative features
are included in the model. Recursive Feature Elimina-
tion (RFE) with Random Forest as the base estimator is
an iterative feature selection method and identifies the
most important features to improve the accuracy of the
model. In this technique, a model is initially trained
with all features. The model evaluates the contribution
of each feature to the accuracy and, at each iteration,
removes the least important features. This process is re-
peated one feature at a time. The removal of features
is based on changes in the model’s performance. This
process continues until the features that most improve
the accuracy of the model remain (17). This approach
selected the 11 most prominent features (age, gender,
thyroid function, physical examination, adenopathy, fo-
cality, risk, T, N, stage and response) out of 16 features
in the dataset.

Machine Learning Algorithms

Five classifiers—Random Forest, Support Vector Clas-
sifier, AdaBoost, Gradient Boost, and Logistic Regres-
sion—were trained and evaluated to predict DTC re-
currence. Random Forest (RF) is an ensemble learning
algorithm consisting of a large number of decision trees
and each tree makes decisions independently, then the
results are combined (18). Support Vector Classifier
(SVCQ) is a classification algorithm that tries to find the
optimal hyperplane to classify the data (19). AdaBoost
is an ensemble learning algorithm used to build a strong
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learner from weak learners, it works by weighting mis-
classified examples more. Gradient Boost (GB) is an al-
gorithm for minimizing errors, where weak learners are
successively combined to form a strong model (20). Fi-
nally, Logistic Regression (LR) is a regression model that
makes probability estimates by modeling linear rela-
tionships and is widely used for classification problems
(21). The ML algorithms were evaluated by analyzing
their statistical significance through recall, precision, ac-
curacy, and area under curve (AUC) performance cri-
teria. It is essential to utilize a suitable evaluation tech-
nique. One such method is K-fold cross-validation, used
to determine the mean accuracy of a model. The strate-
gy of this method is to build a cross-validation approach
where a certain k value is selected and the dataset is
split into k subset of equal size. At each iteration, one of
the k subsets is utilized as a test set while the remaining
subsets are employed for model training. This process
continues until all subsets are used as test sets once.
This method utilizes the mean of the calculated values
as a performance measure (22). A 5-fold cross-validation
technique was applied to validate the predictive per-
formance of the models. All analyses were conducted
using Python 3.7.12 (Python Software Foundation), and
relevant libraries for ML and XAI approaches.

The complex nature of ML-based models requires bet-
ter explanations of how models make predictions and
which input features contribute more to a model’s de-
cision. XAI models refer to a set of processes and tech-
niques that are intended to provide a clear and under-
standable explanation for decisions generated by ML
models (23). In this study, permutation feature impor-
tance (PFI) and SHapley Additive exPlanations (SHAP)
methods are used as XAI methods. The PFI technique is
utilized to retrieve the importance of features depend-
ing on their effects on the prediction of a trained a ML
algorithm. PFI measures the decrease in model perfor-
mance after permuting the values of each feature. Fea-
tures are ranked in descending order based on their im-
pact on the model’s performance (24). SHAP approach
yields important information regarding the model. It
enables the identification of the most influential features
contributing to the prediction process. It indicates how
a feature influences an individual prediction in com-
parison to others. The SHAP importance is represented
as an absolute value for model training, taking into ac-

count both direction and magnitude (25).



Arch Curr Med Res 2025; 6(3): 280-287

RESULTS

A publicly available clinical dataset, titled “Differentiat-
ed Thyroid Cancer Recurrence,” was utilized to predict
the probability of recurrence. For this purpose, differ-
ent ML algorithms were used in the prediction process.
The prediction performances of ML algorithms are tab-
ulated in Table 2. In addition, AUC values showing the

discriminative power of ML algorithms in general were

also depicted in Figure 2. Among the ML algorithms,
the RF algorithm predicted DTC recurrence probability
as the most successful model with 97.39% of accuracy,
92.98% of precision, 98.15% of recall, and 95.50% of F1-
Score. As highlighted in Figure 2, all models showed ac-
ceptable discriminative with AUC values ranging from
0.92 to 0.99, while the RF model performed the best with
an AUC value of 0.993.

Table 2. Accuracy, precision, recall and F1-score values for ML algorithms

Models Mean Accuracy Mean Precision Mean Recall Mean F1-Score
LR 0.9191 0.8667 0.8426 0.8545
SvVC 0.9373 0.8962 0.8796 0.8879
ADA 0.9452 0.9780 0.8241 0.8945
GB 0.9687 0.9615 0.9259 0.9434
RF 0.9739 0.9298 0.9815 0.9550

Receiver Operating Characteristic

1.0+

0.8 A

o
o
|

True Positive Rate
=)
Y

0.2 1

0.0 1 4

LR(AUC = 0.961)
SVC(AUC = 0.944)
Ada(AUC = 0.971)
GB(AUC = 0.976)
RF(AUC = 0.993)

0.4

0.6 0.8 1.0

False Positive Rate

Figure 1I: ROC curves of ML algorithms
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PFI and Shapley approaches were used to identify the
features that contribute the most to the prediction per-
formance of the RF algorithm, which has the highest
prediction rate. The PFI plots for the test and training

datasets and the results of the SHAP analysis are pre-
sented in Figure 3. Treatment response and ATA risk are
the most critical features affecting the prediction pro-
cess based on SHAP and PFI analysis.
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Figure 3: The most influential features for predicting differentiated thyroid cancer recurrence according to PFI and SHAP analyses in the
Random Forest model. (a) PFI plot for training set, (b) PFI plot for test set, (c) SHAP Bee-swarm plot, and (d) SHAP summary plot.

DISCUSSION

This study adopted five different ML algorithms to pre-
dict DTC recurrence and leveraged XAl techniques to
improve the interpretability of model results. As a result
of the analysis, the RF algorithm stood out as the most
effective model, achieving an accuracy of 97.39% and
demonstrating superior discriminative ability with an
AUC of 0.993, indicating excellent prediction accuracy
in differentiating between recurrence and non-recur-
rence cases compared to other models. This algorithm
performs as an ensemble method by combining a large

number of decision trees and is particularly notable
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for its capacity to capture complex, nonlinear relation-
ships, while reducing the risk of overfitting by training
the trees on random subsets (26). In this respect, RF is
particularly well-suited for analyzing complex, multidi-
mensional medical datasets, such as the DTC recurrence

dataset used in this study.

It is highly clinically important not only that the model
performs well in prediction, but also that it can explain
the properties on which these results are based. In this
context, two different XAI approaches were adopted
in the study to better understand the decision process
of the model: PFI and SHAP. While PFI measures the
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impact of an attribute on model accuracy by random-
ly mixing its values, the Shapley method computes the
contribution of each feature to the prediction in a more
detailed and fair way based on game theory. While PFI
is faster and more practical, it can give misleading re-
sults in the case of highly correlated variables. SHAP
method is more complex, but clearly shows the effect of
features at the level of individual predictions (27). It was
found that “response to treatment” and “ATA risk” var-
iables were the most determinant factors in the predic-
tions of the model in the analyses performed with both
these methods. Ruben et al. (28) also emphasized that
this classification was an effective variable in recurrence
prediction. On the other hand, response to treatment
presents dynamic information about the course of the
disease during follow-up. Studies such as Tuttle et al.
(29) and Park et al. (30) stated that this parameter could
change over time and was a valuable indicator in un-
derstanding the likelihood of recurrence. These findings
align with the key predictors identified through XAI in
our study. Other significant variables highlighted by
the model are T stage and age. The majority of patients
with recurrence were identified to be in T3 and T4 stag-
es. This is consistent with the literature that tumor size
(especially above 4 cm) increases the risk of recurrence
(31). Moreover, Altay et al. (32) reported that the likeli-
hood of recurrence increases with increasing age. The
model’s significant identification of these two factors is

consistent with clinical expectations.

The RF-based XAI model proposed in this study not
only predicted with high accuracy, but also provided a
clear and visual representation of the clinical variables
that influence the prediction process. This approach can
assist healthcare professionals to make more reliable

and informed decisions.

However, the study had some limitations. Since the data
set used was obtained from the UCI data repository,
which is an open-access resource, and not from the real
clinical setting, further studies should be conducted in
different patient populations and real clinical conditions
to test the generalizability of the proposed model. In the
future, we are planning to further improve the accuracy,
interpretability and clinical applicability of the model
with local patient data in collaboration with expert phy-
sicians and to evaluate the use of advanced algorithms

such as deep learning.

The proposed model performed well in predicting DTC
recurrence. By combining high-performance algorithms
and interpretability methods, the clinical variables most
associated with recurrence were successfully identified.
These results demonstrate the potential of the proposed
XAl-integrated ML framework to enhance personalized
follow-up strategies and to inform evidence-based clin-

ical decision-making.
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