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Abstract 

Background: This study aimed to predict the recurrence of differentiated thyroid cancer and identify its most represent-
ative risk factors using an explainable artificial intelligence model.

Methods:: The publicly available Differentiated Thyroid Cancer Recurrence dataset from the University of California 
Irvine Machine Learning Repository, comprising 383 patients and 17 features, was employed. Five classifiers, -Random 
Forest, Gradient Boosting, AdaBoost, Support Vector Classifier and Logistic Regression-, were employed to predict the 
recurrence. Permutation feature importance (PFI) and SHapley Additive exPlanations (SHAP) explainable artificial intel-
ligence methods were used to determine the features that had the most impact on the prediction result.

Results: The Random Forest algorithm outperformed others, achieving an accuracy of 97.39% and an Area under the 
Curve of 0.993. Response to treatment, ATA risk stratification, tumor stage and patient age were determined as the fac-
tors with the highest contribution to the model prediction process through SHAP and permutation importance analyses, 
and this finding was consistent with the prognostic markers stated in the literature.

Conclusion: The proposed explainable machine learning framework has shown satisfactory results in predicting DTC 
recurrence while identifying clinically important features. This approach can offer valuable support to clinicians in early 
identification of high-risk patients and personalization of surveillance strategies. 

Keywords: Differentiated thyroid cancer recurrence prediction, machine learning, explainable artificial intelligence, 
SHAP, permutation feature importance

1	 Presidency of The Republic of Türkiye Secretariat of Defence Industries, Ankara, Türkiye
2	 Turkish Medicines and Medical Devices Agency, Ankara, Türkiye
3	 Kırşehir Ahi Evran University, Vocational School of Technical Sciences, Electronics and Automation Biomedical Device Technology, Kırsehir, 

Türkiye



281

Özturk et. al.

INTRODUCTION

Differentiated thyroid cancer (DTC) arising from folli-
cular thyroid cells represents approximately 90% of all 
thyroid cancers (1). Despite the excellent 10-year surviv-
al rate of over 90% for DTC, recurrence remains a signif-
icant concern for both patients and healthcare systems. 
The risk of recurrence, ranging from 5% to 30%, can result 
in additional health problems, increased treatment costs 
and a serious psychological burden on patients (2-3). 
Early and accurate prediction of recurrence can improve 
patient outcomes and the efficiency of health systems by 
helping clinicians deliver personalized care and timely 
interventions (4). However, the high number of clinical 
variables and the complex relationships between them 
limit the effectiveness of traditional statistical methods 
in predicting DTC recurrence (5, 6). Machine learning 
(ML) algorithms offer advantages in this context, as they 
can capture both linear and non-linear patterns in large 
clinical datasets. These models can support the develop-
ment of data-driven decision support systems by reveal-
ing hidden patterns in medical data (7, 8). Despite this 
potential, the use of ML for DTC recurrence prediction 
remains limited. Most existing studies focus mainly on 
performance metrics, without adequately addressing 
how these models can be interpreted and integrated into 
clinical decision-making processes (9–12). Moreover, 
the decision-making processes of these models general-
ly remain in the form of a “black box”, making it diffi-
cult for clinicians to trust the model output and rely on 
it to make their decisions. Therefore, it is essential not 
only to develop high-performance models, but also to 
illuminate decision-making processes to increase clinical 
applicability and physician confidence in ML-enabled 
models. Explainable Artificial Intelligence (XAI) meth-
ods have been introduced in recent years to provide a 
more understandable and interpretable understanding 
of the decision processes of ML models. Such methods 
improve clinical reliability by clarifying which variables 
play a role in the predictions of the models and thus can 
contribute to clinicians making more informed, transpar-
ent and patient-specific decisions (13-15).

This study presents a ML-based framework for pre-
dicting recurrence of differentiated thyroid cancer. 
Furthermore, it focuses on the utilization of XAI tech-
niques to improve the clinical interpretability of the de-
cision-making processes of ML models. In this way, it is 
aimed to identify the main risk factors contributing to 
the development of recurrence and to provide valuable 
contributions to clinical decision-making processes.

MATERIALS AND METHODS

Since this study was conducted on a publicly available 
clinical data set, Ethics Committee approval is not re-
quired. An XAI-based model was introduced to predict 
the probability of DTC recurrence. The proposed model 
starts with the data pre-processing phase, encompassing 
label encoding, and feature selection. Five distinct ML 
algorithms were employed in the prediction process. 
Diverse performance metrics were applied to obtain the 
optimal prediction outcome. Lastly, XAI techniques were 
utilized to determine the features that provide the most 
significant impacts on the probability of DTC recurrence. 
The proposed framework is illustrated in Figure 1.
 

Dataset

The dataset examined in this study was obtained from 
a previous study conducted by Borzooei et al. (10). The 
title of the dataset is Differentiated Thyroid Cancer Re-
currence and it is accessible via the Machine Learning 
Repository at University of California Irvine, which 
is a publicly available (16). It contains 16 independent 
features and 1 target feature that pertain to 383 thyroid 
cancer patients who were monitored for a minimum of 
10 years and up to 15 years. The target feature was cate-
gorized as no recurrence and recurrence. In the dataset 
used in this study, the age of patients with DTC recur-
rence was 47.11±18.27 years and 38±12.95 years for those 
without recurrence. The features in the dataset and their 
descriptions are presented in Table 1. 

Figure 1: The framework of the proposed ML-based prediction model for DTC recurrence shows the steps of data preprocessing, model 
training, performance evaluation and XAI analysis. 



282

Arch Curr Med Res 2025; 6(3): 280-287

Table 1. The features and descriptions of dataset

No      Features Description Unique V

1           Age Represents the age of individuals in the 
dataset.

2           Gender Indicates the gender of individuals [Female, Male]

3           Smoking Possibly an attribute related to smoking 
behaviour.

[No, yes]

4           Hx Smoking Indicates whether individuals have a 
history of smoking 

[No, yes]

5           Hx Radiotherapy Indicates whether individuals have a 
history of radiotherapy treatment

[No, yes]

6           Thyroid Function Possibly indicates the status or function 
of the thyroid gland.

[Clinical, Euthyroid, 
Subclinical]

7           Physical 
             Examination

Describes the results of a physical 
examination

[Single nodular goiter-left, 
Multinodular goiter, 
Normal, Single nodular goiter-right] 

8           Adenopathy Indicates the presence and location of 
adenopathy

[No, Right, Extensive, 
Left, Bilateral, Posterior]

9           Pathology Describes the types of thyroid cancer 
based on pathology examinations

[Micropapillary, Papillary, 
Follicular, Hurthle cell]

10           Focality Indicates whether the thyroid cancer is 
unifocal or multifocal.

[Uni-Focal, Multi-Focal]

11           Risk Represents the risk category associated 
with thyroid cancer.

[Low, Intermediate, High]

12           Tumor (T) Represents the tumor stage of thyroid 
cancer, indicating the size and extent of 
the primary tumor.

[T1a, T1b, T2, T3a, T3b, 
T4a, T4b]

13           Lymph Nodes (N) Represents the N (Node) stage of thyroid 
cancer, indicating the involvement of 
nearby lymph nodes.

[N0, N1b, N1a]

14           Metastasis Represents the M (Metastasis) stage of 
thyroid cancer, indicating whether the 
cancer has spread to distant organs.

[M0, M1]

15           Stage Represents the overall stage of thyroid 
cancer based on the combination of T, N, 
and M stages.

[I, II, IVB, III, IVA]

16           Treatment Response Describes the response to treatment, 
including categories

[Indeterminate, Excellent, Structural 
Incomplete, 
Biochemical Incomplete]

17           Recurred Indicates whether thyroid cancer has recurred [No, yes]
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learner from weak learners, it works by weighting mis-
classified examples more. Gradient Boost (GB) is an al-
gorithm for minimizing errors, where weak learners are 
successively combined to form a strong model (20). Fi-
nally, Logistic Regression (LR) is a regression model that 
makes probability estimates by modeling linear rela-
tionships and is widely used for classification problems 
(21). The ML algorithms were evaluated by analyzing 
their statistical significance through recall, precision, ac-
curacy, and area under curve (AUC) performance cri-
teria. It is essential to utilize a suitable evaluation tech-
nique. One such method is K-fold cross-validation, used 
to determine the mean accuracy of a model. The strate-
gy of this method is to build a cross-validation approach 
where a certain k value is selected and the dataset is 
split into k subset of equal size. At each iteration, one of 
the k subsets is utilized as a test set while the remaining 
subsets are employed for model training. This process 
continues until all subsets are used as test sets once. 
This method utilizes the mean of the calculated values 
as a performance measure (22). A 5-fold cross-validation 
technique was applied to validate the predictive per-
formance of the models. All analyses were conducted 
using Python 3.7.12 (Python Software Foundation), and 
relevant libraries for ML and XAI approaches.

The complex nature of ML-based models requires bet-
ter explanations of how models make predictions and 
which input features contribute more to a model’s de-
cision. XAI models refer to a set of processes and tech-
niques that are intended to provide a clear and under-
standable explanation for decisions generated by ML 
models (23). In this study, permutation feature impor-
tance (PFI) and SHapley Additive exPlanations (SHAP) 
methods are used as XAI methods. The PFI technique is 
utilized to retrieve the importance of features depend-
ing on their effects on the prediction of a trained a ML 
algorithm. PFI measures the decrease in model perfor-
mance after permuting the values of each feature. Fea-
tures are ranked in descending order based on their im-
pact on the model’s performance (24). SHAP approach 
yields important information regarding the model. It 
enables the identification of the most influential features 
contributing to the prediction process. It indicates how 
a feature influences an individual prediction in com-
parison to others. The SHAP importance is represented 
as an absolute value for model training, taking into ac-
count both direction and magnitude (25).

Data Pre-processing

Data pre-processing is an essential step before building 
ML-based models. Making suitable data for the mod-
els has a significant impact on the prediction perfor-
mances. In the initial preprocessing stage, the dataset 
was checked for missing data and no missing data was 
found in the data set. In the next stage, considering 
that most of the categorical variables in the dataset are 
unordered and the dataset is relatively small, label en-
coding—a method that converts each categorical value 
into a unique numeric label—was applied. This process 
transforms categorical variables into numeric values, 
enabling the model to process them more effectively. 
The subsequent stage is the feature selection process. 
Not all features in the dataset contribute equally to the 
performance of the model, and some may provide re-
dundant information, increasing the risk of model over-
fitting. Therefore, feature selection is critical to ensure 
that only the most meaningful and informative features 
are included in the model. Recursive Feature Elimina-
tion (RFE) with Random Forest as the base estimator is 
an iterative feature selection method and identifies the 
most important features to improve the accuracy of the 
model. In this technique, a model is initially trained 
with all features. The model evaluates the contribution 
of each feature to the accuracy and, at each iteration, 
removes the least important features. This process is re-
peated one feature at a time. The removal of features 
is based on changes in the model’s performance. This 
process continues until the features that most improve 
the accuracy of the model remain (17). This approach 
selected the 11 most prominent features (age, gender, 
thyroid function, physical examination, adenopathy, fo-
cality, risk, T, N, stage and response) out of 16 features 
in the dataset.

Machine Learning Algorithms

Five classifiers—Random Forest, Support Vector Clas-
sifier, AdaBoost, Gradient Boost, and Logistic Regres-
sion—were trained and evaluated to predict DTC re-
currence. Random Forest (RF) is an ensemble learning 
algorithm consisting of a large number of decision trees 
and each tree makes decisions independently, then the 
results are combined (18). Support Vector Classifier 
(SVC) is a classification algorithm that tries to find the 
optimal hyperplane to classify the data (19). AdaBoost 
is an ensemble learning algorithm used to build a strong 
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also depicted in Figure 2. Among the ML algorithms, 
the RF algorithm predicted DTC recurrence probability 
as the most successful model with 97.39% of accuracy, 
92.98% of precision, 98.15% of recall, and 95.50% of F1-
Score. As highlighted in Figure 2, all models showed ac-
ceptable discriminative with AUC values ranging from 
0.92 to 0.99, while the RF model performed the best with 
an AUC value of 0.993.

RESULTS

A publicly available clinical dataset, titled “Differentiat-
ed Thyroid Cancer Recurrence,” was utilized to predict 
the probability of recurrence. For this purpose, differ-
ent ML algorithms were used in the prediction process. 
The prediction performances of ML algorithms are tab-
ulated in Table 2. In addition, AUC values showing the 
discriminative power of ML algorithms in general were 

Table 2. Accuracy, precision, recall and F1-score values for ML algorithms

Models Mean Accuracy Mean Precision Mean Recall Mean F1-Score 

LR 0.9191 0.8667 0.8426 0.8545

SVC 0.9373 0.8962 0.8796 0.8879

ADA 0.9452 0.9780 0.8241 0.8945

GB 0.9687 0.9615 0.9259 0.9434

RF 0.9739 0.9298 0.9815 0.9550

Figure 1I: ROC curves of ML algorithms
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DISCUSSION

This study adopted five different ML algorithms to pre-
dict DTC recurrence and leveraged XAI techniques to 
improve the interpretability of model results. As a result 
of the analysis, the RF algorithm stood out as the most 
effective model, achieving an accuracy of 97.39% and 
demonstrating superior discriminative ability with an 
AUC of 0.993, indicating excellent prediction accuracy 
in differentiating between recurrence and non-recur-
rence cases compared to other models. This algorithm 
performs as an ensemble method by combining a large 
number of decision trees and is particularly notable 

PFI and Shapley approaches were used to identify the 
features that contribute the most to the prediction per-
formance of the RF algorithm, which has the highest 
prediction rate. The PFI plots for the test and training 

Figure 3: The most influential features for predicting differentiated thyroid cancer recurrence according to PFI and SHAP analyses in the 
Random Forest model. (a) PFI plot for training set, (b) PFI plot for test set, (c) SHAP Bee-swarm plot, and (d) SHAP summary plot. 

for its capacity to capture complex, nonlinear relation-
ships, while reducing the risk of overfitting by training 
the trees on random subsets (26). In this respect, RF is 
particularly well-suited for analyzing complex, multidi-
mensional medical datasets, such as the DTC recurrence 
dataset used in this study.

It is highly clinically important not only that the model 
performs well in prediction, but also that it can explain 
the properties on which these results are based. In this 
context, two different XAI approaches were adopted 
in the study to better understand the decision process 
of the model: PFI and SHAP. While PFI measures the 

datasets and the results of the SHAP analysis are pre-
sented in Figure 3. Treatment response and ATA risk are 
the most critical features affecting the prediction pro-
cess based on SHAP and PFI analysis.
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The proposed model performed well in predicting DTC 
recurrence. By combining high-performance algorithms 
and interpretability methods, the clinical variables most 
associated with recurrence were successfully identified. 
These results demonstrate the potential of the proposed 
XAI-integrated ML framework to enhance personalized 
follow-up strategies and to inform evidence-based clin-
ical decision-making.
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