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Abstract. Income equality plays a fundamental role in ensuring sustainable development and social welfare
globally. The increase in economic inequality threatens not only the living standards between individuals but also
societal harmony and economic stability. In many developed and developing countries, injustices in income distri-
bution exacerbate social tensions and negatively affect long-term economic growth. This study introduces a novel
multi-criteria decision-making framework based on interval-valued intuitionistic fuzzy neutrosophic sets (IVIFNSs)
to evaluate and compare income equality across selected Organisation for Economic Co-operation and Development
(OECD) countries. The IVIFNS model improves traditional fuzzy systems by representing truth, indeterminacy,
and falsity degrees with interval-valued intuitionistic fuzzy values, offering a more nuanced approach to uncertainty.
Algebraic operations are defined using triangular-norms and triangular-conorms, and new aggregation operators are
developed. The proposed theory is applied to rank 25 OECD countries based on key income inequality indicators:
Gini coefficient, Palma ratio, P90/P10, and P90/P50, using the Weighted Aggregated Sum Product Assessment
(WASPAS) method. A comparative analysis demonstrates the method’s effectiveness in capturing complex, uncer-
tain data and producing robust country rankings for policy evaluation.
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1. Introduction

Income equality is a critical concept that involves ensuring fairness in the distribution of income among individuals
within a society. It plays a central role in determining the economic and social well-being of nations, as the extent
to which income is distributed equitably significantly impacts both individual lives and societal structures. Income
inequality, characterized by a widening gap between the rich and the poor, can have detrimental effects on economic
stability and social harmony. It often leads to increased poverty rates, diminished access to essential services such as
education and healthcare, and an overall decline in living standards. Moreover, high levels of income inequality can
perpetuate disparities in opportunities, creating barriers to upward mobility for disadvantaged groups [44]. Achieving
income equity is not merely a matter of economic growth, but it is deeply intertwined with broader social justice
principles, such as equal opportunity, protection of individual rights, and the promotion of fairness in societal systems.

*Corresponding Author
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A fair income distribution enables individuals to meet their basic needs, contributing to the overall prosperity and long-
term sustainable development of a society. Policies aimed at fostering income equity often involve strengthening social
safety nets, reforming taxation systems to ensure fairness, and ensuring equal access to employment opportunities. In
this regard, the pursuit of income equity is essential for maintaining economic stability and societal cohesion[46].

Furthermore, income equity plays a significant role in improving social equality and reinforcing democratic values.
High levels of income inequality often exacerbate class divisions, leading to social polarization and weakening social
trust. On the other hand, equitable income distribution fosters solidarity among individuals, improves living conditions,
and enhances overall societal welfare. Therefore, income equity is not only an economic necessity but also a key factor
in ensuring social and political stability. The realization of income equity is thus crucial for both policymakers and
society as a whole, as it is integral to fostering a more just, stable, and prosperous future [40].

As illustrated in Figure 1, Kaasa [27] identified key determinants of income equality, grouping them into five
categories: economic development, demographic factors, political factors, cultural and environmental factors, and
macroeconomic factors.

• Economic Development: The level of economic growth and industrialization significantly influences income
distribution. A well-developed economy with diverse employment opportunities and high productivity levels
tends to promote income equity, whereas economic stagnation or reliance on a single sector may exacerbate
disparities.
• Demographic Factors: Population characteristics such as age distribution, education levels, urbanization

rates, and migration patterns affect income equity. A younger and more educated workforce typically con-
tributes to a fairer income distribution, while aging populations and high dependency ratios can create financial
pressures that lead to greater inequality.
• Political Factors: Government policies, taxation systems, labor laws, and social welfare programs play a cru-

cial role in determining income equity. Progressive taxation, strong social safety nets, and policies promoting
equal opportunities can reduce disparities, while weak regulatory frameworks and corruption can exacerbate
income inequality.
• Cultural and Environmental Factors: Social norms, cultural values, and environmental conditions influence

income equity by shaping labor market participation and access to resources. Gender roles, discrimination,
and environmental degradation can create barriers to income distribution, affecting vulnerable groups dispro-
portionately.
• Macroeconomic Factors: Inflation, interest rates, trade policies, and monetary policies impact income equity

by influencing wages, employment rates, and access to financial resources. Economic instability, high inflation,
and trade imbalances can widen income gaps, while stable macroeconomic conditions support more equitable
income distribution.

Figure 1. Fundamental factors affecting income equality

Income inequality has been increasing in many developed countries in recent years. Figure 2 shows that in the 1980s,
the average disposable income of the top 10% in Organisation for Economic Co-operation and Development (OECD)
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countries was nearly seven times greater than that of the bottom 10%. This ratio increased to eight times in the 1990s
and nine times in the 2000s. Today, income inequality has reached its highest level in the past 30 years, with the richest
10% earning 9.6 times more than the poorest 10% [29].

Figure 2. Income ratio between top and bottom deciles in OECD countries

A summary of various case studies focused on measuring income inequality across different years, environments,
and methods is presented in Table 1. The studies span from 1995 to 2023, with a mix of fuzzy and crisp set approaches
employed in the analyses. The methodologies used include fuzzy logic, panel data analysis, statistical analysis, econo-
metric analysis, fuzzy nonlinear regression, and correlation analysis. Authors from various backgrounds, contributed
to these studies, which explore different dimensions of income inequality, ranging from its measurement and causes to
its impact on social factors such as poverty, information and communications technology (ICT) and life expectancy.

Table 1. Literature review on income equality/inequality studies

Year Case Study Environment Method(s) Author(s)
1995 Measurement of income inequality Fuzzy sets Fuzzy logic Ok [38]
2003 Income inequality in OECD Countries Crisp sets Panel data analysis Atkinson [7]
2010 Examining income equality through poverty Fuzzy sets Fuzzy logic Giordani and Giorgi [20]
2011 Addressing how income inequality is measured Crisp sets Statistical analysis Cowell [15]
2015 Measuring inequality in Tunisia Fuzzy sets Fuzzy logic Hasnaoui and Belhadj [23]
2015 Causes and consequences of income inequality Crisp sets Econometric analysis Dabla-Norris et al. [16]
2017 Investigating the dynamics of income inequality Crisp sets Panel data analysis Alvaredo et al. [1]
2021 Evaluating the impact of ICT on income distribution Fuzzy sets Fuzzy nonlinear regression Ashraf Ganjoei et al. [3]
2023 Explaining the relation between life expectancy and income inequality Fuzzy sets Correlation analysis Rutkowska et al. [43]

The concept of fuzzy set (FS), introduced by Zadeh [61], provides a mathematical framework to represent and
reason about vague or imprecise information. In contrast to classical set theory, which categorizes elements in a binary
fashion—either belonging to a set or not—fuzzy sets enable partial membership, effectively capturing the uncertainty
and vagueness found in real-world situations. The concept of intuitionistic fuzzy set (IFS), which is an extension
of the concept of FS, was introduced by Atanassov [4]. This extension provides a more refined way to represent
uncertainty, making IFSs especially useful in decision-making contexts that involve hesitation or uncertainty. Since
Zadeh introduced FSs, many extensions of the FSs have been presented by researchers, such as interval-valued fuzzy
sets (IVFSs) [62], neutrosophic sets (NSs) [45], Pythagorean fuzzy sets (PFSs) [59], spherical fuzzy sets [2], and linear
diophantine multi-fuzzy soft set [28]. In real-world scenarios, uncertainty is not always confined to precise values but
may instead exist within a range of possibilities. Therefore, Atanassov and Gargov [5] further generalized IFSs and
IVFSs, defining interval-valued intuitionistic fuzzy sets (IVIFSs). Traditional a FS assigns a single value to represent
the degree of membership of an element in a set in the range [0, 1]. However, an IVIFS addresses this limitation
by allowing for the representation of membership degrees as intervals, offering a more comprehensive depiction of
uncertainty.
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IVIFSs are primarily utilized in the realm of decision-making, pattern recognition, and expert systems, where uncer-
tainty and imprecision play a significant role. Wang et al. [52] introduced a methodology aimed at addressing decision-
making challenges within the interval-valued intuitionistic fuzzy (IVIF) framework, employing interval-valued intu-
itionistic fuzzy values (IVIFVs) to represent all pertinent information, especially when attribute weightings are incom-
plete. Ye [60] developed the IVIF weighted arithmetic aggregation and geometric aggregation operators, along with an
accuracy function presented for IVIFVs. Nayagam et al. [36] proposed a new accuracy function for ranking IVIFVs.
Liu and Xie [32] defined a weighted score function and a weighted accuracy function of IVIFSs. Bai [8] introduced an
improved score function designed to facilitate the efficient ranking of IVIFSs, alongside an IVIF Technique for Order
Preference by Similarity to Ideal Solution (TOPSIS) method and this approach addresses decision-making scenarios
where criterion weightings are fully disclosed. Xu [56] introduced some arithmetic and geometric aggregation opera-
tors and developed an approach for decision-making with IVIF information using these aggregation operators. Xu and
Chen [57] defined some distance measures and similarity measures for IVIFSs. Xia et al.[55] studied the exploration
of intuitionistic fuzzy aggregation operators founded on Archimedean triangular-norm (t-norm) and triangular-conorm
(t-conorm), extending the concepts of Algebraic t-norm and t-conorm. Meanwhile, Wang, Liu and Qin [54] alongside
Wang [50] introduced IVIF aggregation operators, also rooted in Archimedean t-norm and t-conorm principles. Raj
et al.[41] explored the concept of IVIF graph and its self-centered properties, evaluating the potential applications of
these graphs in areas such as defuzzification and fuzzy control.

Smarandache [45] proposed NS theory as an extension of fuzzy set theory, incorporating three membership func-
tions: truth, indeterminacy, and falsity. Unlike fuzzy sets, there are no constraints on the sum of these membership
functions. Later, Wang et al. [51], Wang et. al [53], and Ye[60] restricted the three membership degrees within the
neutrosophic set framework to single-valued and interval membership degrees. This led to the creation of distinct sub-
classes, namely the single-valued neutrosophic set, interval neutrosophic set, and simplified neutrosophic set. Ünver
et al.[49] introduced the concept of intuitionistic fuzzy valued neutrosophic multi set (IFVNMS) by merging NSs and
IFSs with multi sets. After that, Bozyiğit et al. [12] defined the concept of Pythagorean fuzzy valued neutrosophic set
with the help of NSs and PFSs.

Multi-criteria decision-making (MCDM) is a fundamental decision-making approach that seeks to identify the most
suitable alternative by evaluating multiple criteria simultaneously. This approach assists decision-makers in choosing
the optimal option by taking into account various factors such as cost, time, quality, and other relevant parameters.
MCDM techniques provide a structured framework to evaluate and prioritize alternatives based on their performance
across each criterion. MCDM encompasses a wide range of tools and methods that can be applied in diverse fields,
from finance to engineering design. By utilizing MCDM, decision-makers are able to make more informed, rational,
and balanced decisions, leading to improved outcomes in complex situations. The Weighted Aggregated Sum Product
Assessment (WASPAS) method, introduced by Zavadskas et al. [64] in 2012, is a technique used to solve MCDM
problems. This method combines the Weighted Sum Model (WSM) and the Weighted Product Model (WPM). By
merging the advantages of these two models, WASPAS allows for a balanced utilization of the different characteristics
from both methods. Chakraborty and Zavadskas [14] applied the WASPAS method to solve some manufacturing
decision-making problems. Ghorabaee et al [19] applied an extended WASPAS method for green supplier selection in
a green supply chain and demonstrated that it provides more reliable results compared to other multi-criteria decision-
making methods. Urosevic et al. [47] utilized this method to address the personnel selection problem for the sales
manager position in the tourism sector. Mishra et al. [33] used the WASPAS method to examine the performance of
mobile phone service providers. Similarly, Mishra and Rani [34] applied the WASPAS method to address the problem
of selecting a health waste disposal site. Hussain et al. [25] provided a different perspective by evaluating hospitals with
advanced artificial intelligence technologies for robotic surgery and medical diagnosis using the WASPAS method.

The aim of this study is to rank some of the OECD countries, given in Figure 3, based on income equality. To
achieve this, an MCDM approach is performed using interval-valued intuitionistic fuzzy neutrosophic sets (IVIFNSs).
In the MCDM process the WASPAS methodology is employed. Within this framework, the goal is to rank the decision
alternatives in the most optimal way and generate accurate and reliable results. In the present study, 25 OECD countries
are selected as alternatives. The criteria used for evaluation include the Gini coefficient, Palma ratio, p90/p10 ratio, and
p90/p50 ratio (see, e.g., [35]).

• Gini Coefficient: The Gini coefficient [21] is a widely used indicator of income inequality, derived from
the Lorenz curve. It is calculated as the ratio of the area between the Lorenz curve and the line of perfect
equality to the total area beneath the line of perfect equality (see Figure 4). A Gini coefficient of 0 signifies
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Figure 3. OECD countries

perfect income equality, where everyone earns the same, while a value of 1 indicates extreme inequality, with
all income held by a single individual. As a key metric, the Gini coefficient offers critical insights into how
income is distributed within a society.

Figure 4. The Lorenz curve

• Palma Ratio: The Palma ratio [39] measures income inequality by comparing the income share of the richest
10% of the population to that of the poorest 40%. It provides a more focused perspective on income inequality,
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highlighting the disparity between the richest and the poorest segments of the population. A higher Palma ratio
indicates a larger gap between the rich and the poor.
• P90/P10 Ratio: The P90/P10 (see e.g., [26]) ratio is the ratio of the income of the 90th percentile to the

income of the 10th percentile. This metric shows how the income of the top 10% compares to the income of
the bottom 10%. A higher P90/P10 ratio suggests a greater income disparity between the wealthiest and the
poorest segments of society.
• P90/P50 Ratio: The P90/P50 ratio (see e.g., [13]) compares the income of the 90th percentile to the income of

the 50th percentile, effectively comparing the income of the top 10% to the middle of the income distribution.
This ratio offers insight into how income is distributed between the richest and the middle class, with a higher
ratio indicating a larger income gap between the top earners and the median income.

These four criteria provide a comprehensive and multidimensional assessment of income distribution within a coun-
try by considering various aspects of income inequality. Each criterion unveils different dimensions of income dispari-
ties, highlighting not only the overall inequality but also the disparities between key income groups in the distribution.
This approach improves the accuracy and reliability of cross-country comparisons of income inequality, enabling a
more precise understanding of the variations in income distribution and the identification of crucial policy implica-
tions.

This paper presents two principal contributions:
• Theoretical contributions: The concept of IVIFS is extended using NS theory to introduce IVIFNSs and

interval-valued intuitionistic fuzzy neutrosophic values (IVIFNVs). Through the use of IVIFNS, which con-
sider IVIFSs for truth, indeterminacy, and falsity degrees, more sensitive assessments can be made in decision-
making problems. In other words, these NSs enable the evaluation of truth, indeterminacy, and falsity degrees
by modeling uncertainty with the use of IVIFVs, facilitating more accurate decision-making in situations in-
volving uncertain data. Then we give some fundamental algebraic operations with the help of IVIFS fuzzy
t-norms and t-conorms. Subsequently, a weighted arithmetic aggregation and a weighted geometric aggrega-
tion operator are defined for integrating IVIFNV classes using algebraic operations.
• Applied contributions: This study examines an MCDM problem directly related to income equity based on

criteria. The WASPAS method is employed to assess income equity in selected OECD countries, ranking
them accordingly. Moreover, the proposed fuzzy-based framework can be readily applied to a wide range of
decision-making problems, spanning from the healthcare sector to the manufacturing sector.

The remainder of the paper is structured as follows: Section 2 presents some basic concepts used in the paper.
Section 3 introduces the concept of IVIFNS. Moreover, some algebraic operations for IVIFNSs are defined using IVIF
t-norm and t-conorm and a score function is introduce. In Section 4, a weighted arithmetic and a weighted geometric
aggregation operator for IVIFNVs are presented. In Section 5, an MCDM problem on income equality of some OECD
countries is addressed using the WASPAS method within the framework of IVIFNSs. In Section 6, a comparative
analysis is conducted to evaluate country rankings from different perspectives. In the final section, Section 7, the
study’s findings are analyzed, conclusions are drawn, and suggestions for future research are offered.

2. Preliminaries

This section outlines essential definitions and fundamental properties that form the basis of the study. Throughout
this paper, we assume that X = {x1, . . . , xn} is a finite set and ξ[0, 1] is the set of all closed sub-intervals of [0, 1]

Definition 2.1 ([5]). [5] An IVIFS A defined on X is given by

A = {⟨x, µA(x), νA(x)⟩ : xi ∈ X},

where µA, νA : X → ξ[0, 1] for all x ∈ X, with the condition

0 ≤ sup µA(x) + sup νA(x) ≤ 1

for any xi ∈ X. The lower and upper boundaries of µA(x) and νA(x) are denoted by µL
A(x), µU

A (x), νL
A(x), and νU

A (x),
respectively.

Remark 2.2. Wang et al. [54] defined a partial order on the lattice

L = {([u, v], [x, y]) : [u, v], [x, y] ∈ ξ[0, 1], v + y ≤ 1} ,
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with the ordering relation

([u1, v1], [x1, y1]) ⊑ ([u2, v2], [x2, y2]) ⇐⇒ [u1, v1] ⪯I [u2, v2] and [x2, y2] ⪯I [x1, y1],

where the top and bottom elements of the lattice are given by

⊤ = ([1, 1], [0, 0]) and ⊥ = ([0, 0], [1, 1]),

respectively. The interval order relation ⪯I used above is defined as

[u1, v1] ⪯I [u2, v2] ⇐⇒ u1 ≤ u2 and v1 ≤ v2,

as discussed in [10].

Now, we recall the notions of IVIF t-norm and t-conorm.

Definition 2.3 ([58]). An IVIF t-norm is a binary operation T : L × L → L, which satisfies the following axioms for
all ψ1, ψ2, ψ3 ∈ L:

(T1) T (ψ1,⊤) = ψ1,
(T2) T (ψ1, ψ2) = T (ψ2, ψ1),
(T3) T (ψ1,T (ψ2, ψ3)) = T (T (ψ1, ψ2), ψ3),
(T4) For all ψ1, ψ

′
1, ψ2, ψ

′
2 ∈ L, if ψ1 ⊑ ψ

′
1 and ψ2 ⊑ ψ

′
2, then T (ψ1, ψ2) ⊑ T (ψ′1, ψ

′
2).

Definition 2.4 ([58]). An IVIF t-conorm is a binary operation S : L × L → L, satisfying T2-T4 and for any ψ1 ∈ L:

(S1) S(ψ1,⊥) = ψ1.

We now present the definition of IVIF negation as a generalization of classical fuzzy negation.

Definition 2.5 ([42] ). An IVIF negation is a mapping N : L → L that satisfies the following properties:

(N1) N(⊥) = ⊤ and N(⊤) = ⊥,
(N2) N(ψ1) ⊒ N(ψ2) whenever ψ1 ⊑ ψ2, for all ψ1, ψ2 ∈ L.

IfN(N(ψ)) = ψ for every ψ ∈ L, thenN is called an involutive negator. A typical example is the standard involutive
negator Ns : L → L, defined by Ns((a, b)) = (b, a).

Definition 2.6 ([58]). Let T be an IVIF t-norm and N an IVIF negation. The operation S : L × L → L, defined as

S(ψ1, ψ2) = N (T (N(ψ1),N(ψ2))) ,

is called the dual t-conorm of T with respect to the negator N .

Notwithstanding the existence of comparable research in [9, 17, 53], Proposition 1 and its comprehensive proof are
detailed below.

Proposition 2.7. Let T and S be any t-norm and t-conorm defined on the unit interval [0, 1]. Then T : L × L → L
defined by

T (ψ1, ψ2) =
([

T
(
µL
ψ1
, µL

ψ2

)
, T
(
µU
ψ1
, µU

ψ2

)]
,
[
S
(
νL
ψ1
, νL

ψ2

)
, S
(
νU
ψ1
, νU

ψ2

)])
is an IVIF t-norm and S : L × L → L defined by

S(ψ1, ψ2) =
([

S
(
µL
ψ1
, µL

ψ2

)
, S
(
µU
ψ1
, µU

ψ2

)]
,
[
T
(
νL
ψ1
, νL

ψ2

)
, T
(
νU
ψ1
, νU

ψ2

)])
is an IVIF t-conorm.

Proof. (T1) As T and S are a t-norm and t-conorm, respectively, it follows for any ψ1 ∈ L that

T (ψ1,⊤) =
([

T
(
µL
ψ1
, 1
)
, T
(
µU
ψ1
, 1
)]
,
[
S
(
νL
ψ1
, 0
)
, S
(
νU
ψ1
, 0
)])

=
([
µL
ψ1
, µU

ψ1

]
,
[
νL
ψ1
, νU

ψ1

])
= ψ1.
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(T2) The proof is straightforward and thus omitted.
(T3) Since T is a t-norm and S is a t-conorm, it holds for all ψ1, ψ2, ψ3 ∈ L that

T (ψ1,T (ψ2, ψ3)) =

([
T
(
µL
ψ1
, µL
T (ψ2,ψ3)

)
, T
(
µU
ψ1
, µU
T (ψ2,ψ3)

)]
,[

S
(
νL
ψ1
, νL
T (ψ2,ψ3)

)
, S
(
νU
ψ1
, νU
T (ψ2,ψ3)

)])
=

([
T
(
µL
ψ1
, T
(
µL
ψ2
, µL

ψ3

))
, T
(
µU
ψ1
, T
(
µU
ψ2
, µU

ψ3

))]
,[

S
(
νL
ψ1
, S
(
νL
ψ2
, νL

ψ3

))
, S
(
νU
ψ1
, S
(
νU
ψ2
, νU

ψ3

))])
=

([
T
(
T
(
µL
ψ1
, µL

ψ2

)
, µL

ψ1

)
, T
(
T
(
µU
ψ1
, µU

ψ2

)
, µU

ψ1

)]
,[

S
(
S
(
νL
ψ1
, νL

ψ2

)
, νL

ψ1

)
, S
(
S
(
νU
ψ1
, νU

ψ2

)
, νU

ψ1

)])
= T (ψ1,T (ψ2, ψ3)).

(T4) Let ψ1 ⊑ ψ
′
1 and ψ2 ⊑ ψ

′
2. Then we have

µL
ψ1
≤ µL

ψ′1
and µL

ψ2
≤ µL

ψ′2
.

As T is a t-norm this inequalities yield that

T
(
µL
ψ1
, µL

ψ2

)
≤ T
(
µL
ψ′1
, µL

ψ′2

)
. (2.1)

On the other hand, we obtain
µL
T (ψ1,ψ2) = T

(
µL
ψ1
, µL

ψ2

)
and

µL
T (ψ′1,ψ

′
2) =
(
µL
ψ′1
, µL

ψ′2

)
,

which imply with (2.1) that
µL
T (ψ1,ψ2) ≤ µ

L
T (ψ′1,ψ

′
2). (2.2)

Similarly we get
µU
T (ψ1,ψ2) ≤ µ

U
T (ψ′1,ψ

′
2). (2.3)

From (2.2) and (2.3) we deduce
µT (ψ1,ψ2) ≤ µT (ψ′1,ψ

′
2). (2.4)

Similarly, we have
νT (ψ1,ψ2) ≥ νT (ψ′1,ψ

′
2).

Combining that with (2.4) we have
T (ψ1, ψ2) ⊑ T (ψ′1, ψ

′
2).

Therefore, T is an IVIF t-norm, and by analogous reasoning, S is an IVIF t-conorm. □

Remark 2.8. Additive generators play a pivotal role in constructing algebraic operators for t-norms and t-conorms.
Specifically, continuous Archimedean t-norms and t-conorms on the unit interval [0, 1] can be derived from such
generators. These generators can also be employed to define IVIF t-norms and t-conorms. An Archimedean t-norm
can be generated using a strictly increasing function g : [0, 1] → [0,∞], where g(1) = 0 and g(0) = 1 [30, 31]. Thus,
the corresponding IVIF t-norm is expressed as

T (ψ1, ψ2) =

([
g−1
(
g(µL

ψ1
) + g(µL

ψ2
)
)
, g−1
(
g(µU

ψ1
) + g(µU

ψ2
)
)][

h−1
(
h(νL

ψ1
) + h(µL

ψ2
)
)
, h−1
(
h(νU

ψ1
) + h(νU

ψ2
)
)])

,

where the dual t-conorm is given by

S(ψ1, ψ2) =

([
h−1
(
h(µL

ψ1
) + h(µL

ψ2
)
)
, h−1
(
h(µU

ψ1
) + h(µU

ψ2
)
)][

g−1
(
g(νL

ψ1
) + g(µL

ψ2
)
)
, g−1
(
g(νU

ψ1
) + g(νU

ψ2
)
)])
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with respect to the standard negator Ns, and h(t) = g(1 − t). Indeed,

Ns (T (Ns (ψ1) ,Ns (ψ2))) = Ns

 T
(([
νL
ψ1
, νU

ψ1

]
,
[
µL
ψ1
, µU

ψ1

])
,([

νL
ψ2
, νU

ψ2

]
,
[
µL
ψ2
, µU

ψ2

])) 
= Ns


([

g−1
(
g(νL

ψ1
) + g(νL

ψ2
)
)
, g−1
(
g(νU

ψ1
) + g(νU

ψ2
)
)][

h−1
(
h(µL

ψ1
) + h(µL

ψ2
)
)
, h−1
(
h(µU

ψ1
) + h(µU

ψ2
)
)]) 

=

([
h−1
(
h(µL

ψ1
) + h(µL

ψ2
)
)
, h−1
(
h(µU

ψ1
) + h(µU

ψ2
)
)][

g−1
(
g(νL

ψ1
) + g(νL

ψ2
)
)
, g−1
(
g(νU

ψ1
) + g(νU

ψ2
)
)])

= S(ψ1, ψ2).

In this formulations, T and S are said to be generated by the additive functions g and h, respectively.

Example 2.9. Let the generator functions be defined as g(t) = − log(t) and h(t) = − log(1− t). Then, the corresponding
algebraic IVIF t-norm takes the form

T (ψ1, ψ2) =
(
[µL

ψ1
µL
ψ2
, µU

ψ1
µU
ψ2

], [νL
ψ1
+ νL

ψ2
− νL

ψ1
νL
ψ2
, νU

ψ1
+ νU

ψ2
− νU

ψ1
νU
ψ2

]
)
,

while the associated algebraic IVIF t-conorm, with respect to Ns, is given by

S(ψ1, ψ2) =
(
[µL

ψ1
+ µψ2

L − µψ1
Lµψ2

L, µψ1
U + µψ2

U − µψ1
Uµψ2

U], [νψ1
Lνψ2

L, νψ1
Uνψ2

U]
)

.

These are known as the Algebraic t-norm and t-conorm.

3. IVIFNSs and Aggregation Operators

Ünver et al. [49] introduced IFVNMSs, a new fuzzy set concept combining IFSs and NSs. Inspired by this, we
extend the theory by combining IVIFS theory with NSs, leading to the introduction of IVIFNSs and IVIFNVs. We
then define algebraic operations for these new concepts, employing IVIF t-norms and t-conorms. Finally, we utilize
these algebraic operations to define weighted arithmetic and geometric aggregation operators.

Definition 3.1. An IVIFNS A on X is defined by

A =
{〈

x j,T
j
A, I

j
A, F

j
A

〉
: j = 1, . . . , n

}
,

where T j
A, I

j
A and F j

A are the truth, the indeterminacy, and falsity membership degrees given with IVIFVs, respectively,
for j = 1, . . . , n, i.e.,

T
j
A =
([
µL

A,T (x j), µU
A,T (x j)

]
,
[
υL

A,T (x j), υU
A,T (x j)

])
I

j
A =
([
µL

A,I(x j), µU
A,I(x j)

]
,
[
υL

A,I(x j), υU
A,I(x j)

])
F

j
A =
([
µL

A,F(x j), µU
A,F(x j)

]
,
[
υL

A,F(x j), υU
A,F(x j)

])
are IVIFVs. For simplicity, the truth T j

A is expressed by

T
j
A =
(
T t j

A , T
f j

A

)
,

I
j
A =
(
It j

A , I
f j

A

)
,

F
j
A =
(
F t j

A , F
f j

A

)
Here, T t j

A , I
t j

A , and F t j

A represent the membership intervals, while T f j

A , I
f j

A , and F f j

A represent the non-membership inter-
vals. For a given index j = 1, ..., n, the term τ j := ⟨T j

A, I
j
A, F

j
A⟩ represents an IVIFNV. When the index j is clear from

the context, we simplify the notation from τ j = ⟨T
j
A, I

j
A, F

j
A⟩ to

τ = ⟨Tτ, Iτ, Fτ⟩ .



A Novel IVIFN Framework for Income Inequality in DM 252

Example 3.2. Let X = {x1, x2}. The expression given by

A =

 ⟨x1, ([0.2, 0.3], [0.1, 0.6]) , ([0.1, 0.7], [0.2, 0.3]) , ([0.1, 0.4], [0.1, 0.5])⟩ ,

⟨x2, ([0.1, 0.8], [0.2, 0.2]) , ([0.2, 0.5], [0.1, 0.4]) , ([0.1, 0.1], [0.2, 0.9])⟩


is an IVIFNS.

To facilitate the comparison and ranking of IVIFNVs, we introduce a score function. This function transforms
the complex, interval-based information within an IVIFNV into a single numerical value, thereby simplifying the
evaluation process. The score function is designed to consider the interplay between the truth, indeterminacy, and
falsity membership degrees. The following definition formalizes this score function, outlining how it is calculated
from the interval-based membership values of an IVIFNV. Critically, a higher score value indicates a better or more
desirable IVIFNV.

Definition 3.3. Let τ = ⟨Tτ, Iτ, Fτ⟩ be an IVIFNV. A score function is defined by

S (A) =
2 + Tτ − Iτ − Fτ

3
,

where

Tτ =
2 + µL

τ,T + µ
U
τ,T − ν

L
τ,T − ν

U
τ,T

4

Iτ =
2 + µL

τ,T + µ
U
τ,T − ν

L
τ,T − ν

U
τ,T

4

Fτ =
2 + µL

τ,T + µ
U
τ,T − ν

L
τ,T − ν

U
τ,T

4
.

Now, we define some algebraic operations for IVIFNVs using IVIF t-norms and t-conorms.

Definition 3.4. Let τ = ⟨Tτ, Iτ, Fτ⟩ and ρ = ⟨Tρ, Iρ, Fρ⟩ be two IVIFNVs, let T be an IVIF t-norm, and let S be a dual
IVIF t-conorm of T . Then

τ ⊕ ρ =
〈
(S(T t

τ, T
t
ρ),T (T f

τ , T
f
ρ )), (T (It

τ, I
t
ρ),S(I f

τ , I
f
ρ )), (T (F t

τ, F
t
ρ),S(F f

τ , F
f
ρ ))
〉
,

and

τ ⊗ ρ =
〈
(T (T t

τ, T
t
ρ),S(T f

τ , T
f
ρ )), (S(It

τ, I
t
ρ),T (I f

τ , I
f
ρ )), (S(F t

τ, F
t
ρ),T (F f

τ , F
f
ρ ))
〉
.

It is demonstrated hereafter that the algebraic operations maintain the IVIFNV structure.

Proposition 3.5. Let τ and ρ be two IVIFNVs, and let T be an IVIF t-norm and S be a dual IVIF t-conorm of T . Then
τ ⊕ ρ and τ ⊗ ρ are IVIFNVs.

Proof. Since T and S are defined via functions that have range L, and τ ⊕ ρ and τ ⊗ ρ are defined via T and S , the
proof follows trivially.

□

Remark 3.6. If g is an additive generator of an Archimedean t-norm and h(t) = g(1 − t), then we obtain

τ ⊕ ρ =

〈
([

h−1
(
h
(
µL
τ,T

)
+ h
(
µL
ρ,T

))
, h−1
(
h
(
µU
τ,T

)
+ h
(
µU
ρ,T

))]
,[

g−1
(
g
(
νL
τ,T

)
+ g
(
νL
ρ,T

))
, g−1
(
g
(
νU
τ,T

)
+ g
(
νU
ρ,T

))])
,([

g−1
(
g
(
µL
τ,I

)
+ g
(
µL
ρ,I

))
, g−1
(
g
(
µU
τ,I

)
+ g
(
µU
ρ,I

))]
,[

h−1
(
h
(
νL
τ,I

)
+ h
(
νL
ρ,I

))
, h−1
(
h
(
νU
τ,I

)
+ h
(
νU
ρ,I

))])
,([

g−1
(
g
(
µL
τ,F

)
+ g
(
µL
ρ,F

))
, g−1
(
g
(
µU
τ,F

)
+ g
(
µU
ρ,F

))]
,[

h−1
(
h
(
νL
τ,F

)
+ h
(
νL
ρ,F

))
, h−1
(
h
(
νU
τ,F

)
+ h
(
νU
ρ,F

))])
〉
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and

τ ⊗ ρ =

〈
([

g−1
(
g
(
µL
τ,T

)
+ g
(
µL
ρ,T

))
, g−1
(
g
(
µU
τ,T

)
+ g
(
µU
ρ,T

))]
,[

h−1
(
h
(
νL
τ,T

)
+ h
(
νL
ρ,T

))
, h−1
(
h
(
νU
τ,T

)
+ h
(
νU
ρ,T

))])
,([

h−1
(
h
(
µL
τ,I

)
+ h
(
µL
ρ,I

))
, h−1
(
h
(
µU
τ,I

)
+ h
(
µU
ρ,I

))]
,[

g−1
(
g
(
νL
τ,I

)
+ g
(
νL
ρ,I

))
, g−1
(
g
(
νU
τ,I

)
+ g
(
νU
ρ,I

))])
,([

h−1
(
h
(
µL
τ,F

)
+ h
(
µL
ρ,F

))
, h−1
(
h
(
µU
τ,F

)
+ h
(
µU
ρ,F

))]
,[

g−1
(
g
(
νL
τ,F

)
+ g
(
νL
ρ,F

))
, g−1
(
g
(
νU
τ,F

)
+ g
(
νU
ρ,F

))])
〉
.

Now, we define multiplication by a positive constant and the positive power of IVIFNVs using additive generators
of Archimedean t-norm and t-conorm.

Definition 3.7. Let τ = ⟨Tτ, Iτ, Fτ⟩ be an IVIFNV and let λ be a positive constant. Let g : [0, 1] → [0,∞] be the
additive generator of an Archimedean t-norm and h(t) = g(1 − t). Then

λτ =

〈 ([h−1
(
λh
(
µL
τ,T

))
, h−1
(
λh
(
µU
τ,T

))]
,
[
g−1
(
λg
(
νL
τ,T

))
, g−1
(
λg
(
νU
τ,T

))])
,([

g−1
(
λg
(
µL
τ,I

))
, g−1
(
λg
(
µU
τ,I

))]
,
[
h−1
(
λh
(
νL
τ,I

))
, h−1
(
λh
(
νU
τ,I

))])
,([

g−1
(
λg
(
µL
τ,F

))
, g−1
(
λg
(
µU
τ,F

))]
,
[
h−1
(
λh
(
νL
τ,F

))
, h−1
(
λh
(
νU
τ,F

))])
〉

and

τλ =

〈 ([g−1
(
λg
(
µL
τ,T

))
, g−1
(
λg
(
µU
τ,T

))]
,
[
h−1
(
λh
(
νL
τ,T

))
, h−1
(
λh
(
νU
τ,T

))])
,([

h−1
(
λh
(
µL
τ,I

))
, h−1
(
λh
(
µU
τ,I

))]
,
[
g−1
(
λg
(
νL
τ,I

))
, g−1
(
λg
(
νU
τ,I

))])
,([

h−1
(
λh
(
µL
τ,F

))
, h−1
(
λh
(
µU
τ,F

))]
,
[
g−1
(
λg
(
νL
τ,F

))
, g−1
(
λg
(
νU
τ,F

))])
〉
.

The following theorem ensures that λτ and τλ are also IVIFNVs.

Proposition 3.8. Let g : [0, 1] → [0,∞] be the additive generator of an Archimedean t-norm and let h(t) = g(1 − t).
Then λτ and τλ are IVIFNVs.

Proof. Given h−1(t) = 1 − g−1(t) and µU
τ,T ≤ 1 − υU

τ,T , with h and h−1 increasing, it follows that

0 ≤ h−1(λh(µU
τ,T )) + g−1(λg(υU

τ,T ))

≤ h−1(λh(1 − υU
τ,T )) + g−1(λg(υU

τ,T ))

= 1 − g−1(λg(υU
τ,T )) + g−1(λg(υU

τ,T ))
= 1

which proves that Tλτ is an IVIFV. Similarly, we can prove that Iλτ, Fλτ,Tτλ , Iτλ , and Fτλ are IVIFVs. □

4. Weighted Aggregation Operators for IVIFNVs

To compress fuzzy set data, aggregation operators are vital. We proceed to define weighted arithmetic and geometric
aggregation operators for IVIFNVs, based on algebraic operations. We start with the arithmetic aggregation operators.

Definition 4.1. Let
{
τ j = ⟨Tτ j , Iτ j , Fτ j⟩ : j = 1, . . . , n

}
be a collection of IVIFNVs. A weighted arithmetic aggregation

operator WA is defined by

WA(τ1, . . . , τn) :=
n⊕

j=1

ϖ jτ j,

where ϖ = (ϖ1, . . . , ϖn) is a weight vector such that 0 ≤ ϖ j ≤ 1 for any j = 1, . . . , n, and the sum of all elements
equaling 1.

The WA is formulated as follows.
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Theorem 4.2. Let
{
τ j = ⟨Tτ j , Iτ j , Fτ j⟩ : j = 1, . . . , n

}
be a collection of IVIFNVs and g be the additive generator of an

Archimedean t-norm and h(t) = g(1 − t). Then WA(τ1, . . . , τn) is an IVIFNV and we have

WA(τ1, . . . , τn) =
〈
([

h−1
(∑n

j=1 ϖ jh(µl
τ j,T

)
)
, h−1
(∑n

j=1 ϖ jh(µu
τ j,T

)
)]
,[

g−1
(∑n

j=1 ϖ jg(νl
τ j,T

)
)
, g−1
(∑n

j=1 ϖ jg(νu
τ j,T

)
)])
,([

g−1
(∑n

j=1 ϖ jg(µl
τ j,I

)
)
, g−1
(∑n

j=1 ϖ jg(µu
τ j,I

)
)]
,[

h−1
(∑n

j=1 ϖ jh(νl
τ j,I

)
)
, h−1
(∑n

j=1 ϖ jh(νu
τ j,I

)
)])
,([

g−1
(∑n

j=1 ϖ jg(µl
τ j,F

)
)
, g−1
(∑n

j=1 ϖ jg(µu
τ j,F

)
)]
,[

h−1
(∑n

j=1 ϖ jh(νl
τ j,F

)
)
, h−1
(∑n

j=1 ϖ jh(νu
τ j,F

)
)])
,

〉
. (4.1)

Proof. Propositions 3.5 and 3.8 establish that WA(τ1, . . . , τn) is an IVIFNV. Additionally, Equality 4.1 can be demon-
strated using the method from Theorem 4 in [49].

□

Remark 4.3. Consider the additive generator defined by g(t) = − log t. Then we obtain the Algebraic weighted
arithmetic aggregation operator given by

WAA(τ1, . . . , τn) =
〈 ([1 −∏n

j=1(1 − µL
τ j,T

)ϖ j ,1 −
∏n

j=1(1 − µU
τ j,T

)ϖ j
]
,
[∏n

j=1(υL
τ j,T

)ϖ j ,
∏n

j=1(υU
τ j,T

)ϖ j
])
,([∏n

j=1(µL
τ j,I

)ϖ j ,
∏n

j=1(µU
τ j,I

)ϖ j
]
,
[
1 −
∏n

j=1(1 − υL
τ j,I

)ϖ j ,1 −
∏n

j=1(1 − υU
τ j,I

)ϖ j
])
,([∏n

j=1(µL
τ j,F

)ϖ j ,
∏n

j=1(µU
τ j,F

)ϖ j
]
,
[
1 −
∏n

j=1(1 − υL
τ j,F

)ϖ j ,1 −
∏n

j=1(1 − υU
τ j,F

)ϖ j
])
〉
.

We proceed with the geometric aggregation operators.

Definition 4.4. Let {τ j = ⟨Tτ j , Iτ j , Fτ j⟩ : j = 1, . . . , n} be a collection of IVIFNVs. A weighted geometric aggregation
operator WG is defined by

WG(τ1, . . . , τn) :=
n⊗

j=1

τ
ϖ j

j ,

where ϖ = (ϖ1, . . . , ϖn) is a weight vector whose components lie within [0, 1], and sum to 1.

We now provide a formula for the WG.

Theorem 4.5. Let {τ j = ⟨Tτ j , Iτ j , Fτ j⟩ : j = 1, . . . , n} be a collection of IVIFNVs, g be an additive generator of an
Archimedean t-norm and h(t) = g(1 − t). Then, WG(τ1, . . . , τn) is an IVIFNV, and we have

WG(τ1, . . . , τn) =
〈
([

g−1
(∑n

j=1 ϖ jg(µl
τ j,T

)
)
, g−1
(∑n

j=1 ϖ jg(µu
τ j,T

)
)]
,[

h−1
(∑n

j=1 ϖ jh(νl
τ j,T

)
)
, h−1
(∑n

j=1 ϖ jh(νu
τ j,T

)
)])
,([

h−1
(∑n

j=1 ϖ jh(µl
τ j,I

)
)
, h−1
(∑n

j=1 ϖ jh(µu
τ j,I

)
)]
,[

g−1
(∑n

j=1 ϖ jg(νl
τ j,I

)
)
, g−1
(∑n

j=1 ϖ jg(νu
τ j,I

)
)])
,([

h−1
(∑n

j=1 ϖ jh(µl
τ j,F

)
)
, h−1
(∑n

j=1 ϖ jh(µu
τ j,F

)
)]
,[

g−1
(∑n

j=1 ϖ jg(νl
τ j,F

)
)
, g−1
(∑n

j=1 ϖ jg(νu
τ j,F

)
)])

〉
. (4.2)

Remark 4.6. Consider the additive generator defined by g = − log(t). Then we obtain the Algebraic weighted geo-
metric aggregation operator given by

WGA(τ1, . . . , τn) =
〈 ([∏n

j=1(µl
τ j,T

)ϖ j ,
∏n

j=1(µu
τ j,T

)ϖ j
]
,
[
1 −
∏n

j=1(1 − νl
τ j,T

)ϖ j , 1 −
∏n

j=1(1 − νu
τ j,T

)ϖ j
])
,([

1 −
∏n

j=1(1 − µl
τ j,I

)ϖ j , 1 −
∏n

j=1(1 − µu
τ j,I

)ϖ j
]
,
[∏n

j=1(νl
τ j,I

)ϖ j ,
∏n

j=1(νu
τ j,I

)ϖ j
])
,([

1 −
∏n

j=1(1 − µl
τ j,F

)ϖ j , 1 −
∏n

j=1(1 − µu
τ j,F

)ϖ j
]
,
[∏n

j=1(νl
τ j,F

)ϖ j ,
∏n

j=1(νu
τ j,F

)ϖ j
])
〉
.

5. An Application of IVIFNVs to anMCDM Problem

In this section, we implement an MCDM process within the proposed fuzzy environment using the WASPAS
method. Specifically, we apply this extended WASPAS methodology to an MCDM problem focused on evaluating
income equality among selected OECD countries.
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5.1. An Extended WASPAS Methodology. The proposed steps of the extended WASPAS approach are outlined and
summarized below.

• Step 1: Formulate a MCDM problem, where there are m alternatives denoted as A = {A1, . . . , Am} and n
criteria denoted as C = {C1, . . . ,Cn}.
• Step 2: A decision matrix D is constructed using the non-zero numerical data, showing the performance of

different alternatives under various criteria

D =


x11 . . . x1n
...

. . .
...

xm1 . . . xmn

 .
• Step 3: The decision matrix is normalized to make the criteria comparable. The normalization method depends

on whether a criterion is a benefit criterion or a cost criterion. If C j is a benefit criteria, then the normalization
formula is given with

x̃i j =
xi j

max
i

xi j
, i = 1, . . . ,m,

and if C j is cost criteria, then the normalization formula is given by

x̃i j =

min
i

xi j

xi j
, i = 1, . . . ,m.

• Step 4: To establish a comparative scale, the range for each alternative across all criteria is calculated by
subtracting the minimum from the maximum value. This range is subsequently segmented into seven levels
using percentiles, with each level assigned a rating from r1 (weakest) to r7 (strongest) according to Table 2.
Based on these levels, IVIFNVs are assigned to each alternative for each criterion. This method is consistent
with techniques found in Fei et al. [18], Aydoğan and Ünver [6], Bozyiğit et al.[11] and Ünver [48].

Table 2. Linguistic terms and corresponding IVIFNS values

Linguistic term IVIFNVs
Absolutely weak (AW) ⟨([0.01, 0.02] , [0.90, 0.95]) , ([0.01, 0.02] , [0.90, 0.95]) , ([0.90, 0.95] , [0.01, 0.02])⟩

Very weak (VW) ⟨([0.10, 0.15] , [0.75, 0.85]) , ([0.10, 0.15] , [0.75, 0.85]) , ([0.75, 0.85] , [0.10, 0.15])⟩
Fairly weak (FW) ⟨([0.20, 0.25] , [0.55, 0.75]) , ([0.20, 0.25] , [0.55, 0.75]) , ([0.55, 0.75] , [0.20, 0.25])⟩
Exactly equal (EE) ⟨([0.45, 0.55] , [0.40, 0.45]) , ([0.45, 0.55] , [0.40, 0.45]) , ([0.45, 0.55] , [0.40, 0.45])⟩
Fairly strong (FS) ⟨([0.55, 0.75] , [0.20, 0.25]) , ([0.20, 0.25] , [0.55, 0.75]) , ([0.20, 0.25] , [0.55, 0.75])⟩
Very strong (VS) ⟨([0.75, 0.85] , [0.10, 0.15]) , ([0.10, 0.15] , [0.75, 0.85]) , ([0.10, 0.15] , [0.75, 0.85])⟩

Absolutely strong (AS) ⟨([0.90, 0.95] , [0.01, 0.02]) , ([0.01, 0.02] , [0.90, 0.95]) , ([0.01, 0.02] , [0.90, 0.95])⟩

• Step 5: A weight vector is constructed based on expert opinions. Then, the total relative importance of
alternative Ai is calculated separately using WSM and WPM. According to WSM, the total relative importance
of an alternative is determined as the weighted sum of criterion values, while in WPM, it is computed as the
product of the performance values of the alternative for each criterion raised to the power of the corresponding
criterion weight. The total relative importance of alternative i according to WSM is calculated by

Q(1)
i =

n⊕
j=1

ϖ j x̃i j,

and the total relative importance of alternative Ai according to WPM is calculated by

Q(2)
i =

n⊗
j=1

(x̃i j)ϖ j .

• Step 6: The overall fuzzy relative importance of alternatives is calculated by

Qi = λQ(1)
i ⊕ (1 − λ)Q(2)

i .

• Step 7: To rank the alternatives, the overall relative importance values Qi are defuzzified via the score function
S defined in Definition 3.3. In this ranking, higher score values signify superior alternatives.
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5.2. Application on Income Equality. Income equity, which varies significantly between countries, is typically eval-
uated using income distribution inequalities. This study aims to assess income equity within selected OECD countries.
This evaluation, involving multiple criteria and alternatives, utilizes an MCDM framework, specifically the proposed
extended WASPAS method.

• Step 1: 25 OECD countries are examined to assess income equity. Four criteria are determined to measure
income distribution fairness: the Gini coefficient (C1), the Palma ratio (C2), the P90/P10 ratio (C3) and the
P90/P50 ratio (C4). The OECD database is used for the criteria and data from the year 2022 are considered in
the analysis [37].
• Step 2: As shown in Table 3, the decision-making matrix is constructed based on the alternatives and criteria

according to the real data.

Table 3. Decision matrix

Countries C1 C2 C3 C4 Countries C1 C2 C3 C4

Austria 0.29 1.03 3.40 1.70 Luxembourg 0.30 1.08 3.70 1.90
Belgium 0.25 0.86 2.90 1.60 Mexico 0.40 1.86 5.80 2.40
Chile 0.45 2.40 7.30 2.90 Netherlands 0.29 1.05 3.20 1.80
Costa Rica 0.47 2.74 9.80 3.30 New Zealand 0.33 1.26 4.30 2.00
Czechia 0.25 0.85 3.10 1.70 Norway 0.26 0.90 3.10 1.70
Estonia 0.32 1.20 4.80 2.00 Poland 0.27 0.93 3.50 1.80
Finland 0.27 0.98 3.20 1.80 Slovak Republic 0.23 0.72 3.10 1.60
France 0.30 1.11 3.40 1.80 Slovenia 0.24 0.82 3.10 1.70
Hungary 0.29 1.06 3.60 1.80 Spain 0.32 1.17 4.50 2.00
Ireland 0.29 1.04 3.40 1.80 Sweden 0.29 1.07 3.30 1.70
Israel 0.34 1.33 5.52 2.07 United Kingdom 0.37 1.55 4.40 2.10
Korea 0.32 1.22 4.90 2.00 United States 0.40 1.82 6.30 2.30
Latvia 0.34 1.34 5.30 2.10

• Step 3: In this problem, all criteria represent cost criteria. Therefore, normalization is performed according to
the minimization criterion, and the normalized decision matrix is presented in Table 4.

Table 4. Normalized decision matrix

Countries C1 C2 C3 C4 Countries C1 C2 C3 C4

Austria 0.795 0.699 0.853 0.941 Luxembourg 0.765 0.667 0.784 0.842
Belgium 0.906 0.837 1.000 1.000 Mexico 0.566 0.387 0.500 0.667
Chile 0.505 0.300 0.397 0.552 Netherlands 0.786 0.686 0.906 0.889
Costa Rica 0.480 0.263 0.296 0.485 New Zealand 0.695 0.571 0.674 0.800
Czechia 0.909 0.847 0.935 0.941 Norway 0.864 0.800 0.935 0.941
Estonia 0.705 0.600 0.604 0.800 Poland 0.838 0.774 0.829 0.889
Finland 0.826 0.735 0.906 0.889 Slovak Republic 1.000 1.000 0.935 1.000
France 0.762 0.649 0.853 0.889 Slovenia 0.930 0.878 0.935 0.941
Hungary 0.770 0.679 0.806 0.889 Spain 0.717 0.615 0.644 0.800
Ireland 0.795 0.692 0.853 0.889 Sweden 0.781 0.673 0.879 0.941
Israel 0.657 0.541 0.525 0.774 United Kingdom 0.620 0.465 0.659 0.762
Korea 0.699 0.590 0.592 0.800 United States 0.572 0.396 0.460 0.696
Latvia 0.666 0.537 0.547 0.762

• Step 4: The rk values for each criterion is calculated, and the alternatives are given based on the linguistic
terms presented in Table 5.
• Step 5: The weight vector is determined as ϖ = (0.35, 0.25, 0.20, 0.20) based on expert opinions. The WAA

and WGA-operators are used to aggregate the relative importance Q(1)
i and Q(2)

i of alternatives. Then, the
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Table 5. Normalized fuzzy decision matrix with linguistic terms

Countries C1 C2 C3 C4 Countries C1 C2 C3 C4

Austria FS EE VS AS Luxembourg EE FW FS FS
Belgium VS VS AS AS Mexico VW VW FW FW
Chile AW AW VW AW Netherlands FS EE AS VS
Costa Rica AW AW AW AW New Zealand FW FW EE FS
Czechia VS VS AS AS Norway VS VS AS AS
Estonia EE FW EE FS Poland FS EE VS VS
Finland FS EE AS VS Slovak Republic AS AS AS AS
France EE FW VS VS Slovenia AS VS AS AS
Hungary EE FW VS VS Spain EE FW EE FS
Ireland FS EE VS VS Sweden FS FW VS AS
Israel FW FW FW EE United Kingdom VW VW EE EE
Korea FW FW FW FS United States VW VW VW FW
Latvia FW FW FW EE

overall relative importance Qi of the alternatives is calculated for λ = 0.5, and the results are presented in
Table 6.

Table 6. Overall fuzzy relative importance of alternatives

Countries µL
T,i µU

T,i υL
T,i υU

T,i µL
I,i µU

I,i υL
I,i υU

I,i µL
F,i µU

F,i υL
F,i υU

F,i
Austria 0.6534 0.7806 0.1525 0.1983 0.1611 0.2178 0.6416 0.7595 0.1611 0.2178 0.6416 0.7595
Belgium 0.8170 0.8963 0.0509 0.0819 0.0509 0.0819 0.8170 0.8963 0.0509 0.0819 0.8170 0.8963
Chile 0.0223 0.0388 0.8738 0.9334 0.0306 0.0377 0.8740 0.9335 0.8738 0.9334 0.0223 0.0388
Costa Rica 0.0100 0.0200 0.9000 0.9500 0.0100 0.0200 0.9000 0.9500 0.9000 0.9500 0.0100 0.0200
Czechia 0.8170 0.8963 0.0509 0.0819 0.0509 0.0819 0.8170 0.8963 0.0509 0.0819 0.8170 0.8963
Estonia 0.5349 0.6698 0.2310 0.3013 0.2167 0.3036 0.5610 0.6906 0.2423 0.3235 0.5208 0.6454
Finland 0.5971 0.7423 0.2058 0.2553 0.2174 0.2804 0.5834 0.7174 0.2174 0.2804 0.5834 0.7174
France 0.5080 0.6096 0.2923 0.3904 0.2307 0.3705 0.5825 0.6976 0.3068 0.4199 0.4923 0.5801
Hungary 0.5080 0.6096 0.2923 0.3904 0.2307 0.3705 0.5825 0.6976 0.3068 0.4199 0.4923 0.5801
Ireland 0.6094 0.7474 0.1990 0.2526 0.2095 0.2756 0.5969 0.7244 0.2095 0.2756 0.5969 0.7244
Israel 0.2466 0.3079 0.5197 0.6921 0.2462 0.5500 0.5197 0.6926 0.5300 0.7118 0.2373 0.2882
Korea 0.2662 0.3561 0.4716 0.6439 0.2000 0.4854 0.5500 0.7500 0.4716 0.6439 0.2662 0.3561
Latvia 0.2466 0.3079 0.5197 0.6921 0.2462 0.5500 0.5197 0.6926 0.5300 0.7118 0.2373 0.2882
Luxembourg 0.4208 0.5555 0.3502 0.4445 0.2815 0.4240 0.4972 0.6496 0.3663 0.4764 0.4041 0.5236
Mexico 0.1367 0.1878 0.6730 0.8122 0.2000 0.2932 0.6733 0.8123 0.6730 0.8122 0.1367 0.1878
Netherlands 0.6534 0.7806 0.1525 0.1983 0.1611 0.2178 0.6416 0.7595 0.1611 0.2178 0.6416 0.7595
New Zealand 0.3137 0.4123 0.4428 0.5877 0.2462 0.4854 0.5197 0.6926 0.4525 0.6063 0.3044 0.3937
Norway 0.8170 0.8963 0.0509 0.0819 0.0509 0.0819 0.8170 0.8963 0.0509 0.0819 0.8170 0.8963
Poland 0.6094 0.7474 0.1990 0.2526 0.2095 0.2756 0.5969 0.7244 0.2095 0.2756 0.5969 0.7244
Slovak Republic 0.9000 0.9500 0.0100 0.0200 0.0100 0.0200 0.9000 0.9500 0.0100 0.0200 0.9000 0.9500
Slovenia 0.8673 0.9293 0.0243 0.0424 0.0243 0.0424 0.8673 0.9293 0.0243 0.0424 0.8673 0.9293
Spain 0.4014 0.5140 0.3925 0.4860 0.3302 0.4854 0.4673 0.5910 0.4189 0.5378 0.3751 0.4622
Sweden 0.5871 0.7112 0.1789 0.2622 0.1179 0.2178 0.6761 0.8220 0.1789 0.2622 0.5871 0.7112
United Kingdom 0.2227 0.2980 0.6134 0.7020 0.2935 0.2932 0.6155 0.7068 0.6339 0.7402 0.2050 0.2598
United States 0.1179 0.1686 0.7118 0.8314 0.2000 0.2212 0.7119 0.8314 0.7118 0.8314 0.1179 0.1686

• Step 6: The scores of Qi are calculated, and the final ranking of alternatives is determined based on the
descending order of Qi values. As the value of the score function decreases, income inequality increases. The
results are shown in Figure 5.
Based on the score values, the five countries with the highest income equality are ranked as

Slovak Republic ≻ Slovenia ≻ Belgium ≈ Czechia ≈ Norway.
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Figure 5. Scores of each country based on the extended WASPAS analysis

Conversely, the five countries with the highest income inequality are

Costa Rica ≺ Chile ≺ United States ≺ Mexico ≺ United Kingdom.

6. Comparative Analysis

In this section, a comparative analysis is performed. The results are compared with those obtained using the Com-
plex Proportional Assessment (COPRAS) [63], Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS) [24], and Simple Additive Weighting (SAW) [22] methods. During the implementation of the methods,
individual scores are calculated for each criterion; the resulting values are used to construct the decision matrix, which
served as the basis for subsequent analyses.

Figure 6 presents the performance scores of various alternatives evaluated using four different MCDM methods:
WASPAS, COPRAS, TOPSIS, and SAW. The results highlight a general agreement among methods, particularly in
the ranking of the top-performing alternatives. The Slovak Republic consistently achieves the highest score across all
methods (WASPAS: 0.955, COPRAS: 1.000, TOPSIS: 1.000, SAW: 1.000), indicating its strong overall performance
regardless of the evaluation technique used. Similarly, Slovenia, Belgium, Czechia, and Norway rank among the
top alternatives, with relatively high scores across all four methods. However, notable differences arise in the mid
and lower rankings. For instance, Austria and the Netherlands obtain similar scores in WASPAS (0.761), while their
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COPRAS scores differ (0.861 and 0.744, respectively). A more pronounced discrepancy is observed in Estonia, where
its WASPAS score (0.669) is significantly higher than its COPRAS (0.544) and TOPSIS (0.447) scores, highlighting
the variation in how methods handle decision criteria and weighting.At the lower end of the rankings, Costa Rica is
consistently ranked the lowest in all methods. Similarly, Chile, Mexico, and the United States receive low scores across
all methods, though their rankings vary slightly.

Figure 6. Country scores according to different applied methods

Figure 7 presents the ranking results of countries in terms of income equality according to the WASPAS, COPRAS,
TOPSIS, and SAW methods.

7. Conclusion

Income inequality is a significant economic and social issue that arises from income disparities among individuals or
households, leading to inequalities within society. This inequality directly impacts economic growth, social cohesion,
and equal opportunities, resulting in variations in overall welfare levels. Various methods have been developed to
measure income inequality. This study introduces IVIFNSs and presents their theoretical framework. IVIFNSs can
be effectively used in the analysis of data containing uncertainty and vagueness. In this study, the income justice
performance of countries is addressed as a MCDM problem within the IVIFNS environment. Income justice criteria
and their corresponding weights are determined through expert opinions. The WASPAS method, a combination of the
WSM and WPM, is used to solve the problem. The performance of the evaluated countries regarding income justice
is ranked. In future research, performance evaluations of countries in various areas, such as economic growth, the
effectiveness of education systems, healthcare systems, and integration into technology and digitalization, could be
considered. Comparisons in these areas will allow for a more comprehensive analysis of the development levels of
countries. Moreover, studies conducted in different fuzzy environments can address uncertainty and complexity more
accurately, enabling more precise analyses. This approach can provide new perspectives and deepen cross-domain
comparisons, leading to more reliable results.
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Figure 7. Ranking results of countries in terms of income equality according to the applied methods
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