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Abstract 

Fixed-wing unmanned aerial vehicles (UAVs) have gained widespread use in both civilian and 

military applications due to their low cost, long endurance, and high operational efficiency. 

However, ensuring precise attitude control under physical constraints such as input saturation 

remains a significant challenge. This study addresses the attitude control problem of fixed-wing 

UAVs under input constraints. The system model is divided into two subsystems, and a high-gain 

backstepping controller is designed. A neural network term is incorporated into the control 

method to overcome the effects of the residual control signal. The performance of the proposed 

control scheme is demonstrated through numerical simulations, showing that the method operates 

efficiently even in the presence of noise in the state variables.  
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1. INTRODUCTION 

 

Fixed-wing unmanned aerial vehicles (UAVs) have become indispensable tools in both military and civilian 

domains today. This is because they offer low production and maintenance costs, high endurance, long 

flight hours, and high speeds. Thanks to these features, they are employed for various purposes such as 

surveillance, mapping, target tracking, and military applications. These vehicles are expected to operate 

under all weather conditions and across a wide range of altitudes. At this point, the precision attitude control 

of UAVs becomes a critical concern. The literature includes numerous studies on the control of fixed-wing 

UAVs, and some of these studies are summarized below. 

 

Kimathi and Lantos presented a cascade control architecture which uses nonlinear inversion and PI 

controller for tracking of attitude angles [1]. Melkou et al. used super-twisting sliding mode controller for 

altitude control of fixed-wing UAV [2]. Bao et al. utilized adaptive sliding mode control in a backstepping 

design for attitude and altitude control [3]. In [4], Bohn et al. proposed a deep reinforcement learning 

controller for attitude control of fixed-wing UAV. Chen et al. handled the attitude tracking control problem 

for the cruise mode of an UAV in the presence of parameter uncertainties, unmodeled uncertainties and 

wind disturbances. They first designed a fixed-time observer to estimate the lumped disturbance then 

utilized sliding mode method for attitude control [5]. Poksawat et al. developed an automatic tuning 

algorithm for PID control of a fixed-wing UAV [6]. SaiCharanSagar et al. presented a backstepping 

algorithm combined with a inertial delay controller to handle time varying uncertainties and disturbances 

[7]. Ulus and Eski investigated the performances of the controller methods such as classical PID, artificial 

neuro-fuzzy inference system, fuzzy logic, combined ANFIS-PID, and PD-Fuzzy-PI for the control of 

fixed-wing UAV [8]. 
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The attitude of a UAV is controlled using control surfaces such as the aileron, elevator, and rudder. The 

deflections of these control surfaces are limited by their physical constraints, commonly referred to as input 

saturation. Input saturation can negatively affect system behavior and may even lead to instability. In the 

literature, several studies address input saturation in the control of fixed-wing UAVs. Zhao et al. considered 

the spatio-temporal trajectory tracking problem and proposed an exponential predefined-time controller to 

ensure that the fixed-wing UAV, under saturated input conditions, tracks the desired trajectory within a 

finite time [9]. Yu et al. developed a finite-time fault-tolerant control approach for fixed-wing UAVs, 

addressing actuator failures and input saturation to ensure attitude tracking [10]. Li et al. developed an 

adaptive fault-tolerant attitude tracking controller based on reinforcement learning for flying-wing UHV 

subjected to actuator faults and saturation [11]. Oh et al. presented a framework to guarantee the stability 

for a class of second-order nonlinear systems under multiple state and input constraints and applied the 

method to a fixed-wing UAV [12]. Wu et al. developed an adaptive sliding mode fault-tolerant control 

strategy, incorporating an adaptive auxiliary controller to handle input saturation and ensure fault-tolerant 

path-following performance [13]. 

 

This study focuses on the attitude control of UAVs under input constraints. The aim of the study is to 

present a control scheme that ensures the stability of tracking performance despite saturated inputs. A high-

gain control method was designed for attitude control. Subsequently, a neural network term was 

incorporated into the control scheme to address the residual part of the control signal. The proposed scheme 

is inspired by the study in [14] and is implemented within a backstepping scheme. Unlike existing 

approaches in the literature on fixed-wing UAVs, it offers a framework that facilitates the application of 

various control methodologies. The neural network term is employed to ensure the boundedness of the error 

system, irrespective of the selected control method. The stability analysis was performed using a Lyapunov-

based method, ensuring the ultimate boundedness of error signals. The effectiveness of the proposed control 

scheme was tested through numerical simulations. Simulation studies demonstrated the success of the 

method even in the presence of noise. 

 

The rest of the paper is organized as follows: In section 2, the system model is presented. Control design 

and stability analysis are given in section 2 and 4, respectively. Finally, concluding remarks are presented 

in section 6.  

 

2. SYSTEM MODEL 

 

The rotational dynamics for the fixed-wing UAV can be represented by the equations below [15]:  

 Ω̇ = 𝑅𝜔, (1) 

 𝜔̇ = 𝐹(𝜔) + Ψ𝛿 (2) 

where Ω = [𝜙, 𝜃, 𝜓]𝑇 is the attitude angle vector, 𝜔 = [𝑝, 𝑞, 𝑟]𝑇 is the angular rate vector, 𝛿 = [𝛿𝑎 , 𝛿𝑒 , 𝛿𝑟]
𝑇 

is control input vector, and 𝐹(𝜔) = [𝐹1, 𝐹2, 𝐹3]
𝑇 defining as  

 

 𝐹1 = Γ1𝑝𝑞 − Γ2𝑞𝑟 +
1

2
𝜌𝑉𝑎

2𝑆𝑏 [𝐶𝑝𝑜
+ 𝐶𝑝𝛽

𝛽 + 𝐶𝑝𝑝

𝑏𝑝

2𝑉𝑎
+ 𝐶𝑝𝑟

𝑏𝑟

2𝑉𝑎
], (3) 

 𝐹2 = Γ5𝑝𝑟 − Γ6(𝑝
2 − 𝑟2) +

𝜌𝑉𝑎
2𝑆𝐶

2𝐼𝑦
[𝐶𝑚𝑜

+ 𝐶𝑚𝛼
𝛼 + 𝐶𝑚𝑞

𝐶𝑞

2𝑉𝑎
], (4) 

 𝐹3 = Γ7𝑝𝑞 − Γ1𝑞𝑟 +
1

2
𝜌𝑉𝑎

2𝑆𝑏 [𝐶𝑟𝑜 + 𝐶𝑟𝛽
𝛽 + 𝐶𝑟𝑝

𝑏𝑝

2𝑉𝑎
+ 𝐶𝑟𝑟

𝑏𝑟

2𝑉𝑎
] (5) 

where Γ1 = (𝐼𝑥𝑧(𝐼𝑥 − 𝐼𝑦 + 𝐼𝑧))/Γ, Γ2 = (𝐼𝑧(𝐼𝑧 − 𝐼𝑦) + 𝐼𝑥𝑧
2 )/Γ, Γ3 = (𝐼𝑧)/Γ, Γ4 = (𝐼𝑥𝑧)/Γ, Γ5 = (𝐼𝑧 −

𝐼𝑥)/𝐼𝑦, Γ6 = (𝐼𝑥𝑧)/𝐼𝑦, Γ7 = ((𝐼𝑥 − 𝐼𝑦)𝐼𝑥 + 𝐼𝑥𝑧
2 )/Γ, Γ8 = 𝐼𝑥/Γ and Γ = 𝐼𝑥𝐼𝑧 − 𝐼𝑥𝑧

2 . 

The matrix Ψ is given as  
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 Ψ =

[
 
 
 
 
1

2
𝜌𝑉𝑎

2𝑆𝑏𝐶𝑝𝛿𝑎
0

1

2
𝜌𝑉𝑎

2𝑆𝑏𝐶𝑝𝛿𝑟

0
𝜌𝑉𝑎

2𝑆𝐶

2𝐼𝑦
𝐶𝑚𝛿𝑒

0

1

2
𝜌𝑉𝑎

2𝑆𝑏𝐶𝑟𝛿𝑎
0

1

2
𝜌𝑉𝑎

2𝑆𝑏𝐶𝑟𝛿𝑟 ]
 
 
 
 

 (6) 

and the transition matrix 𝑅 is  

 𝑅 = [

1 sin(𝜙)tan(𝜃) cos(𝜙)tan(𝜃)
0 cos(𝜙) −sin(𝜙)
0 sin(𝜙)/cos(𝜃) cos(𝜙)/cos(𝜃)

]. (7) 

The parameters are defined in Table 1. For more detailed definitions, the reader is referred to [15].  

 

Table  1. Definitions of parameters 

  Parameter Definition 

 𝜙, 𝜃,Ψ roll, pitch and yaw angles 

 𝑝, 𝑞, 𝑟 roll, pitch, yaw angular rates 

 𝛼, 𝛽 angle of attack and side-slip angles 

 𝛿𝑎 , 𝛿𝑒, 𝛿𝑟 aileron, elevator and rudder deflections 

 𝑉𝑎 airspeed of UAV 

 𝜌 density of air 

 𝑏, 𝑆, 𝐶 wing span, wing area, average cord length 

 𝐽𝑎𝑏 initial moments about a and b axes 

 𝐶∗ aerodynamic coefficients 

 𝐼𝑥,𝑦,𝑧 Moment of inertia about x, y, z axes 

 𝐼𝑥𝑧 Product moment of inertia 

    

3. CONTROL DESIGN 

 

The control objective is to ensure the Ω tracks the desired trajectory Ω𝑑, while keeping system states 

bounded, under input constraints. 

 

Prior to the control design process, the system model in (2) is reformulated as:  

 𝜔̇ = 𝐹(𝜔) + Ψ𝛿𝑠 (8) 

where 𝛿𝑠 represents the saturated control input, expressed as:  
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 𝛿𝑠𝑖 = {

𝛿𝑚𝑖𝑛, 𝛿𝑖 ≤ 𝛿𝑚𝑖𝑛

𝛿, 𝛿𝑚𝑖𝑛 ≤ 𝛿𝑖 ≤ 𝛿𝑚𝑎𝑥,
𝛿𝑚𝑎𝑥 , 𝛿𝑖 ≥ 𝛿𝑚𝑎𝑥

 (9) 

with 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 denoting the lower and upper bounds of the control input, respectively, 𝛿𝑠𝑖 and 𝛿𝑖 

denoting the 𝑖th element of 𝛿𝑠 and 𝛿, respectively. The saturated signal can also be expressed as:  

 𝛿𝑠 ≜ 𝛿 + 𝛽 (10) 

where 𝛽 accounts for the residual portion of the control input. This residual can be modeled using a neural 

network structure as:  

 𝛽 = 𝑊𝑇𝜎(𝑋) + 𝜀 (11) 

where 𝑊 ∈ ℝ12×3 is the constant weight matrix, 𝜎(⋅):ℝ12 → ℝ12 is the activation function, 𝜀(𝑡) ∈ ℝ3 is 

the functional approximation error, and 𝑋(𝑡) ∈ ℝ12 is a vector consisting of state variables related to the 

control input. 

The following assumptions are made throughout the control design process:  

Assumption 1 The system states Ω and ω are fully available.  

Assumption 2 The reference trajectory Ωd and its derivatives up to the second order are bounded.  

The control design process starts by defining the objective error 𝑒(𝑡) ∈ ℝ3 and the system error 𝑧(𝑡) ∈ ℝ3 

as follows 

 𝑒 ≜ Ω − Ω𝑑 , (12) 

 𝑧 ≜ 𝜔 − 𝜔𝑑 (13) 

where 𝜔𝑑(𝑡) represents the desired angular velocity and serves as the virtual control input for the 

backstepping approach. By differentiating (12) with respect to time,  

 𝑒̇ = 𝑅𝜔𝑑 + 𝑅𝑧 − Ω̇𝑑 (14) 

is obtained, where (1) and (13) are used. 

The virtual control input 𝜔𝑑 is designed as:  

 𝜔𝑑 = 𝑅−1(−𝑘𝑒𝑒 + Ω̇𝑑) (15) 

where 𝑘𝑒 ∈ ℝ3×3 is a positive definite diagonal gain matrix. Substituting (15) into (14) results in:  

 𝑒̇ = −𝑘𝑒𝑒 + 𝑅𝑧. (16) 

Next, the time derivative of (13) is computed, and by using (8) and (10), the following expression is 

obtained:  

𝑧̇ = 𝜔̇ − 𝜔̇𝑑 

                                                                              = 𝐹 + Ψ𝛿 + Ψ𝛽 − 𝜔̇𝑑 . (17) 

 Substituting (11) into (17) yields:  

 𝑧̇ = 𝑁 + Ψ𝛿 + Ψ𝑊𝑇𝜎 (18) 

 where 𝑁(𝑡) ∈ ℝ3 contains the uncertain terms and is defined as:  

 𝑁 ≜ −𝜔̇𝑑 + 𝐹 + Ψ𝜀, (19) 

 which can be upper-bounded by considering (14) and the time derivative of (15), as follows:  

 ∥ 𝑁 ∥≤ 𝜂𝑒 ∥ 𝑒 ∥ +𝜂𝑧 ∥ 𝑧 ∥ +𝜇𝑛 (20) 

 where 𝜂𝑒 , 𝜂𝑧 ∈ ℝ+ are constants, and 𝜇𝑛 ∈ ℝ+ represents the bound for the remaining terms. 
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The control law is designed as follows:  

                                               𝛿 = 𝜓−1(−𝑘𝑧𝑧 − 𝑅𝑇𝑒 − 𝛿𝑔) − 𝛽̂ (21) 

where 𝑘𝑧 ∈ ℝ3×3 represents a positive definite, diagonal constant matrix, 𝛿𝑔(𝑡) ∈ ℝ3 is the component of 

the control signal used to compensate the uncertain term 𝑁, and is defined as:  

                                                 𝛿𝑔 = 𝑘𝑔𝑡𝑎𝑛ℎ(𝑧) (22) 

where 𝑘𝑔 ∈ ℝ is a positive constant, and 𝑡𝑎𝑛ℎ(⋅): ℝ3 → ℝ3 is the hyperbolic tangent function that ensures 

bounded outputs. Additionally, 𝛽̂(𝑡) ∈ ℝ3 denotes the neural network-based compensation term, defined 

as:  

 𝛽̂ = 𝑊̂𝑇𝜎(𝑋) (23) 

where 𝑋 is represented as:  

 𝑋 = [𝜔𝑑 , Ω𝑑 , 𝑒, 𝑧]𝑇 . (24) 

In Equation (23), 𝑊̂(𝑡) ∈ ℝ12×3 is the estimated weight matrix, updated by the following dynamics:  

 𝑊̇̂ = Γ𝑤Ψ𝜎𝑧𝑇 − 𝑘𝑤‖𝑧‖Γ𝑤𝑊̂ (25) 

where Γ𝑤 ∈ ℝ12×12 is a positive definite diagonal matrix, 𝑘𝑤 ∈ ℝ is a positive constant gain, and ∥⋅∥ 

represents the Euclidean norm. 

Assumption 3 The ideal neural network weight matrix satisfies the inequality ∥ W ∥i∞≤ w̅, where w̅ ∈ ℝ+ 

is a predefined constant and ∥⋅∥i∞ represents the induced infinity norm of a matrix. To guarantee the 

boundedness of the estimated weight matrix, a projection algorithm can be applied to the right-hand side 

of (25). As a result, the weight matrix estimation error, defined as W̃(t) ≜ W − Ŵ ∈ ℝ12×3, remains 

bounded, ensuring that ∥ W̃ ∥i∞≤ w̅̃, where w̅̃ ∈ ℝ+ is a known constant. 

By substituting (21), (22) and (23), (18) can be rewritten as  

 𝑧̇ = 𝑁 − 𝑘𝑔𝑡𝑎𝑛ℎ(𝑧) − 𝑘𝑧𝑧 − 𝑅𝑇𝑒 + Ψ𝑊̃𝜎. (26) 

For a better understanding, the block diagram of the entire closed-loop control system is depicted in Figure 

1. 

 

 

Figure  1. The block diagram of the closed loop control system 

 

4. STABILITY ANALYSIS 

 

Theorem 1 The virtual controller described in (15), the control law presented in (21), the auxiliary input 

defined in (22), and the adaptive estimation rule in (25) collectively ensure that the tracking error e is 

minimized to a vicinity near zero while maintaining boundedness of all system signals, provided the gains 

meet the following conditions:  

 𝜆min(𝑘𝑧) > 𝜈 + 𝜂𝑧 + 𝜂𝑒
2, (27) 

 𝜆min(𝑘𝑒) >
1

4
 (28) 
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 where 𝜆min(⋅) denotes the smallest eigenvalue of a matrix, and 𝜈 > 0 is an auxiliary positive constant.  

  

Proof. The candidate Lyapunov function 𝑉(𝑡) ∈ ℝ is selected as:  

 𝑉 =
1

2
𝑒𝑇𝑒 +

1

2
𝑧𝑇𝑧 +

1

2
𝑡𝑟{𝑊̃𝑇Γ𝑤

−1𝑊̃}. (29) 

 Using Assumption 3, (29) can be bounded as:  

 
1

2
‖𝑠‖2 ≤ 𝑉 ≤

1

2
‖𝑠‖2 + 𝛾1 (30) 

where 𝑠(𝑡) ≜ [𝑒𝑇  𝑧𝑇]𝑇 ∈ ℝ6 represents the combined error vector. Here, 𝛾1 is positive constants defined 

as:  

 𝛾1 ≜
1

2
max{Γ𝑤

−1}𝑤̅̃2. (31) 

Taking the time derivative of (29) gives:  

 𝑉̇ = 𝑒𝑇𝑒̇ + 𝑧𝑇𝑧̇ + 𝑡𝑟 {𝑊̃𝑇Γ𝑤
−1𝑊̇̃}, (32) 

and substituting (16), (25), and (26) into (32) results in:  

 𝑉̇ = 𝑒𝑇(−𝑘𝑒𝑒 + 𝑅𝑧) + 𝑧𝑇(𝑁 − 𝑅𝑇𝑒 − 𝑘𝑔𝑡𝑎𝑛ℎ(𝑧) − 𝑘𝑧𝑧 + Ψ𝑊̃𝑇𝜎) 

     −𝑡𝑟{𝑊̃𝑇Ψ𝜎𝑧𝑇} + 𝑘𝑤‖𝑧‖𝑡𝑟{𝑊̃𝑇𝑊̂}. (33) 

Using 𝑡𝑟{𝑎𝑏} = 𝑡𝑟{𝑏𝑎}, (33) simplifies to:  

 𝑉̇ = −𝑒𝑇𝑘𝑒𝑒 + 𝑧𝑇(𝑁 − 𝑘𝑔𝑡𝑎𝑛ℎ(𝑧)) − 𝑧𝑇𝑘𝑧𝑧 + 𝑘𝑤‖𝑧‖𝑡𝑟{𝑊̃𝑇𝑊̂}. (34) 

The last term on the right-hand side of Equation (34) can be bounded as follows:  

𝑡𝑟{𝑊̃𝑇𝑊̂} = 𝑡𝑟{𝑊̃𝑇𝑊} − 𝑡𝑟{𝑊̃𝑇𝑊̃} 

  ≤ 𝑤̅ ∥ 𝑊̃ ∥𝑖∞ −∥ 𝑊̃ ∥𝑖∞
2  

                                              ≤
𝑤̅2

4
. (35) 

By substituting (35) and considering the property 𝑧𝑇𝑡𝑎𝑛ℎ(𝑧) ≥ 0, Equation (34) can be bounded as  

𝑉̇ ≤ −𝑒𝑇𝑘𝑒𝑒 − 𝑧𝑇𝑘𝑧𝑧 

                                                 +[∥ 𝑧 ∥∥ 𝑁 ∥ +𝑘𝑤
𝑤̅2

4
∥ 𝑧 ∥ −𝑧𝑇𝑘𝑔𝑡𝑎𝑛ℎ(𝑧)]. (36) 

From (20), the following equation can derived:  

𝑉̇ ≤ −𝑒𝑇𝑘𝑒𝑒 − 𝑧𝑇𝑘𝑧𝑧+∥ 𝑧 ∥ 𝜂𝑒 ∥ 𝑒 ∥ +𝜂𝑧 ∥ 𝑧 ∥2 

                            +[∥ 𝑧 ∥∥ 𝜇𝑛 ∥ +𝑘𝑤
𝑤̅2

4
∥ 𝑧 ∥ −𝑧𝑇𝑘𝑔𝑡𝑎𝑛ℎ(𝑧)]. (37) 

The term ∥ 𝑧 ∥ 𝜂𝑒 ∥ 𝑒 ∥ can be upper bounded as:  

 ∥ 𝑧 ∥ 𝜂𝑒 ∥ 𝑒 ∥≤
1

4
∥ 𝑒 ∥2+ 𝜂𝑒

2 ∥ 𝑧 ∥2. (38) 

The remaining terms in the brackets on the right-hand side of (36) can be bounded as:  

                                                     ∥ 𝑧 ∥ 𝜁 ≤ 𝜈 ∥ 𝑧 ∥2+
1

4𝜈
𝜁2, (39) 

where 𝜁 =∥ 𝜇𝑛 ∥ +𝑘𝑤
𝑤̅2

4
− 𝑘𝑔|𝑡𝑎𝑛ℎ(𝑧)|. Setting 𝜈 ∈ ℝ+, 𝜁 is guaranteed to be bounded and can be 

reduced by increasing 𝑘𝑔. 
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Incorporating (38) and (39) into (37):  

𝑉̇ ≤ −(𝜆min(𝑘𝑧) − (𝜈 + 𝜂𝑧 + 𝜂𝑒
2)) ∥ 𝑧 ∥2 

−(𝜆min(𝑘𝑒) −
1

4
) ∥ 𝑒 ∥2+

1

4𝜈
𝜁2 

                            ≤ −𝛾2 ∥ 𝑠 ∥2+ 𝛾3, (40) 

 where  

 𝛾2 ≜ min {𝜆min(𝑘𝑧) − (𝜈 + 𝜂𝑧 + 𝜂𝑒
2), 𝜆min(𝑘𝑒) −

1

4
}, (41) 

  

 𝛾3 ≜
1

4𝜈
𝜁2, (42) 

and the conditions in (27) and (28) are satisfied. 

Using (30), Equation (40) can be rewritten as:  

 𝑉̇ ≤ −2𝛾2𝑉 + 2𝛾1𝛾2 + 𝛾3. (43) 

The solution to (43) is:  

 𝑉 ≤ 𝜁3𝑒
−𝜁1𝑡 +

𝜁2

𝜁1
, (44) 

where 𝜁1 = 2𝛾2, 𝜁2 = 2𝛾1𝛾2 + 𝛾3, and 𝜁3 = 𝑉|𝑡=0 −
𝜁2

𝜁1
. By meeting the conditions in (27) and (28), and 

increasing 𝑘𝑔 sufficiently, 𝑉 can be made arbitrarily small. 

  

From (44), it follows that 𝑉 ∈ ℒ∞, and thus, the error signals 𝑒 and 𝑧 are also bounded (𝑒, 𝑧 ∈ ℒ∞). Using 

the definitions in (12) and (13), the boundedness of Ω(𝑡) and 𝜔(𝑡) can also be guaranteed. As a direct 

result, the virtual control signal 𝜔𝑑 and the control signal 𝛿 remain bounded. By applying standard signal 

chasing arguments, it can be shown that all remaining signals in the closed-loop system are uniformly 

bounded, ensuring the ultimate boundedness of the tracking error.  

 

5. NUMERICAL SIMULATIONS 

 
The performance of the proposed control scheme was evaluated through numerical simulations. During 

these simulations, the parameter values were taken from Table 2. The initial values of the variables were 

set as Ω0 = [0.1,0.25,−43.6]𝑇 in degrees, 𝜔0 = [0,0,0]𝑇 in deg/sec [7], and the initial value of 𝑊̂ was set 

to the zero matrix. The control rules in (15) and (21) were applied with the gains 𝑘𝑒 = diag{[6,5,4]}, 𝑘𝑍 =

diag{[20,20,20]}, 𝑘𝑔 = 10, and the update rule for the weight matrix was implemented with the gains Γ =

eye(12,12) × 10−6 and 𝑘𝑤 = 1, where eye(𝑛, 𝑛) denotes an 𝑛 × 𝑛 identity matrix. The reference values 

were set to Ω𝑑 = [45,30,10] in degrees.  

 

The control scheme was tested in both noisy and noise-free scenarios to demonstrate its robustness against 

noise. In the noisy cases, 20 dB AWGN was added to both the angle and angular rate measurements.  

 

Figures 2 and 3 show the angles and control signals. As observed, the angles successfully track the set 

points with saturated inputs.  

 

In Figures 4 and 5, the reference signals were chosen as a trajectory. In this scenario, the control signals 

ensured that the angles tracked the reference signals effectively.  
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In Figures 6 and 7, the angles and control signals are presented. From the figures, it can be observed that 

the control scheme maintains its tracking performance with minimal degradation.   

 

Table  2. Parameter Values [15] 

 Parameter   Value Parameter  Value  

𝐶𝑝0
 0 𝐶𝑝𝛽

 −0.1261 

𝐶𝑝𝑝
 −0.3167 𝐶𝑝𝑟

 0.1422 

𝐶𝑚0
 −0.02338 𝐶𝑚𝛼

 −0.38 

𝐶𝑚𝑞
 −3.6 𝐶 0.18994 

𝐶𝑟0 0 𝐶𝑟𝛽
 0.1335 

𝐶𝑟𝑝  −0.0092 𝐶𝑟𝑟 −0.1892 

𝐶𝑝𝛿𝑎
 0.1031 𝐶𝑝𝛿𝑟

 0.1260 

𝐶𝑚𝛿𝑒
 -0.5 𝑉𝑎 17 𝑚/𝑠 

𝜌 1.2682 𝛽 0.1 𝑟𝑎𝑑 

𝛼 1.24 𝑟𝑎𝑑 𝑚 13.5 𝑘𝑔 

𝐼𝑥 0.8244 𝐼𝑦 1.135 

𝐼𝑧 1.759 𝐼𝑥𝑧 0.1204 

𝑆 0.55 𝑚2   
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Figure  2. Angles for noise free case 

 

      
Figure  3. Control signals for noise free case 
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Figure  4. Angles for trajectory tracking case 

 

 
Figure  5. Control signals for trajectory tracking case 
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Figure  6. Angles for noisy case 

 

 
Figure  7. Control signals for noisy case 

 

6. COMPARATIVE RESULTS 

 

The performance of the proposed controller was compared with common control techniques, namely PID 

and sliding mode (SM) control. All the control signals were subjected to the saturation function defined in 

(9). The comparison was conducted using the error criterion given below:  
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 𝑀𝑐 = √∫
𝑡

𝑡0
𝑐2(𝜏)𝑑𝜏, (45) 

where 𝑐 represents a signal and 𝑡 indicates time. Table 3 gives the comparative results, where 𝑀𝑒 and 𝑀𝑢 

correspond to tracking error and control effort performances, respectively. The results clearly indicate that 

the proposed controller outperformed the compared techniques in terms of both tracking error and control 

effort.  

 

Table  3. Comparison results 

 Case   Criteria   Proposed   PID   SM 

 Without noise  𝑀𝑒   0.7078   0.976   0.9376  

 𝑀𝑢   0.7793   1.371   3.042  

 With noise  𝑀𝑒   0.8075   1.543   1.505  

 𝑀𝑢   1.492   2.982   3.042  

 

7. CONCLUSIONS 

 
In this study, the attitude control of a fixed-wing UAV under saturated inputs was investigated. The system 

was analyzed by dividing it into two subsystems, and a high-gain backstepping controller was designed. 

The control surfaces of the fixed-wing UAV have physical constraints, modeled as input saturation, which 

negatively affect stability and may even lead to instability. To address this issue, a neural network term was 

incorporated to mitigate the adverse effects of the residual part of the control. The stability of the control 

system was analyzed using the Lyapunov method, and the ultimate boundedness of error signals was 

ensured. The effectiveness of the proposed control system was validated through numerical simulations, 

demonstrating its capability to maintain stable and reliable performance. Furthermore, it was observed that 

the control system performed effectively even when noise was added to the state variables.  
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