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Abstract  Keywords 

Popularity bias significantly limits the effectiveness of recommender systems by 

disproportionately favoring popular items and reducing exposure to diverse, less-

known content. This bias negatively impacts personalization and marginalizes niche 

users and item providers. To address this challenge, calibrated recommendation 

methods have gained attention, notably the Calibrated Popularity (CP) approach, due 

to its simplicity, effectiveness, and model-agnostic nature. Originally, CP employs 

Jensen–Shannon divergence (JSD) to align the popularity distribution of 

recommended items with users’ historical interaction patterns. However, the choice 

of divergence measure substantially impacts calibration effectiveness and 

recommendation diversity. In this study, we systematically explore several alternative 

divergence measures, including Chi-Square, Wasserstein, Kullback–Leibler, 

Hellinger, Total Variation, Bhattacharyya, Cosine, and Renyi divergences, within the 

CP framework. Additionally, we propose a novel divergence-independent evaluation 

metric, namely Overall Similarity Error, enabling consistent assessment of calibration 

quality across divergence measures. Experimental results on two benchmark datasets 

using two collaborative filtering algorithms highlighted critical insights. More 

aggressive divergences, particularly Chi-Square, significantly enhanced calibration 

quality, reduced popularity bias, and increased recommendation diversity, albeit with 

a modest reduction in accuracy. In contrast, smoother divergences, such as JSD, 

maintained higher accuracy but provided limited improvements in reducing 

popularity bias. Also, the performed  group-based analysis categorizing users into 

mainstream, balanced, and niche segments based on their historical popularity 

preferences revealed distinct patterns: balanced users typically achieved higher 

accuracy due to their evenly distributed preferences; mainstream users showed 

superior calibration results benefiting from robust signals of popular items; niche 

users obtained more diverse and personalized recommendations, clearly benefiting 

from aggressive divergence measures. These results underscore the complexity of 

addressing popularity bias and highlight the importance of adopting adaptive, user-

aware calibration strategies to effectively balance accuracy, diversity, and fairness in 

recommender systems. 
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1. INTRODUCTION 
 

Recommender systems (RSs) play a crucial role in navigating the overwhelming volume of content 

available on digital platforms. From e-commerce and social media to online news and video streaming 

services, these systems help users discover relevant items efficiently by predicting and ranking content 

based on user preferences [1]. Traditional recommendation algorithms, such as collaborative filtering, 
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matrix factorization, and deep learning-based approaches, typically aim to maximize accuracy metrics 

like precision, recall, or mean reciprocal rank. However, an overemphasis on relevance often leads to 

unintended side effects, one of the most prominent being popularity bias. 

 

Popularity bias refers to the tendency of recommendation algorithms to disproportionately favor 

frequently interacted or globally popular items, often at the expense of less-known but potentially more 

relevant content [2]. This bias limits exposure to long-tail items and undermines the personalization 

potential of RSs, especially for users whose interests diverge from mainstream patterns [3]. These users 

often receive homogenized recommendation lists that fail to reflect their actual preferences. On a system 

level, popularity bias reduces content diversity, marginalizes niche item providers, and reinforces feedback 

loops that further entrench popular content. In the long run, this can lead to echo chambers, limit 

informational diversity and diminish the fairness and sustainability of recommender ecosystems [4]. 

 

To address this issue, recent research has introduced the concept of calibrated recommendation, which 

aims to align the distribution of item attributes (e.g., popularity or genre) in recommendation lists with 

the distributions observed in users' historical interactions [5-7]. Calibration improves not only 

personalization but also fairness and inclusivity, helping RSs adapt to a broader range of user profiles. 

By reflecting a user's actual preference structure, including tendencies toward niche or diverse items, 

calibrated lists increase perceived relevance and user trust. This alignment plays a vital role in delivering 

ethical and user-centered recommendation experiences. 
 

A recent and widely adopted method in this area is the Calibrated Popularity (CP) framework [6], which 

re-ranks recommendation lists to strike a balance between accuracy and calibration. It does so by 

optimizing a joint objective that combines a relevance score with a divergence term, which penalizes 

deviations between the popularity distribution of the recommendation list and that of the user's past 

preferences. The original CP formulation uses Jensen–Shannon Divergence (JSD) for this purpose. CP’s 

model-agnostic nature and ability to personalize recommendations by aligning with individual popularity 

profiles have made it a practical choice for use. However, it remains unclear whether alternative 

divergence functions might yield better calibration, especially across diverse user groups and datasets. 

 

Divergence measures differ in symmetry, sensitivity to rare events, and penalization characteristics, all 

of which influence re-ranking behavior and outcomes [8]. For example, Chi-Square Distance 

emphasizes large proportional differences and may be more effective for users with highly skewed 

popularity profiles (e.g., those who prefer only tail items). In contrast, Wasserstein Distance captures 

the effort needed to transform one distribution into another and may offer smoother calibration for users 

with broad popularity distributions. These differences suggest that divergence choice is not merely a 

technicality; it can have a meaningful impact on recommendation quality, fairness, and user satisfaction. 
 

In this work, we extend the CP framework by incorporating and systematically evaluating several 

alternative divergence functions, including Chi-Square, Wasserstein, Kullback–Leibler, Hellinger, Total 

Variation, Bhattacharyya, Cosine, and Renyi distance. Our goal is to explore whether these divergences 

provide more precise and context-aware calibration, particularly for long-tail users. We conduct 

experiments across two prominent benchmark datasets and collaborative filtering algorithms, evaluating 

each method using relevance, average popularity, diversity, and calibration quality. 
 

Our contributions can be summarized as follows: 

1. We propose a novel metric, Overall Similarity Error (OSE), to evaluate calibration quality in a 

divergence-independent manner. Unlike existing approaches that are tied to specific divergence 

functions, OSE provides a consistent and interpretable measure of alignment between user 

history and recommendation output. 

2. We extend the CP framework by integrating multiple divergence functions into the re-ranking 

objective, enabling more flexible and adaptive calibration strategies. 
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3. We perform a comprehensive experimental comparison of these divergence-based CP variants 

across two representative collaborative filtering algorithms and benchmark datasets, using 

multiple evaluation criteria.  

4. We conduct group-based analysis to assess how divergence types impact users with varying 

preferences for popular or niche content, offering practical insights for personalized and fair RS 

design. 
 

The remainder of this paper is organized as follows: The next section reviews relevant literature on 

calibrated recommendation methods and divergence-based calibration strategies. Section 3 presents the 

theoretical background of the CP framework, and the following section introduces the alternative 

divergence measures considered in this study. Section 5 describes our experimental methodology, 

including datasets, collaborative filtering algorithms, evaluation metrics, and experimental setups. In 

Section 5, we also provide experimental results, beginning with an overall comparison of divergence 

methods, followed by a detailed group-based analysis. Section 6 presents the study's limitations and 

discusses potential directions for future research. Finally, Section 7 summarizes our main findings and 

provides concluding remarks. 

 

2. RELATED WORK 

 

RSs have been widely studied for their ability to predict user preferences and deliver personalized 

content, using collaborative filtering, matrix factorization, or deep learning techniques [1]. While these 

models are typically optimized for accuracy, they frequently exhibit systemic biases, most notably, 

popularity bias, which disproportionately favors globally popular items while marginalizing niche 

content. This often results in homogenized recommendation lists, reduced novelty, and unfair 

experiences for users with long-tail preferences [3]. 

 

To mitigate these issues, calibrated recommendation methods have emerged as promising strategies to 

strike a balance between accuracy, personalization, and fairness. Calibration seeks to align the 

distribution of certain item attributes, such as genre, topic, or popularity level, in the recommended list 

with that of the user’s historical interactions. The foundational work by [5] introduced the concept of 

minimizing Kullback-Leibler (KL) divergence between these distributions (i.e., genre) in a post-

processing re-ranking step. Although this calibration may reduce accuracy to some extent, it improves 

fairness and enhances the perceived personalization of the recommendations. 

 

Building upon this foundation, Kaya and Bridge compared calibrated recommendations with intent-

aware models using user sub-profiles [9]. Their findings showed that calibration improves diversity and 

fairness, albeit with a modest reduction in precision. In a similar vein, Seymen et al. proposed a 

constrained optimization model, namely Calib-Opt, to dynamically balance relevance and calibration 

via a fairness-aware objective [10]. 

 

More recently, the CP framework, introduced by Abdollahpouri et al. [6], has extended calibration to 

explicitly tackle popularity bias. CP re-ranks items based on a joint objective function combining 

predicted relevance and the JSD between the popularity distribution of the recommended items and the 

user’s interaction history. The model-agnostic design of CP makes it highly compatible with existing 

recommendation pipelines and has proven particularly effective for users with non-mainstream 

preferences, reducing User Popularity Deviation and improving fairness across user segments. 

 

Despite the effectiveness of JSD, researchers have begun to explore alternative divergence functions for 

calibration. Da Silva and Durão [11, 12] conducted large-scale evaluations using over 390 variants of 

calibrated systems, incorporating metrics such as Chi-Square, Hellinger, and Weighted Total Variation. 

Their findings suggest that different divergence measures yield varying trade-offs between calibration 

quality, recommendation diversity, and accuracy, underscoring the importance of divergence selection 
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in calibrated frameworks. Their framework builds directly on Steck’s approach [5], applying calibration 

over genre-class distributions rather than item-level popularity. While these contributions broaden the 

calibration literature, they remain confined to attribute-based (genre) calibration and do not explicitly 

address the alignment of popularity at the individual user level.  

 

Additionally, Cha [13] provides a comparative analysis of divergence measures, highlighting differences 

in sensitivity, symmetry, and robustness, which are particularly relevant in recommendation contexts 

where user preference distributions are often sparse or skewed. In contrast, our work builds directly on the 

CP framework, which calibrates recommendation lists based on user-specific popularity profiles rather 

than predefined content attributes. We model the popularity distribution of a user’s past interactions 

using popularity buckets and explore the use of multiple divergence measures within the CP setting.  

 

Beyond calibration itself, the fairness-aware recommendation literature has expanded into taxonomies 

of fairness goals, such as consumer-side fairness (C-fairness), provider-side fairness (P-fairness), and 

joint fairness (CP-fairness). As categorized in works by [14-16], fairness in RSs is increasingly seen as 

a multi-stakeholder issue, one that demands balancing diverse interests across both users and item 

providers. Also, some prominent studies analyzed how users with different characteristics in terms of 

personality traits [7] or rating behaviors [17] are unfairly affected by final recommendations. However, 

calibrated approaches like CP offer one mechanism to address this, particularly in managing item exposure 

across popularity segments. Additionally, Table 1 summarizes the most prominent calibration-based 

studies, comparing the divergence functions used, calibration targets, and model integration styles. 

 
Table 1. Summary of the most prominent calibration-based approaches 

 

Study Divergence  Calibration Target Model Type 

Steck [5] Kullback–Leibler (KL) 

Divergence 

Genre distribution Model-agnostic 

Seymen et al. [10] 

  

KL Divergence (within 

constraints) 

Genre distribution  Model-integrated 

Kaya & Bridge [9] 

   

KL Divergence Genre (via sub-profiles) Model-agnostic 

da Silva & Durão [11] Chi-Square, Hellinger, 

TVD  

Genre classes  Model-agnostic  

Abdollahpouri et al. [6] Jensen–Shannon 

Divergence (JSD)  

Popularity 

(head/mid/tail)  

Model-agnostic  

This study  JSD, KL, Chi-Square, 

Wasserstein, TVD, etc. 

Popularity 

(head/mid/tail)  

Model-agnostic  

 

Despite the richness of this body of work, most prior studies have focused on a limited set of divergence 

functions without systematically evaluating the impact of alternative divergences, such as Wasserstein, 

Chi-Square, or Total Variation Distance, across different user segments or collaborative filtering 

architectures. Among existing calibration frameworks, the CP method stands out for its simplicity, 

generalizability, and empirical effectiveness. Unlike genre-based or intent-aware models, CP directly 

addresses popularity bias by optimizing user-specific alignment of popularity. Its model-agnostic 

structure enables seamless integration with diverse recommendation models, and its user-centered 

formulation ensures relevance not just in content type but in popularity expectations. For these reasons, 

CP forms the core of our methodology. We extend it by systematically evaluating alternative divergence 

functions and introducing the OSE metric for divergence-independent evaluation of calibration quality. 

 
 

3. BACKGROUND ON THE CALIBRATED POPULARITY METHOD 
 

In recent years, fairness-aware recommendation techniques have gained increasing attention as systems 

are expected not only to be accurate but also to reflect user-specific preferences and promote diversity. 
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Among these methods, the CP framework [6] presents a post-processing re-ranking approach that aims 

to mitigate popularity bias while maintaining personalization and ensuring high-quality 

recommendations. CP focuses explicitly on aligning the popularity distribution of the recommended list 

with that of the user's historical interactions. 

 

Let 𝑹𝒖 = {𝒊𝟏, 𝒊𝟐, … , 𝒊𝒏} be the initial list of top-𝑵 recommended items for user 𝒖, produced by a base 

recommendation algorithm (e.g., matrix factorization or a neural model). The goal of CP is to re-rank 

this list to obtain a new list 𝑳𝒖 ⊆ 𝑹𝒖, such that it reflects the user's historical exposure to item popularity 

levels. The user's historical popularity distribution is denoted by 𝑷, which is typically constructed based 

on the popularity levels of the items the user has interacted with. The popularity distribution of the re-

ranked recommendation list is denoted by 𝑸(𝑳𝒖). The core principle of CP is to reduce the divergence 

between 𝑸(𝑳𝒖) and 𝑷 while preserving recommendation quality. The optimization problem in CP is 

defined as in Eq. 1.  

 

 𝑳𝒖
∗ = 𝐚𝐫𝐠 𝐦𝐚𝐱

𝑳𝒖⊆ 𝑹𝒖

[(𝟏 − 𝝀) ∙ 𝑹𝒆𝒍(𝑳𝒖) − 𝝀 ∙ 𝑫(𝑷 ||𝑸(𝑳𝒖))] (1) 

 

In this expression, 𝑹𝒆𝒍(𝑳𝒖) denotes the total predicted relevance score for items in list 𝑳𝒖, based on the 

output of the base recommender. 𝑫(𝑷 ||𝑸(𝑳𝒖)) represents a divergence function, commonly JSD, that 

measures the distance between the historical and recommended popularity distributions. The parameter 

𝝀 ∈ [𝟎, 𝟏] controls the trade-off between relevance and calibration: setting 𝝀 = 𝟎 reduces the model to 

pure relevance-based ranking, while 𝝀 = 𝟏 focuses solely on popularity alignment. 

 

To construct 𝑄(𝐿𝑢) and 𝑃, items are categorized based on their cumulative rating frequency, following 

a Pareto-based bucketing scheme [18]. Instead of uniformly dividing items by rank or frequency 

percentiles, the method aggregates the total number of ratings across all items and splits the catalog into 

three tiers based on cumulative contribution to this total. Specifically, the most popular items that 

collectively account for the first 20% of all ratings are designated as the head or popular items. Items 

contributing to the next 60% of cumulative ratings are labeled as the mid, and the remaining items, 

which account for the final 20%, are considered the tail or niche items. Each item 𝑖 is assigned to a 

bucket label based on this cumulative distribution. 

 

Using this classification, a user’s historical interaction profile is mapped to a probability distribution 

𝑃 = [𝑝1, 𝑝2, … , 𝑝𝑘], where each 𝑝𝑗 represents the fraction of interactions falling into bucket 𝑗. Similarly, 

the distribution 𝑄(𝐿𝑢) = [𝑞1, 𝑞2, … , 𝑞𝑘],  is computed over the items in the re-ranked recommendation 

list, enabling divergence computation between the user’s past preferences and the system's output in 

terms of popularity exposure. 

 

The CP re-ranking process involves evaluating multiple candidate permutations of 𝐿𝑢 and computing 

the combined objective function for each. In practice, exhaustive enumeration is computationally 

infeasible; therefore, greedy algorithms or beam search strategies are employed to explore high-potential 

reorderings efficiently. In our implementation, we adopt a greedy heuristic that starts from the initial 

recommendation list and iteratively evaluates candidate item swaps to minimize the overall objective, 

defined as a weighted combination of predicted relevance and divergence. At each step, the pair of items 

yielding the greatest improvement is swapped. This continues until no further gain is observed or a 

maximum number of iterations is reached. This strategy offers a computationally practical and model-

agnostic approach to approximating the optimal trade-off between accuracy and calibration. Since the 

CP method operates on the recommendation list generated by any underlying model, it is model-agnostic 

and easily integrated into existing recommender pipelines without requiring architectural changes. 

 

This method offers a robust solution to the issue of popularity bias by enabling user-centered calibration. 

Rather than enforcing global diversity or fairness constraints, it directly models each user's historical 
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preferences regarding item popularity and attempts to replicate that structure in the output. This design 

yields recommendations that are not only accurate but also aligned with the user's implicit expectations 

regarding item popularity. The framework’s modularity, particularly its use of a tunable trade-off 

parameter 𝜆, makes it highly adaptable to different use cases, ranging from bias mitigation to fairness 

enhancement. By adjusting the balance between accuracy and calibration, CP enables practitioners to 

tailor system behavior to the needs of their user base while retaining flexibility in deployment. 
 

4. DIVERGENCE MEASURES FOR POPULARITY CALIBRATION 
 

In the CP framework, the divergence measure plays a critical role in quantifying the mismatch between 

the popularity distribution of recommended items and that of the user’s historical interactions. Different 

divergence metrics impose varying sensitivities, symmetries, and penalization behaviors, which can 

significantly influence the resulting recommendation list. In this study, we consider a range of divergence 

functions with varied theoretical properties, aiming to explore their suitability for personalized 

calibration. The following provides a detailed explanation of the considered divergence measures. 
 

• Jensen–Shannon Divergence (JSD) [5]:  It is the most widely used divergence metric in 

calibration settings, particularly in the original CP framework. It is a symmetrized and smoothed 

version of the Kullback–Leibler divergence, defined as: 
 

 
𝑱𝑺𝑫(𝑷||𝑸) =

𝟏

𝟐
𝑲𝑳(𝑷||𝑴) +

𝟏

𝟐
𝑲𝑳(𝑸||𝑴) (2) 

 

Here, 𝑲𝑳(𝑷||𝑴) = ∑ 𝒑(𝒊) 𝐥𝐨𝐠
𝑷(𝒊)

𝑸(𝒊)𝒊  is the Kullback–Leibler divergence and 𝑴 =
𝟏

𝟐
(𝑷 + 𝑸). 

JSD has a bounded range [𝟎, 𝐥𝐨𝐠 𝟐] and is symmetric, making it stable for use in systems where 

both over- and under-representation of popularity buckets need to be penalized. Its smoothness 

makes it well-suited for general-purpose calibration, especially for users with mixed 

preferences. However, its sensitivity might be insufficient for strongly niche profiles, limiting 

its correction power in highly biased cases. 

 

• Kullback–Leibler (KL) divergence [19]: This metric, in contrast, is asymmetric and 

emphasizes cases where the predicted distribution fails to cover regions of the user’s 

distribution. It is given by: 
 

 
𝑲𝑳(𝑷||𝑸) =  ∑ 𝒑(𝒊) 𝐥𝐨𝐠

𝑷(𝒊)

𝑸(𝒊)
𝒊

 (3) 

 

KL is sensitive to small values in 𝑸, especially when 𝑸(𝒊) is close to zero. This means it heavily 

penalizes omissions, which can be valuable for users whose preferences lie in the tail of the 

popularity spectrum. However, its asymmetry might over-penalize certain imbalances, and it 

may not be robust when 𝑸 has support gaps. In the CP context, KL could be powerful for niche-

preferring users, as it heavily penalizes the omission of tail items. However, this harshness can 

destabilize calibration for users with broader interests or noisy histories. 
 

• Total Variation (TVD) Distance [20]: This metric is simple, symmetric, and bounded in the 

range [0, 1], as formulated in Eq. 4. It measures the maximum difference between the two 

distributions across all buckets. TVD is especially effective in highlighting gross distributional 

shifts and can be appropriate for use cases where equal attention to under- and over-representation 

is desired. It is less sensitive to small fluctuations and is generally easy to interpret. 
 

 
𝑻𝑽(𝑷, 𝑸) =  

𝟏

𝟐
∑ |𝑷(𝒊) − 𝑸(𝒊)|

𝒊

 (4) 



Yalcin / Estuscience – Se , 26 (3) – 2025 
 

266 

 

• Wasserstein Distance [21]: This metric also known as Earth Mover’s Distance, offers a 

geometric perspective by measuring the minimum cost of transforming one distribution into 

another. For one-dimensional discrete distributions, it can be expressed as: 
 

 𝑾(𝑷, 𝑸) =  ∑ |𝑪𝑫𝑭𝑷(𝒊) − 𝑪𝑫𝑭𝑸(𝒊)|

𝒊

 (5) 

 

where 𝐶𝐷𝐹𝑃(𝑖) and 𝐶𝐷𝐹𝑄(𝑖) are the cumulative distribution functions of 𝑃 and 𝑄, respectively. 

Wasserstein distance captures the notion of how far mass must be moved to match one 

distribution to another. It might be ideal for users with gradually skewed profiles, where hard 

thresholding may over-correct. It offers smooth, interpretable adjustment across buckets. 
 

• Hellinger Distance [22]: This is another symmetric metric with a probabilistic foundation, 

defined as: 
 

 
𝑯(𝑷, 𝑸) =  

𝟏

√𝟐
√∑(√𝑷(𝒊) − √𝑸(𝒊))𝟐

𝒊

 (6) 

 

Hellinger is always in the range [0, 1] and behaves similarly to Euclidean distance in the square 

root space. It provides smooth gradients and is robust to noise, making it a solid choice for 

systems with sparse or uncertain data. It balances fairness and calibration without aggressive 

penalization, suitable for general audiences. 
 

• Chi-Square Distance [23]: This distance emphasizes large deviations in expected proportions 

and penalizes cases where the recommendation distribution significantly diverges from user 

preference proportions. It is defined as in Eq. 7. It is particularly sensitive to over-

representations and is often more aggressive than symmetric metrics. It could outperform others 

in correcting overexposure to popular items, making it effective for fairness-aware calibration, 

especially for long-tail users. 
 

 
𝓧𝟐(𝑷, 𝑸) = ∑

(𝑷(𝒊) − 𝑸(𝒊))𝟐

𝑷(𝒊)
𝒊

 (7) 

 

• Cosine Distance [24]: This metric measures the angular dissimilarity between two vectors, 

disregarding their magnitude. It is defined as: 
 

 
𝑪𝒐𝒔𝒊𝒏𝒆(𝑷, 𝑸) = 𝟏 −

∑ 𝑷(𝒊) ∙ 𝑸(𝒊)𝒊

√∑ 𝑷(𝒊)𝟐
𝒊 ∙ √∑ 𝑸(𝒊)𝟐

𝒊

 (8) 

 

This distance focuses on the directionality of the vectors in probability space. In CP re-ranking, 

Cosine distance is valuable when preserving the structural shape of the user’s historical popularity 

distribution is more important than matching absolute proportions. It is particularly well-suited 

for users whose interaction profiles are stable in structure but variable in intensity, such as 

periodic or light-touch users. Because it emphasizes the consistency of relative preferences across 

popularity buckets, Cosine distance can provide a more forgiving calibration strategy that avoids 

overreacting to scale differences. 
 

• Renyi Divergence [24]: This is a parametric generalization of the KL divergence. It is defined as: 

 

 𝑫𝜶
𝑹𝒆𝒏𝒚𝒊(𝑷||𝑸) =

𝟏

𝜶−𝟏
𝐥𝐨𝐠(∑ 𝑷(𝒊)𝜶𝑸(𝒊)𝟏−𝜶

𝒊 ) for  𝜶 > 𝟎, 𝜶 ≠ 𝟏  (9) 
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Renyi divergence introduces a tunable parameter 𝛼 that adjusts the emphasis on different parts of 

the distribution. As 𝛼 → 1, the divergence converges to KL. At low 𝛼, the divergence is more 

forgiving and behaves similarly to Total Variation, while higher values of 𝛼 place more weight 

on regions where 𝑄 fails to capture 𝑃. This tunability allows CP to adapt calibration strength 

across different user profiles. In practice, higher 𝛼 values may be used for long-tail or fairness-

critical users, where strong penalties are needed for underrepresentation of niche items. 

Conversely, lower values may benefit broad-interest users, where soft alignment is preferable. 

Note that we set 𝛼 = 0.5 in our experiments. 
 

• Bhattacharyya Distance [25]: It measures the degree of overlap between two distributions and 

is commonly used in probabilistic classification. It is defined as: 
 

 𝑫𝑩𝒉𝒂𝒕(𝑷, 𝑸) = − 𝐥𝐧(∑ √𝑷(𝒊) ∙ 𝑸(𝒊)

𝒊

) (10) 

 

This symmetric measure rewards high similarity between corresponding elements of the 

distributions. In the CP setting, Bhattacharyya distance might be effective for moderate or 

balanced users, where the goal is to maximize overlap rather than punish misalignment. It avoids 

the sharp penalties associated with asymmetric metrics like KL or Chi-Square, offering a 

smoother calibration curve. Moreover, its probabilistic nature makes it robust under conditions of 

data sparsity or noisy bucket definitions, where harsh divergence may destabilize optimization. 
 

Each divergence function provides a unique lens through which calibration can be achieved. Symmetric 

distances like JSD, TVD, and Hellinger are more balanced and stable, making them suitable for general 

calibration. Asymmetric or skew-sensitive measures like KL and Chi-Square can offer sharper correction 

but may need careful tuning. Wasserstein, by modeling redistribution effort, offers an intuitive trade-off 

between structural flexibility and penalization. In practice, the ideal divergence function may vary 

depending on user behavior patterns, system objectives, and the granularity of the popularity bucketing. 
 

5. EXPERIMENTAL STUDIES 
 

This section describes the datasets, evaluation metrics, and experimental setup employed in this study, 

and subsequently presents and analyzes the obtained results. 
 

5.1. Datasets 
 

To evaluate the effectiveness of different divergence metrics within the CP framework, we conducted 

experiments on two real-world benchmark datasets from distinct domains: MovieLens-1M (MLM) and 

Douban Books (DB) [7]. These datasets represent user–item interactions in the domains of movies and 

books, respectively, allowing for a cross-domain assessment of calibration performance. Both datasets 

employ a 5-point rating scale (ranging from 1 to 5) to express user preferences and exhibit a sparse 

rating structure characteristic of large-scale RS data. Compared to MovieLens-1M, Douban Books is 

notably larger and introduces additional challenges due to its higher sparsity and greater diversity in 

item popularity distribution. This combination of datasets enables a robust and comparative evaluation 

of the proposed calibration methods across different data densities, item catalogs, and user behavior 

patterns. Further details regarding dataset statistics and pre-processing steps are summarized in Table 2. 

Table 2. Detailed information about datasets 

Dataset Domain #Users #Items #Ratings Sparsity (%) 

MLM Movie 6,040 3,952 1,000,209 95.7 

DB Book 13,024 22,347 792,062 99.7 
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5.2. Evaluation Metrics 

 

To comprehensively assess the performance of different divergence-based calibration strategies, we 

employ four evaluation metrics that capture various aspects of recommendation quality: accuracy, 

calibration alignment, popularity bias, and diversity. These include Precision@k, Overall Similarity 

Error (OSE), Average Recommendation Popularity (ARP), and Aggregate Diversity [6]. 

 

Precision@k is a standard accuracy metric in RSs, measuring the proportion of relevant items among 

the top-𝑘 recommendations. Given a user 𝑢 and a set of recommended items 𝐿𝑢, precision is defined as: 

 

 
𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧@𝐤 =

|{𝒊 ∈ 𝑳𝒖: 𝒊 ∈ 𝑹𝒖
𝒕𝒓𝒖𝒆}|

𝒌
 (11) 

 

where 𝑅𝑢
𝑡𝑟𝑢𝑒 denotes the ground truth relevant items for user 𝑢. This metric reflects the system's ability 

to place relevant items in the top-ranked positions. 

 

OSE is a novel metric proposed in this study to evaluate the degree of alignment between the popularity 

distribution of recommended items and the user's historical preference distribution, independently of the 

divergence function used in re-ranking. Unlike metrics that rely on the same divergence function for 

both optimization and evaluation, OSE provides a divergence-agnostic measure of calibration quality. 

It is defined as: 
 

 𝑶𝑺𝑬 = ∑ |𝑷(𝒊) − 𝑸(𝒊)|

𝒊

 (12) 

 

where 𝑃(𝑖) and 𝑄(𝑖) represent the proportions of popularity bucket 𝑖 in the user’s history and the 

recommended list, respectively. As a simple yet effective calibration indicator, OSE enables consistent 

comparisons across different divergence configurations and user groups, making it a key contribution 

of this work. 

 

Although the OSE is mathematically equivalent to twice the TVD (see Eq. 4), its role in this study is 

conceptually distinct. Rather than serving as a divergence function for optimization, OSE is introduced 

as a simple, interpretable, and divergence-independent evaluation metric. Its purpose is to provide a 

consistent measure of calibration quality across different divergence-based CP variants, regardless of 

the specific divergence function used during re-ranking. In contrast to TVD, which has previously been 

employed as part of the optimization objective, OSE is applied solely at the evaluation stage.  

 

ARP measures the mean global popularity of the items recommended to users. Formally, it is defined as: 
 

 
𝑨𝑹𝑷 =

𝟏

|𝑼|
∑

𝟏

|𝑳𝒖|
∑ 𝒑𝒐𝒑(𝒊)

𝒊∈𝑳𝒖𝒖∈𝑼

 (13) 

where 𝑝𝑜𝑝(𝑖) denotes the popularity of item 𝑖, computed as the ratio of the number of users who have 

interacted with 𝑖 to the number of all users. ARP provides insight into popularity bias, with lower ARP 

values indicating a shift toward recommending less globally popular (i.e., more niche) items. 

 

Aggregate Diversity measures the overall variety of items recommended across the entire user 

population. It is defined as the total number of unique items appearing in the recommendation lists 

across all users: 
 

 
𝑨𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒆 𝑫𝒊𝒗𝒆𝒓𝒔𝒊𝒕𝒚 =

|⋃ 𝑳𝒖𝒖∈𝑼 |

|𝑰|
 (14) 
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where 𝐼 is the set of all items in the catalog. This metric reflects the system’s ability to maximize catalog 

coverage and support content discovery. High aggregate diversity indicates that the system avoids 

repetitively recommending the same popular items and instead utilizes a broader portion of the item space. 

 

Together, these metrics provide a comprehensive evaluation of divergence-based calibration 

performance, capturing local relevance, alignment with user-specific popularity trends, mitigation of 

global popularity bias, and catalog-level diversity. Our proposed OSE metric, in particular, enables an 

objective and interpretable assessment of calibration quality regardless of the divergence measure 

employed during optimization. 

 

5.3. Experimentation Methodology 
 

We adopt a leave-one-out cross-validation strategy to evaluate the performance of divergence-based 

calibrated recommendation methods [26, 27]. For each user, a single interaction is randomly withheld 

as the test instance, while the remaining users and all their interactions are used for training. Using the 

trained base models, Spherical k-Means (SKM) [28] and Variational Autoencoder for Collaborative 

Filtering (VAECF) [29], we generate predicted relevance scores for every item in the dataset for the test 

user. Then, items are ranked in descending order based on their predicted scores. The top-100 items 

form the candidate list 𝑅𝑢, which serves as input to the CP re-ranking procedure. 

 

This process is repeated for all users in the dataset to ensure consistent evaluation. On top of the base 

predictions, CP re-ranking is applied using each of the nine divergence functions introduced in Section 

4. To control the trade-off between relevance and calibration when applying CP strategy, the λ parameter 

is fixed at 0.5 throughout all experiments. Lastly, the final top-10 recommendation lists are evaluated 

using the accuracy, calibration, and diversity metrics described in Section 5.2, which are calculated 

individually for each user and then averaged across the entire user set. Note that all algorithms are 

implemented using the Cornac library [30], a widely adopted Python framework for research in RS.  
 

5.4. Results and Discussion 

 

This section presents and analyzes the experimental outcomes of the proposed approach. The results are 

divided into two parts: general results, which reflect overall performance across all users, and group-

based results, which examine how different divergence functions perform across user segments with 

varying popularity preferences. 

 

5.4.1. Overall performance of divergence measures 

 

Table 3 summarizes the overall performance of each divergence-based calibration method across the 

two datasets, MLM and DB, and two collaborative filtering algorithms, VAECF and SKM. The table 

reports results for four evaluation metrics: Precision (↑), OSE (↓), ARP (↓), and Aggregate Diversity (↑). 

Arrows indicate the desired direction of improvement for each metric. For readability, the names of 

divergence functions are abbreviated (e.g., jsd, kl, chisq). This structured presentation enables a direct 

comparison of how each divergence function impacts the trade-off between accuracy, calibration 

quality, popularity bias, and catalog coverage. Note that the best-performing value for each evaluation 

metric in each setting is highlighted in bold in the table. Additionally, we performed paired t-tests to 

determine whether the observed differences between the best and the second-best methods, in terms of 

a specific criterion, are statistically significant. Accordingly, we highlighted with an asterisk (*) the 

results that are significant at the 95% confidence level. 

 

The results presented in Table 3 reveal clear patterns regarding the impact of divergence function choice 

on the performance of the CP framework. While the original CP method was introduced using the JSD 
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as its core distance measure, our findings suggest that alternative divergence functions can offer 

significant improvements, particularly when calibration quality and bias mitigation due to popularity are 

prioritized. 

 

Across both datasets and collaborative filtering algorithms, the Chi-Square (chisq) distance consistently 

achieves the lowest OSE and ARP values. This suggests that Chi-Square is the most effective at aligning 

the popularity distribution of recommended items with the user’s historical preferences, while 

simultaneously encouraging the recommendation of less globally popular (tail) items. This behavior can 

be attributed to Chi-Square’s strong penalization of large relative differences, particularly when the 

expected (historical) preference 𝑃(𝑖) is high but the predicted 𝑄(𝑖) is low. This aggressive correction 

mechanism makes it especially well-suited for users with skewed or niche preferences, for whom 

standard methods often over-recommend popular items. However, the Precision scores for Chi-Square 

are notably lower than those of other divergences, reflecting a trade-off between calibration and 

accuracy. This is an expected consequence of re-ranking methods that favor distributional alignment 

over item-level predicted relevance. Despite this, the increase in Aggregate Diversity with Chi-Square 

indicates that such calibration strategies are more effective at surfacing underrepresented items, which 

is a desirable outcome in fairness-aware and long-tail recommendation settings. 

 

In contrast, JSD, Hellinger, and Bhattacharyya maintain higher precision scores across all settings, but 

show relatively poor calibration performance. These metrics are symmetric and smoother in their 

penalization, and hence, less reactive to small but important misalignments in distribution. For example, 

JSD averages the divergence from both 𝑃 and 𝑄 to the mean distribution 𝑀, which leads to more 

balanced but diluted penalization. This makes it more appropriate for users with mainstream preferences, 

where strict calibration is less critical. Hellinger and Bhattacharyya share this property, offering gradual 

gradients that support stable optimization but may fail to enforce strong calibration constraints. 

 

As can be followed by Table 3, Cosine distance, although commonly used in vector similarity tasks, 

shows moderate calibration improvement compared to JSD, likely due to its emphasis on directionality 

rather than magnitude. This allows it to preserve the structural shape of the user’s preference profile 

without overreacting to scale differences. Renyi divergence, with its tunable sensitivity parameter 𝛼, 

performs as a flexible middle ground, offering significantly improved OSE and ARP scores over JSD 

while maintaining reasonable accuracy. Its adaptability allows for targeted penalization depending on 

the user group. In our setting, it appears to strike an effective balance, especially for users with semi-

niche behaviors. Similarly, Total Variation (tvd) achieves solid calibration with minimal relevance loss, 

as it equally penalizes all deviations and is not disproportionately affected by rare categories. On the 

other hand, Wasserstein distance, which measures the cumulative effort to reshape one distribution into 

another, performs particularly well in terms of ARP reduction and diversity. Its ability to model smooth 

transitions between popularity levels allows it to preserve the general structure of a user’s profile while 

encouraging exploration away from globally dominant items. This makes it effective for moderate users 

whose preferences are not sharply concentrated. Finally, Aggregate Diversity results confirm that 

divergence functions which prioritize calibration (e.g., Chi-Square, KL, Wasserstein) also maximize 

catalog coverage, revealing their potential for RSs aiming to improve content exposure and reduce 

systemic bias. 
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Table 3. Overall performance of divergence-based CP methods. Arrows indicate the desired direction, and the 

best-performing value for each evaluation metric in each setting is highlighted in bold.  

 

Dataset 
CF 

Algorithm 

Divergence 

Measure 
Precision ↑ OSE ↓ ARP ↓ 

Aggregate 

Diversity ↑ 

MLM 

VAECF 

jsd 0.639 1.011 0.314 0.167 

hellinger 0.637 0.958 0.309 0.174 

bhattacharyya 0.636 0.953 0.308 0.173 

cosine 0.636 0.926 0.305 0.177 

tvd 0.634 0.882 0.303 0.177 

renyi 0.630 0.847 0.297 0.178 

kl 0.626 0.763 0.289 0.183 

wasserstein 0.626 0.805 0.289 0.183 

chisq 0.608 0.571* 0.267* 0.189* 

SKM 

jsd 0.477 1.431 0.427 0.023 

hellinger 0.475 1.408 0.424 0.023 

bhattacharyya 0.474 1.356 0.418 0.026 

cosine 0.472 1.306 0.412 0.026 

tvd 0.470 1.282 0.409 0.022 

renyi 0.466 1.218 0.402 0.024 

kl 0.465 1.194 0.399 0.029 

wasserstein 0.463 1.141 0.393 0.029 

chisq 0.430 0.801* 0.340* 0.033* 

DB 

VAECF 

jsd 0.224 1.304 0.115 0.026 

hellinger 0.224 1.293 0.114 0.027 

bhattacharyya 0.224 1.267 0.113 0.028 

cosine 0.224 1.272 0.113 0.030 

tvd 0.222 1.240 0.112 0.030 

renyi 0.223 1.210 0.111 0.030 

kl 0.221 1.120 0.108 0.032 

wasserstein 0.221 1.057 0.103 0.037 

chisq 0.212 0.853* 0.092* 0.041* 

SKM 

jsd 0.164 1.420 0.121 0.005 

hellinger 0.162 1.391 0.120 0.005 

bhattacharyya 0.158 1.258 0.115 0.006 

cosine 0.164 1.381 0.120 0.006 

tvd 0.162 1.357 0.119 0.006 

renyi 0.160 1.328 0.117 0.007 

kl 0.156 1.165 0.112 0.007 

wasserstein 0.153 1.043 0.105 0.007 

chisq 0.139 0.819* 0.091* 0.008* 

 

In summary, although CP was initially formulated with JSD, our experiments demonstrate that selecting 

a divergence function tailored to the system’s calibration and fairness goals can lead to significantly 

better outcomes. Chi-Square stands out for its effectiveness in calibration and diversity, whereas Renyi 

and Wasserstein provide versatile alternatives that balance accuracy and fairness. These findings 

underscore the importance of considering divergence function selection as a crucial design decision in 

calibrated RSs. 

 

5.4.2. Group-Based Comparison 

 

To gain deeper insight into how different divergence functions support users with varying popularity 

preferences, we also perform a group-based evaluation. Users are categorized into three groups based 

on the distribution of item popularity in their historical interactions. Specifically, we construct each 

user’s popularity profile across predefined buckets (head, mid, and tail) and group them as follows: 

• G1 (Mainstream Users): Users whose historical interactions are dominated by popular (head) 

items. 
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• G2 (Balanced Users): Users with a more evenly distributed interaction pattern across popularity 

levels. 

• G3 (Niche Users): Users who predominantly interact with less popular (tail) items. 

This classification enables us to evaluate whether certain divergence functions are better suited to 

tailoring recommendations for specific user types. In particular, it enables us to assess whether calibrated 

methods can effectively mitigate popularity bias and enhance personalization for long-tail users (G3) 

without compromising performance for mainstream users (G1). 

To assess how calibrated recommendation methods adapt to different user profiles, we analyze 

performance across three user groups, i.e., G1, G2, and G3. Group-specific results are illustrated in Figs 

1 through 4, each corresponding to one dataset–model pair: Fig. 1 (MLM–VAECF), Fig. 2 (MLM–

SKM), Fig. 3 (DB–VAECF), and Fig. 4 (DB–SKM). Each figure reports Precision, OSE, ARP, and 

Aggregate Diversity scores, allowing us to identify which functions are most effective for each user 

group. 

The analysis of our group-based evaluation reveals several broad trends regarding the performance of 

divergence functions across different user groups, as well as their implications for calibration in RSs. 

Overall, when examining the Precision metric, we observe that the balanced user group (G2) consistently 

outperforms the others, except for the DB-SKM configuration (see Fig. 4). This suggests that users 

whose historical interactions are evenly distributed across popularity buckets tend to benefit most from 

the system’s ability to align recommendations with their varied preferences. The balanced nature of G2 

appears to provide an optimal environment where the divergence functions can fine-tune 

recommendations effectively, resulting in a higher degree of accuracy in matching user interests. 

In contrast, when considering the calibration metrics (i.e., OSE), the results indicate that the mainstream 

users (G1) achieve the best calibration outcomes, except for the MLM-VAECF configuration (see Fig. 

1). Mainstream users, whose interactions are dominated by popular items, seem to serve as the primary 

target during the calibration process. The high calibration scores for G1 suggest that the RS is particularly 

adept at replicating the established popularity profile of these users. This phenomenon may stem from 

the fact that popular items generally provide more robust statistical signals, making them easier to 

optimize during the calibration phase, although it might also suggest that the calibration strategy is 

inherently biased towards reinforcing existing popularity patterns. 

Turning to the ARP metric, the findings indicate that the niche user group (G3) consistently exhibits the 

best performance in nearly all configurations, except for DB-SKM (see Fig. 4). This result is particularly 

insightful, as G3 users predominantly interact with less popular, long-tail items. The elevated ARP values 

for G3 indicate that the system is capable of accurately capturing and prioritizing the specific, less 

mainstream interests of these users. The enhanced ARP performance is also reflected in the aggregate 

diversity metric, where G3 typically registers higher diversity scores. Such an outcome suggests that the 

divergence functions, especially those that encourage diversity, can extend the recommendation lists to 

include a broader range of items that are more representative of the long tail, thereby better serving niche 

users. 
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Figure 1. Group-based performance comparison of divergence functions on MLM with VAECF for (a) Precision, 

(b) OSE, (c) ARP, and (d) Aggregate Diversity.  

 

 

 
Figure 2. Group-based performance comparison of divergence functions on MLM with SKM for (a) Precision, (b) 

OSE, (c) ARP, and (d) Aggregate Diversity.  
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Figure 3. Group-based performance comparison of divergence functions on DB with VAECF for (a) Precision, (b) 

OSE, (c) ARP, and (d) Aggregate Diversity.  

 

 

 
Figure 4. Group-based performance comparison of divergence functions on DB with SKM for (a) Precision, (b) 

OSE, (c) ARP, and (d) Aggregate Diversity.  
 

In the context of divergence metrics, comparing the two main approaches, Bhattacharyya and Chi-

Square offers additional insights. The Bhattacharyya divergence tends to generate recommendations that 

closely mirror the historical popularity profiles of users. This is particularly advantageous for achieving 

high precision in groups like G2, where a balanced interest distribution allows for accurate 

recommendations. However, this alignment sometimes comes at the expense of overall diversity, 

particularly for mainstream users, since the system may overly concentrate on popular items. On the 

other hand, the Chi-Square divergence, although sometimes showing a slight decrease in Precision, 
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appears to foster greater recommendation diversity. It manages to mitigate the inherent popularity bias 

by promoting a wider range of items, which is especially beneficial for mainstream users in the 

calibration process and for niche users who benefit from exposure to long-tail items. 
 

When evaluating the performance across different dataset–model combinations, it is evident that model 

architecture and dataset characteristics further modulate the behavior of divergence functions. For 

instance, while the precision performance of G2 remains robust in most configurations, the calibration 

effectiveness favoring G1 is more pronounced in settings other than MLM-VAECF (see Fig. 1). 

Similarly, ARP and Aggregate diversity metrics consistently underscore the strength of the 

recommendations for G3, except in the DB-SKM scenario (see Fig. 4), indicating that the interplay 

between model, data, and divergence strategy can yield variable outcomes. 
 

In summary, the observed trends highlight the need for user-group-specific strategies in RSs. The 

superior precision of the balanced group (G2) across most settings suggests that systems can achieve 

high accuracy by leveraging the naturally diverse interests of these users. Meanwhile, the calibration 

results for mainstream users (G1) indicate that reinforcing popular trends can be effective, albeit with 

the risk of perpetuating popularity bias. Finally, the strong ARP and diversity outcomes for niche users 

(G3) highlight the potential of divergence functions to enhance personalization by broadening the 

recommendation spectrum for users with non-mainstream tastes. These insights advocate for a more 

nuanced approach in the design of divergence-based RSs; one that tailors calibration and diversity 

enhancement strategies according to the unique popularity profiles of different user segments. 
 

6. LIMITATIONS AND FUTURE WORK  
 

While this study offers a comprehensive evaluation of divergence-based calibrated re-ranking strategies, 

several limitations should be acknowledged. First, a key challenge arises from the inherent data sparsity 

present in real-world datasets. For instance, the DB dataset used in our experiments exhibits an extreme 

sparsity level of approximately 99.7%. Although our approach demonstrates reasonable performance 

under such conditions, the limited number of user interactions substantially restricts the statistical 

reliability of observed item popularity distributions. This constraint hinders the effectiveness of 

calibration, particularly when divergence-based methods depend on estimating fine-grained popularity 

profiles at the individual level. Divergence functions with smoother gradient behavior (e.g., Hellinger 

or Bhattacharyya) may be somewhat more robust in these settings; however, data sparsity remains a 

structural bottleneck for all calibration-aware approaches. Developing specialized techniques that 

explicitly account for sparse-user behavior, potentially through hybrid or data-augmentation strategies, 

remains an open avenue for future research. 
 

Second, our approach applies calibrated re-ranking as a post-processing step to two specific 

collaborative filtering models (VAECF and SKM). While this design highlights the model-agnostic 

nature of the CP framework, it also limits generalizability to other algorithm families such as graph-

based or sequence-aware recommenders. Exploring the interaction between divergence-based 

calibration and a broader class of recommender backbones could yield further insights. Third, the λ 

parameter, which controls the trade-off between accuracy and calibration, was fixed at 0.5 in all 

experiments. Although this choice provides a neutral baseline for comparison, it may not represent the 

optimal setting for every divergence function, dataset, or user group. Future work could incorporate 

adaptive or learned weighting strategies to tune this parameter dynamically. 
 

These limitations point toward important directions for extending this work, particularly in enhancing 

robustness under sparse data conditions, expanding model coverage, and improving calibration adaptability. 
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7. CONCLUSION  
 

Popularity bias remains one of the most significant challenges in RSs, often resulting in reduced content 

diversity, limited personalization, and unfair treatment of niche items and users. To address this issue, 

we conducted a comprehensive investigation into calibrated popularity-based re-ranking methods by 

systematically evaluating alternative divergence measures within the prominent and well-known CP 

framework. Our evaluation, utilizing two distinct datasets (MovieLens-1M and Douban Book) and two 

representative collaborative filtering models (VAECF and Spherical k-Means), encompassed multiple 

divergence functions, including the Jensen–Shannon, Chi-Square, and Wasserstein divergences, among 

others. By considering both overall and user-group-specific performances, we aimed to understand how 

different divergence metrics affect the balance between recommendation accuracy, diversity, and the 

alignment with users' historical popularity preferences. 
 

Our findings suggest that the choice of divergence measures has a significant impact on the 

recommendation outcomes. The Chi-Square divergence consistently outperformed other measures in 

terms of calibration quality and mitigation of popularity bias, although it exhibited lower precision 

scores. In contrast, symmetric and smoother divergences such as Jensen–Shannon, Bhattacharyya, and 

Hellinger generally achieved higher precision but showed relatively modest calibration improvements. 

Divergence measures, such as Wasserstein and Renyi, presented balanced profiles, providing substantial 

calibration and diversity improvements while maintaining reasonable recommendation accuracy. 
 

Furthermore, our detailed group-based analysis revealed insightful patterns concerning user 

segmentation based on popularity preferences. Balanced users, with evenly distributed historical 

interactions, typically achieved the highest precision across most settings, suggesting that these users 

benefit most when recommendation strategies precisely align with their diverse interest distributions. 

Mainstream users, whose preferences concentrate on popular items, demonstrated the best calibration 

performance, underscoring the models' effectiveness in capturing strong popularity signals prevalent in 

their interaction histories. Meanwhile, niche users, who primarily engage with less popular items, benefited 

considerably from divergence measures that promote higher diversity and reduced recommendation 

popularity, thereby effectively enhancing personalization by capturing their specific interests.  
 

Overall, these insights underscore the complexity inherent in popularity calibration and highlight the 

importance of carefully selecting or combining divergence metrics based on system-level objectives and 

user characteristics. Practitioners aiming to mitigate popularity bias in real-world RSs should adopt 

flexible, user-segment-aware calibration strategies, balancing precision, diversity, and fairness to meet 

diverse user expectations effectively. 
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