Hacet. J. Math. Stat. Volume 54 (4) (2025), 1518-1532 DOI: 10.15672/hujms.1679033

RESEARCH ARTICLE

Robust gene co-expression networks via partial robust M regression

Ayca Olmez¹, Aylin Alin*²

¹Department of Statistics, The Graduate School of Natural and Applied Sciences, Dokuz Eylul University, Izmir, 35390, Türkiye

Abstract

Gene expression data provide valuable information on the regulation and interactions of thousands of genes. However, constructing robust gene co-expression networks in the presence of outliers remains an open challenge. We propose a partial robust M regression based-method for building ene co-expression networks, which downweights extreme observations instead of discarding them. This preserves critical biological information while safeguarding the overall network structure from distortion. Through comprehensive simulations on the syntren 300 dataset - including various outlier distributions (e.g. N(0, 5), N(1, 5), N(100, 10) and t(2) and contamination levels up to 30%, the partial robust M regression-based approach outperforms widely used methods (weighted gene co-expression network analysis, bi-weighted midcorrelation and partial least squares regression-based connectivity) in terms of precision, F1 and Matthews correlation coefficient. Real-data analysis of mouse liver gene expression further validates the stability and biological relevance of partial robust M regression-based gene co-expression networks, as it accurately identifies functionally enriched genes even under data contamination. These findings underscore the potential of partial robust M regression-based network construction to enhance reliability and uncover novel insights in high-dimensional genomic studies, offering a robust alternative to traditional correlation-based or partial least squares regression-based methods.

Mathematics Subject Classification (2020). 62H99, 92-10, 92-08

Keywords. Bi-weight mid-correlation, gene co-expression network analysis, outliers, partial robust m regression, robust, weighted gene co-expression network analysis

1. Introduction

Biological networks offer a robust framework for analyzing complex interactions in biological systems. Gene Co-Expression Networks (GCNs), derived from high-throughput expression data, reveal patterns of gene associations between conditions. These networks help uncover novel gene relationships, functional modules, and disease-related genes, advancing our understanding of biology and informing therapeutic strategies. The construction of GCNs typically involves two primary steps:

Email addresses: olmezayca@gmail.com (A. Olmez), aylin.alin@deu.edu.tr (A. Alin)

Received: 18.04.2025; Accepted: 21.06.2025

²Department of Statistics, Faculty of Science, Dokuz Eylul University, Izmir, 35390, Türkiye

^{*}Corresponding Author.

- 1. Computing a similarity measure for each gene pair, represented as network edges.
- 2. Grouping genes with similar expression patterns using hierarchical clustering.

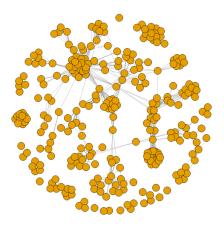


Figure 1. Visualization of Gene Network

Figure 1 presents the gene co-expression network of the simulated dataset used in the study. Nodes represent genes, while edges indicate pairwise connections.

Gene Set Enrichment Analysis (GSEA) is widely used to evaluate whether predefined gene sets exhibit statistically significant differences between experimental conditions. By highlighting overrepresented or underrepresented pathways or gene sets, GSEA uncovers underlying biological mechanisms and assesses the significance of identified genes [1]. Weighted Gene Co-Expression Network Analysis (WGCNA) [2], which employs Pearson's correlation as a similarity measure, is one of the most commonly used methods to construct GCNs. WGCNA has been applied successfully in various fields, including cancer research, cardiovascular studies, and mental health [4, 9, 10, 13, 18, 19, 24, 25]. However, Pearson's correlation is highly sensitive to outliers and leverage points, which can distort network structures and module assignments. These issues arise because Pearson correlation assumes normally distributed data and equal importance of all observations, assumptions that biological data often violate. To address these limitations, robust correlation measures, such as Biweight Midcorrelation (BICOR), have been proposed. BICOR reduces sensitivity to outliers and leverage points, making it a valuable alternative for constructing GCNs [2,11,15,20,28]. Another promising approach is the Partial Least Squares Regression (PLSR)-based connectivity scores [8]. PLSR is well-suited for high-dimensional biological data with missing values or noisy observations [27]. However, it also suffers from sensitivity to outliers and leverage points, which can compromise the reliability and predictions of the model. In this study, we propose a novel method for calculating robust connectivity scores in GCNs that directly addresses these challenges. Our approach is based on Partial Robust M-Regression (PRMR), which simultaneously downweights the influence of outliers and leverage points [23]. Unlike traditional similarity measures or PLSR-based connectivity scores, PRMR ensures reliable and accurate network structures without requiring the removal of anomalous data points.

To validate our method, a simulation study was conducted using the syntren300 data set from the R package gradata to ensure consistency of the results obtained from real data [24]. The dataset contains gene expression levels and the true underlying network used to generate them. In the true network structure, relationships are defined as present (1) or absent (0). Furthermore, we analyzed gene coexpression data from the liver of 135 female mice [21], a benchmark dataset that includes clinical traits and gene annotation information. This dataset enables a rigorous evaluation of the performance of

our method in identifying biologically significant modules and hub genes. We compare our method against WGCNA, BICOR, and PLSR-based approaches under both clean and outlier-contaminated conditions. Our findings demonstrate that the PRMR-based method consistently outperforms other approaches, particularly in the presence of outliers.

The rest of this paper is organized as follows. In the following Section, we detail the algorithms used in this study, including WGCNA, BICOR, PLSR-based scores, and our proposed PRMR-based approach. We describe their implementation details, parameter selection, and applications. Section 3 presents the applications of these methods in a simulation study and in real gene expression data analysis. The simulation study evaluates the robustness and performance of different methods under varying levels of outlier contamination, while the real data analysis explores gene co-expression networks associated with mouse body weight. We summarize key results, compare the performance of different methods, and discuss the advantages of the PRMR-based approach in gene network analysis in Section 4 where we also highlight future research directions and the potential applications of our method in biological studies. Supplementary materials, including the complete dataset and the implementation code, are provided for reproducibility and further exploration.

2. Methods

2.1. Topological Overlap Measure

The topological overlap measure (TOM), given with Eq. (2.1), is a similarity measure that captures higher-order interactions and identifies densely interconnected gene modules, which can provide information on gene regulation, biological functions, and disease mechanisms. It is calculated from the adjacency matrix considering the number of shared neighbors and their connectivity, and ranges from 0 to 1, with higher values indicating stronger topological overlap or interconnectedness between genes.

$$TOM_{ij} = \frac{\sum_{u} a_{iu} a_{uj} + a_{iu}}{min(k_i, k_j) + 1 - a_{ij}}$$
(2.1)

In Eq. (2.1), k is the row sum of the adjacency matrix with elements a_{ij} given in Eq. (2.3). Transformation to DistTOM in Eq. (2.2) allows the TOM values to be used as a dissimilarity measure in clustering analyses.

$$DistTOM_{ij} = 1 - TOM (2.2)$$

Gene network analysis is performed using similarity measures calculated by any method, along with TOM and DistTOM matrices.

2.2. Weighted Gene Co-Expression Network

The Pearson correlation coefficient is calculated for each gene pair to construct weighted gene co-expression networks. Since directionality is not relevant, the absolute value of the correlation is used to construct the adjacency matrix in Eq. (2.3) where β is the soft threshold. The higher β the more emphasis is placed on high correlations [2].

$$a_{ij} = |Corr(i,j)|^{\beta} \tag{2.3}$$

2.3. Bi-weight Mid-correlation

Pearson correlation coefficient is the most common choice for similarity measures. However, it is sensitive to outliers. The bi-weight mid-correlation is considered a good alternative to Pearson's correlation, as it is more robust to outliers [16]. Calculation of bi-weight

mid-correlation for all possible gene pairs is given with Eq. (2.4) where $\mathbf{x} = (x_1, ..., x_n)$ and $\mathbf{y} = (y_1, ..., y_n)$ with i = 1, ..., n.

$$bicor = \frac{\sum_{i=1}^{n} (x_i - med(\mathbf{x}))\omega_i^{(x)}(y_i - med(\mathbf{y}))\omega_i^{(y)}}{\sqrt{\sum_{i=1}^{n} [(x_i - med(\mathbf{x}))\omega_i^{(x)}]^2} \sqrt{\sum_{i=1}^{n} [(y_i - med(\mathbf{y}))\omega_i^{(y)}]^2}}$$
(2.4)

 u_i and v_i (Eq. (2.5) and Eq.(2.6)) are calculated to obtain the robust weight $\omega_i^{(x)}$ and $\omega_i^{(y)}$ (Eq. (2.7)).

$$u_i = \frac{x_i - med(\mathbf{x})}{9MAD(\mathbf{x})} \tag{2.5}$$

$$v_i = \frac{y_i - med(\mathbf{y})}{9MAD(\mathbf{y})} \tag{2.6}$$

$$\omega_i^{(x)} = (1 - u_i^2)^2 I(1 - |u_i|) \qquad \omega_i^{(y)} = (1 - v_i^2)^2 I(1 - |v_i|) \tag{2.7}$$

 $med(\boldsymbol{x})$ is the median of \boldsymbol{x} , $MAD(\boldsymbol{x}) = med|x_i - med(\boldsymbol{x})|$ is the median absolute deviation of \boldsymbol{x} , and I(1-|.|) is the indicator taking 1 if 1-|.|>0, and 0 otherwise. Thus, the weight $\omega_i^{(x)}$ is close to 1 if x_i is close to $med(\boldsymbol{x})$, and is 0 if x_i differs from $med(\boldsymbol{x})$ by more than $9MAD(\boldsymbol{x})$. The weight $\omega_i^{(y)}$ is the counterpart of $w_i^{(x)}$ for y_i .

2.4. Proposed Algorithm

The PRMR, first proposed by Hubert and Verboven[14], combines the robustness of Mestimators with partial regression techniques. It was initially developed to handle outliers and leverage points in chemometric calibration models by integrating the strengths of partial least squares regression with robust weighting functions, and is particularly suited for high-dimensional data affected by multicollinearity and noise.

Pihur et al. [21] proposed the connectivity score in Eq. (2.8), a PLSR-based similarity measure, for the reconstruction of genetic association networks from microarray data. If there is an edge between two nodes (i^{th} and j^{th} genes), this edge is formed by statistically significant connectivity scores. A high connectivity score indicates a strong positive association or coexpression between the genes. Although this method is effective, it is sensitive to outliers and leverage points. To address this, we propose a robust connectivity score based on Partial Robust M-Regression (PRMR), designed to mitigate these limitations and provide reliable results. The connectivity score in Eq. (2.8) is obtained by calculating the association scores between the i^{th} and j^{th} genes, in the presence of the other genes

$$\hat{s}_{ij} = \frac{\sum_{a=1}^{A} c_{(i)}^{a} \nu_{(i)j}^{a} + \sum_{a=1}^{A} c_{(j)}^{a} \nu_{(j)i}^{a}}{2}$$
(2.8)

where in the first part of the numerator, the gene i is the response variable with $c^a_{(i)}$ representing the loading of the i^{th} gene on the a^{th} component. These loadings help us to understand the relationships between genes and components that capture the most significant patterns in the data. $\nu^a_{(i)j}$, on the other hand, is the contribution of the i^{th} gene. Once connectivity scores are calculated for each gene pair, the gene network can be constructed with the significant scores. To decide whether a connectivity score is significant or not, all scores are normalized from 1 to -1.

Unlike Pihur et al. [21], we calculate scores using robust weights and loadings obtained by the PRMR method [17]. Let the PRMR model be

$$y_i = t_i \eta + \delta_i \tag{2.9}$$

with $\eta = (\eta_1, \eta_2, ..., \eta_a)^T$ is the regression coefficients vector. The main advantage of the PRMR is its robustness to both leverage points and outliers. Robustness is achieved by weighting each observation using

$$w_i = \sqrt{w_i^r w_i^x} \tag{2.10}$$

where w_i^r addresses residual outliers and w_i^x accounts for leverage points. These weights are calculated as

$$w_i^r = f(h_i, c), \quad w_i^x = f(g_i, c)$$
 (2.11)

where, f is the Fair function, $f(u,c) = \frac{1}{(1+\frac{u}{c})^2}$. The c is a tuning constant set to 4, h_i and g_i are given by Eq. (2.12) with $med_{L1}(X)$ is the robust center of design matrix X, $\| \cdot \|$ stands for the Euclidean norm. Using the Fair function provides a balance between efficiency and robustness. Unlike other robust loss functions, such as Huber or Tukey's bisquare, which can be too aggressive in complex biological datasets where extreme values may still maintain biological significance, the Fair function does not completely exclude the effect of outliers but step by step downweights them. In addition, the adjusting parameter c serves as a cut-off value in fair functions such as the Huber function and controls the level of robustness. In the literature, c is typically selected within the range of 1.5 to 4.5. In our study, we used the value c=4 because it provides sufficient robustness against outliers while maintaining statistical efficiency. These adjustments make it particularly suitable for biological data, where extreme values may represent a meaningful variation rather than simple noise. In other studies a variety of alternative weight functions and tuning constants have been explored [7,17,22,23].

$$h_i = \frac{y_i - \boldsymbol{y}_{median}}{\underset{i}{\text{median}} | y_i - \boldsymbol{y}_{median}|}, \quad g_i = \frac{\parallel x_i - med_{L1} \boldsymbol{X} \parallel}{\underset{i}{\text{median}} \parallel x_i - med_{L1} \boldsymbol{X} \parallel}$$
(2.12)

Steps for calculating PRMR-based connectivity scores (gene i is treated as a response):

- (1) Compute robust starting values w_i using Eq. (2.11) and Eq. (2.12).
- (2) Perform NIPALS (Nonlinear Iterative Partial Least Squares) algorithm [18] on weighted observations $w_i x_i$ and $w_i y_i$.
- (3) Recompute the weights w_i^r from the residuals and w_i^x from the scores $\mathbf{T} = (\mathbf{t_1}, \dots, \mathbf{t_A})$ and update w_i .
- (4) Return to Step (ii) and repeat until convergence.
- (5) Calculate similarity scores, s_{ij} , from the final PLSR results using $c_i^a = y_i t_a / t_a' t_a$ and $\nu_{(i)j}^a = \mathbf{X}' y_i / y_i' y_i$, where a = 1, ..., A denotes the index of latent components.
- (6) Construct the adjacency matrix, $a_{ij} = |s_{ij}|^{\beta}$.
- (7) Derive TOM and DistTOM matrices from the adjacency matrix.

2.5. Performance Metrics

The majority of biological data consists of unbalanced data sets. This imbalance arises because, in a high-dimensional setting, the number of genes significantly related is relatively small. To compare the performance of the model, confusion matrices were utilized. In statistical modeling, a confusion matrix that provides a detailed comparison of the prediction of the model with the actual outcomes of a data set is commonly used to evaluate the performance of a classification model. It categorizes predictions into four main groups: correct classifications for both classes (true positives and true negatives) and incorrect classifications (false positives and false negatives). The matrix represents the number of instances that the model classified in the test dataset.

(1) True Positive (TP): The model correctly predicts a positive outcome when the actual outcome is positive.

- (2) True Negative (TN): The model correctly predicts a negative outcome when the actual outcome is negative.
- (3) False Positive (FP): The model incorrectly predicts a positive outcome when the actual outcome is negative, also known as a Type I error.
- (4) False Negative (FN): The model incorrectly predicts a negative outcome when the actual outcome is positive, also known as a Type II error.

The key performance metrics Specificity, Precision, F1 Score, and Matthews Correlation Coefficient (MCC) can be calculated from the confusion matrix. These measures, with higher values indicating better model effectiveness, are crucial for evaluating model performance, particularly in large, unbalanced datasets with a high number of non-significant relationships [28]. The F1 score is the harmonic mean of Precision and Recall, balancing both metrics to provide a more comprehensive performance assessment. This metric is particularly useful in imbalanced datasets, where relying only on Precision or Recall may not provide an accurate representation of the effectiveness of a model. An F1 score with a high value indicates that the model performs well in terms of both identifying relevant instances (Precision) and capturing most of the actual positive cases (Recall). Since it penalizes extreme disparities between Precision and Recall, the F1 score serves as a reliable indicator of the classification performance of a model, especially when false positives and false negatives have significant implications. Furthermore, MCC is superior to the well-known Area Under Curve (AUC) metric for evaluating binary classifications because it considers sensitivity, specificity, and precision providing a balanced assessment. Unlike AUC, which can be overly optimistic by ignoring predictive values, MCC ensures that a high score reflects strong performance in all four metrics. Furthermore, while a high MCC always corresponds to a high AUC, the reverse is not always true, making MCC more reliable, especially with imbalanced datasets [29]. Table 1 displays the definitions and computations of the metrics used.

Metric Equation Description Specificity The proportion of actual negative cases that are correctly identified as negative. Precision The proportion of predicted positive instances that are true positives. Recall The proportion of actual positive cases that are correctly identified by the model. F1 Score A harmonic mean of precision and recall. MCC Measures the overall performance of the model by considering all classification errors.

Table 1. Performance metrics: definitions and calculations.

3. Numerical Comparisons

3.1. Simulation With and Without Outliers

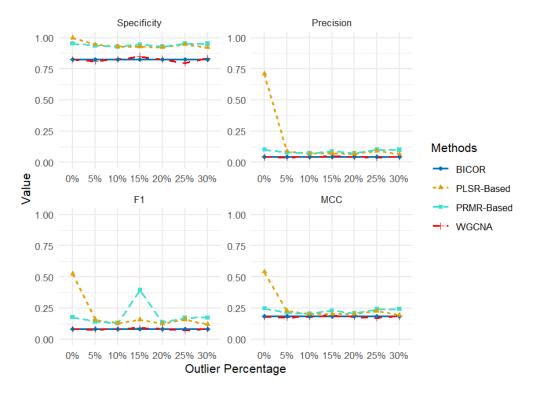
We conducted a simulation study to compare the methods using the syntren300 data set, which consists of 800 samples and 300 genes, from the package "grndata" in R. The dataset was generated using the publicly available SynTReN generator, which constructs synthetic gene expression data based on an E. coli source network [24]. This data set is selected for its suitability for benchmarking as it includes the ground-truth network structure. This characteristic allows for a direct and objective evaluation of algorithmic performance by comparing inferred network structures with the known underlying connections, thus

assessing the effectiveness of the proposed methods. The imbalance problem in the data arises from the presence of 728 relationships compared to 8,927 non-relationships. Here, we aim to correctly infer regulatory interactions (edges) between genes in a known synthetic E. coli gene regulatory network (GRN) generated by SynTReN. In this setup:

- Positives = gene pairs with a regulatory interaction (i.e., edges in the true E. coli network),
- Negatives = gene pairs with no interaction.

Initially, the dataset was analyzed in its original form without outliers. Subsequently, artificial outliers were introduced with contamination probabilities of 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30. Outliers were generated from four different distributions: 1) Normal distribution with μ =0 and σ =5; 2) Normal distribution with μ =1 and σ =5; 3) Normal distribution with μ =100 and σ =10; and finally 4) A heavy-tailed Students t-distribution with 2 degrees of freedom. The third set of outliers is particularly extreme because of their significantly higher mean compared to the other distributions and because its low standard deviation ensures that the outliers are tightly clustered around a highly deviant value. These scenarios allow for comparison between mild and severe deviations in data analysis. Analyses were conducted on both original and contaminated datasets to evaluate the robustness of the methods. The study specifically focuses on robust network inference approaches, comparing the performance of proposed PRMR-based, PLSR-based, WGCNA, and BICOR networks under different levels of contamination.

Table 2 presents the number of TP, TN, FP, and FN for the proposed method alongside the WGCNA, BICOR, and PLSR-based methods under various distributions and contamination levels, while Figures 2-5 display the corresponding performance metrics listed in Table 1. The results are summarized as follows: Although the PLSR-based network has fewer true positives compared to the other methods, it achieves the highest values across all metrics in the no-contamination setting, regardless of the distribution. This is due to its lower number of false positives and false negatives, as well as a higher number of true negatives. The well-known WGCNA and BICOR methods yield a higher number of false positives and a lower number of true negatives across all scenarios. This suggests that they are prone to falsely predicting regulatory interactions where none exist, leading to reduced specificity and precision. Consequently, their overall performance in terms of precision, specificity, F1 score, and MCC is consistently inferior to that of the proposed method. Except in the no-contamination setting, the proposed PRMR-based method yields a higher number of true negatives and a lower number of false positives, demonstrating that it is highly effective at correctly ruling out non-interacting gene pairs. Although its true positive count may be slightly lower than WGCNA and BICOR, it achieves higher precision, indicating that its positive predictions are more likely to be correct. For example, under the N(100,10) distribution with 15% contamination, we obtain


- WGCNA precision = 689 / (689 + 15,627) = 0.042,
- PRMR precision = 477 / (477 + 4,679) = 0.093,

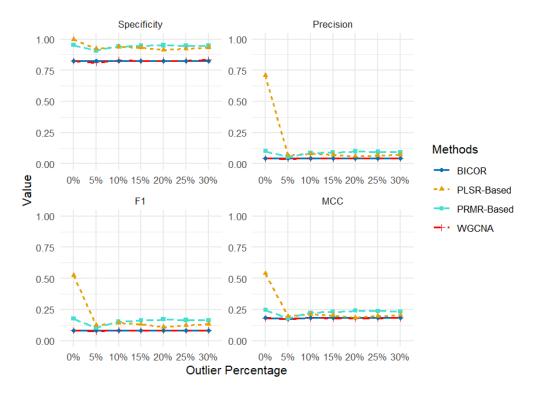
and under the t(2) distribution with 5% contamination, we get

- WGCNA precision = $688 / (688 + 15{,}373) = 0.043$,
- PRMR precision = 473 / (473 + 4.841) = 0.089.

These results show that the PRMR method makes more accurate positive predictions, i.e., when it predicts an interaction, it is more likely to be correct. Although the PRMR-based method may occasionally yield more false positives, it achieves a higher F1 score, which reflects a good balance between precision and recall. This suggests that it can identify many of the true regulatory interactions while avoiding excessive inclusion of false ones. With a consistently higher number of true negatives, the proposed method correctly identifies non-interacting gene pairs, thus avoiding false discoveries. Despite occasional increases in FP, its higher specificity provides greater confidence that selected interactions

are not spurious or irrelevant, which is particularly important in imbalanced data where most potential interactions are, in fact, negatives. Finally, the higher MCC values achieved by our method demonstrate overall strong and reliable performance, even in the presence of class imbalance and noise. MCC accounts for all four components of the confusion matrix (TP, TN, FP, FN), making it a robust and informative measure in our context.

Figure 2. Performance evaluation of methods on the syntren300 dataset across different outlier levels with a distribution of $N(\mu=0, \sigma=5)$.


3.2. Application With and Without Outliers

We also evaluated the four methods on a real-world mouse liver gene expression dataset, a widely used benchmark that includes auxiliary and ontology data and is often used in gene co-expression network (GCN) analysis tutorials. The data set comprises 3,600 genes measured in 135 female mice and has been used to explore associations between gene expression and mouse body weight [16].

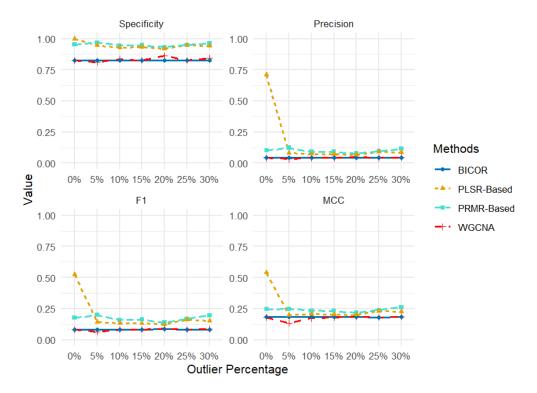

To focus on the primary variables of interest, the auxiliary data were removed and the expression matrix was transposed so that the rows corresponded to the genes and the columns to the samples. This preprocessing facilitates module detection and the investigation of genetrait relationships. During preprocessing, the dataset was examined for potential outliers and missing values. A hierarchical clustering dendrogram was generated to assess sample similarity, revealing sample F2-221 as a clear outlier. Missing values were addressed using the goodSamplesGenes function, and imputation was performed using gene-wise medians. All analyses were repeated with and without this outlier to assess robustness. The "mergeCloseModules" function was applied with a similarity threshold of 0.75 to identify and merge similar modules to ensure compact and meaningful module structures [16]. The comparative evaluation of the methods was based on their ability to detect biologically and statistically relevant gene modules.

Table 2. Detailed TP, FP, FN, and TN values for each method across varying outlier contamination rates (030%) and different data distributions (N(0,5), N(1,5), N(100,10), and t(2)).

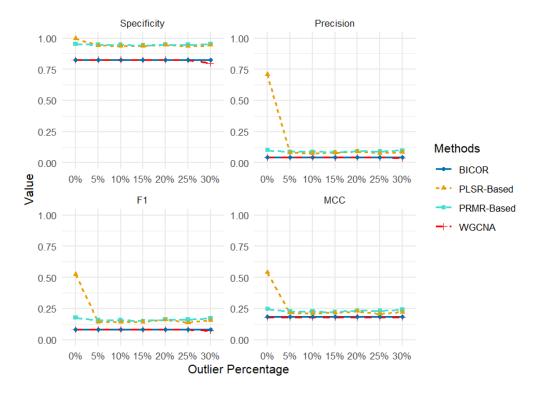
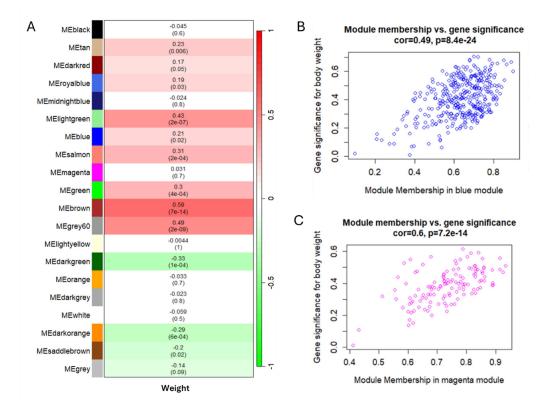

Ontlier(%) Methods TP FN FP TN TP FN FN TP		Distributions		N	(0,5)			N	(1,5)	
PLSR-Based G91 37 1545 73927 691 37 1545 73927 1546	Outlier(%)	Methods	TP	FN	FP	TN	TP	FN	FP	TN
PINSR-Based 302 266 124 89148 302 426 1240 124	0	WGCNA	690	38	15630	73642	690	38	15630	73642
PRMR-Based 478 250 4200 85072 478 250 45072		BICOR	691	37	15345	73927	691	37	15345	73927
Tell		PLSR-Based	302	426	124	89148	302	426	124	89148
Tell		PRMR-Based	478	250	4200	85072	478	250	4200	85072
PLSR-Based 691 37 6335 7397 635 7397 6395 7398 7498	5	WGCNA	700	28	16892	72380	695		16645	72627
PINSR-Based 487 241 6818 2815 473 255 4817 8401 PIRMR-Based 691 37 15317 7375 687 41 1503 74233 PISR-Based 485 243 6387 82885 478 250 5514 83178 PISR-Based 485 243 6387 82885 478 250 5514 83178 PISR-Based 487 248 6384 37920 610 37 15345 73645 PISR-Based 481 242 6364 82908 481 243 6114 83158 PISR-Based 481 242 6364 82908 481 243 6114 83158 PISR-Based 481 242 6364 82908 481 243 6134 8318 PISR-Based 481 242 6364 82908 481 243 6134 8318 PISR-Based 481 252 6304 82968 487 251 4337 84935 PISR-Based 496 232 6304 82968 487 251 4337 84935 PISR-Based 496 232 6304 82968 487 251 4337 84935 PISR-Based 496 232 6304 82968 487 251 4337 84935 PISR-Based 496 232 6304 82968 487 251 4337 84935 PISR-Based 497 251 4343 84290 481 243 6465 PISR-Based 477 251 4343 84290 481 249 249 249 PISR-Based 487 251 4343 84290 481 247 248 249 PISR-Based 487 251 4343 84290 481 247 248 248 PISR-Based 487 251 4343 84290 481 247 248 249 PISR-Based 487 251 4343 84290 481 247 248 248 PISR-Based 487 251 4343 84290 481 247 248 248 PISR-Based 487 251 4343 84290 481 247 248 248 PISR-Based 487 251 4343 84290 481 247 248 248 PISR-Based 508 251 4343 4349 436 248 248 248 248 PISR-Based 487 251 4343 4349 434 4340 4340 PISR-Based 691 37 15345 73927 434 4340 4340 PISR-Based 691 37 15345 73927 434 4340 4340 PISR-Based 691 37 15347 73926 691 37 15343 73936 PISR-Based 691 37 15347 73926 691 37 15343 73936 PISR-Based 691 37 15347 73926 691 37 15345 73924 PISR-Based 692 248 249			691	37	16335	73937	691	37	15335	73937
PRMR-Based 497 231 8115 8175 479 249 574 7373 7375		PLSR-Based	487		6687	82585	473	255	4871	84401
NGCNA Fig. 1.5		PRMR-Based	497	231	8115	81157	479	249	5541	83731
PINSPASS 148 178	10	WGCNA	691	37	15519		687		15033	74239
PLSR-Based 485 248 6387 8285 478 250 5516 87116 150 WGCNA 671 57 13341 75931 689 39 15627 73645		BICOR	691	37	15347			37	15349	
PRMR-Basel PRMR-Basel PRMR-Basel PLSR-Basel PLSR-Basel PLSR-Basel PLSR-Basel RICOR PLSR-Basel RICOR RIC										
NGCNA		PRMR-Based	492	236	6376	82896	484	244	5156	84116
PINTR-Based 691 37 15343 73929 691 37 15345 73927 15464 15465	15				13341	75931				
PLSR-Based 486 242 6364 82908 480 248 6114 83158 PMRNR-Based 688 40 15330 73942 689 39 15477 73011 7301										
PRMR-Based Ref Re										
PLSR-Based 49 15330 73942 689 39 15471 73801 PLSR-Based 496 232 6304 82968 497 231 7767 81505 PLSR-Based 496 232 6304 82429 477 251 4337 84935 PLSR-Based 505 223 6743 82429 477 251 4337 84935 PLSR-Based 476 253 4845 84427 489 239 15455 73817 PLSR-Based 477 251 4343 84929 483 245 4597 84675 PRMR-Based 477 251 4343 84929 483 245 4597 84675 PLSR-Based 489 239 7013 82259 481 247 6065 83207 PLSR-Based 477 251 4347 8495 441 41912 74360 PLSR-Based 477 251 4307 84965 479 249 4641 84631 PLSR-Based 477 251 4307 84965 479 249 4641 84631 PLSR-Based 477 251 4307 84965 479 249 4641 84631 PLSR-Based 477 251 4307 84965 479 249 4641 84631 PLSR-Based 478 250 4204 85072 481 247 6065 83207 PLSR-Based 302 426 124 89148 4304 440 440 440 PLSR-Based 302 426 124 89148 440 440 440 440 PLSR-Based 478 250 4200 85072 478 250 4200 85072 PLSR-Based 478 250 4200 85072 478 250 4200 85072 PLSR-Based 478 250 4200 85072 478 250 4200 85072 PLSR-Based 478 250 4200 85072 478 250 4200 85072 PLSR-Based 478 250 4204 8438 473 255 5403 83869 PLSR-Based 480 248 6114 84531 473 255 5403 83869 PLSR-Based 480 248 6114 84518 477 251 5419 83853 PLSR-Based 480 248 6114 84358 477 251 5419 83853 PLSR-Based 480 248 6114 84583 473 255 4841 84431 15 WGCNA 689 39 15627 73645 689 39 15537 73715 PLSR-Based 500 228 6275 82996 481 247 5649 83623 PRMR-Based 480 248 6114 84358 477 251 5419 83853 PLSR-Based 500 248 6114 84585 477 251 5419 83853 PLSR-Based 500 248 6114 84585 489 39 15545 73										
PLSR-Based 496 232 6304 82968 497 231 7767 815058 14658	20									
PLSR-Based 496 232 6304 82968 497 231 7767 84307 84305	20									
PRMR-Based PRMR-Based PRMGCNA PRMGCNA PRMR-Based PRMR-Bas										
BICOR										
BICOR FISR-Based FISR-Ba	25									
PLSR-Based 475 253 4845 84427 489 239 6687 8457 84675 8	_0									
PRMR-Based 477 251 4343 84929 483 245 4597 84675 34668 34688 347 44896 74376 684 444 14912 743600 743600 743600 743600 743600 7										
NGCNA										
PLSR-Based 489 239 7013 82259 481 247 6065 83207 PRMR-Based 489 239 7013 82259 481 247 6065 83207 PRMR-Based 479 251 4307 84965 479 249 46065 Distributions TS TS TN TR TS TS Outlier(%) Methods TP FN TN TN TP TN TM BICOR 690 38 15630 73642 690 38 15630 73642 PLSR-Based 302 426 124 89148 302 426 124 89148 PRMR-Based 476 426 426 826 888 40 15420 73852 BICOR 691 37 15337 73935 691 37 15333 73935 BICOR 691 37 15337 73935 691 37 15333 73935 PLSR-Based 480 46620 7665 688 40 15420 73852 BICOR 691 37 15337 73935 691 37 15333 73935 PRMR-Based 480 41672 74600 689 39 15373 73935 PRMR-Based 480 41672 74600 689 39 15373 73935 PLSR-Based 480 41672 74600 689 39 15373 73935 PLSR-Based 480 41672 74600 689 39 15373 73935 PLSR-Based 480 41672 73645 689 39 15345 73927 PLSR-Based 480 4814 4814 4814 4814 PLSR-Based 480 4814 4814 4814 4814 PLSR-Based 480 4814 4814 4814 4814 4814 4814 4814 4814 PLSR-Based 480 4814	30									
PLSR-Based 489 239 7013 8259 481 247 6065 8470 8481 1461 84631 146	00									
PRMR-Based 477 251 4307 84965 479 249 4641 84631 Distributions										
Outlier(%) Methods TP FN FP TN TP FN FP TN TP FN FP TN TP FN FP TN 0 WGCNA 690 38 15630 73642 690 38 15630 73642 BICOR 691 37 15345 73927 691 37 15345 73927 PLSR-Based 478 250 4200 85072 478 250 4200 85072 5 WGCNA 564 164 16620 72652 688 40 15420 73852 BICOR 691 37 15337 73935 691 37 15333 73939 PLSR-Based 415 313 4731 84541 473 255 5403 83869 PRMR-Based 496 322 2834 86438 473 255 5403 8369 PLSR-Based 500 228										
Outlier(%) Methods TP FN FP TN TP FN FP TN 0 WGCNA 690 38 15630 73642 690 38 15630 73642 BICOR 691 37 15345 73927 691 37 15345 73927 PLSR-Based 302 426 124 89148 302 426 124 89148 PRMR-Based 478 250 4200 85072 478 250 4200 85072 5 WGCNA 564 164 16620 72652 688 40 15420 73852 BICOR 691 37 15337 73935 691 37 15333 73939 PLSR-Based 415 313 4731 84541 473 255 5403 83869 PRMR-Based 496 332 2834 86438 473 255 5403 83623 PLSR-B										
O WGCNA 690 38 15630 73642 690 38 15630 73642 BICOR 691 37 15345 73927 691 37 15345 73927 PLSR-Based 302 426 124 89148 302 426 124 89148 PRMR-Based 478 250 4200 85072 478 250 4200 85072 5 WGCNA 564 164 16620 72652 688 40 15420 73852 BICOR 691 37 15337 73935 691 37 15333 73935 691 37 15333 73935 691 37 15333 73935 691 37 15333 73939 84638 473 255 5403 83869 PRMR-Based 496 332 2834 86438 473 255 5403 83869 PLSR-Based 500 228 6275		Distributions		IN C.	TOO'TO!					
BICOR 691 37 15345 73927 691 37 15345 73927 PLSR-Based 302 426 124 89148 302 426 124 89148 PRMR-Based 478 250 4200 85072 478 250 4200 85072 5 WGCNA 564 164 16620 72652 688 40 15420 73852 BICOR 691 37 15337 73935 691 37 15333 73933 PRMR-Based 415 313 4731 84541 473 255 5403 8369 PRMR-Based 396 332 2834 86438 473 255 5403 8369 PRMR-Based 491 37 15347 73925 691 37 15345 73927 PLSR-Based 500 228 6275 82996 481 247 5649 83623 PRMR-Based 491 </th <th>Outlier(%)</th> <th></th> <th>TP</th> <th></th> <th></th> <th>TN</th> <th>TP</th> <th></th> <th></th> <th>TN</th>	Outlier(%)		TP			TN	TP			TN
PRMR-Based 478 250 4200 85072 478 250 4200 85072 5 WGCNA 564 164 16620 72652 688 40 15420 73852 BICOR 691 37 15337 73935 691 37 15333 73939 PLSR-Based 415 313 4731 84541 473 255 5403 83869 PRMR-Based 396 332 2834 86438 473 255 5403 83869 PRMR-Based 396 332 2834 86438 473 255 4841 84431 10 WGCNA 648 80 14672 74600 689 39 15373 73899 BICOR 691 37 15347 73925 691 37 15345 73927 PLSR-Based 491 237 4939 84333 473 255 4841 84431 15		Methods		FN	FP			$\mathbf{F}\mathbf{N}$	FP	
PRMR-Based 478 250 4200 85072 478 250 4200 85072 5 WGCNA 564 164 16620 72652 688 40 15420 73852 BICOR 691 37 15337 73935 691 37 15333 73939 PLSR-Based 415 313 4731 84541 473 255 5403 83869 PRMR-Based 396 332 2834 86438 473 255 5403 83869 PRMR-Based 396 332 2834 86438 473 255 4841 84431 10 WGCNA 648 80 14672 74600 689 39 15373 73899 BICOR 691 37 15347 73925 691 37 15345 73927 PLSR-Based 491 237 4939 84333 473 255 4841 84431 15		Methods WGCNA	690	FN 38	FP 15630	73642	690	FN 38	FP 15630	73642
BICOR 691 37 15337 73935 691 37 15333 73939 73939 73938 73939 73938 73939 73938		Methods WGCNA BICOR	690 691	FN 38 37	FP 15630 15345	73642 73927	690 691	FN 38 37	FP 15630 15345	73642 73927
BICOR 691 37 15337 73935 691 37 15333 73939 73939 73938 73939 73938 73939 73938		Methods WGCNA BICOR PLSR-Based	690 691 302	38 37 426	FP 15630 15345 124	73642 73927 89148	690 691 302	38 37 426	FP 15630 15345 124	73642 73927 89148
PRMR-Based 396 332 2834 86438 473 255 4841 84431 10 WGCNA 648 80 14672 74600 689 39 15373 73899 BICOR 691 37 15347 73925 691 37 15345 73927 PLSR-Based 500 228 6275 82996 481 247 5649 83623 PRMR-Based 491 237 4939 84333 473 255 4841 84431 15 WGCNA 689 39 15627 73645 689 39 15557 73715 BICOR 691 37 15347 73927 691 37 15349 73923 PLSR-Based 480 248 6114 83158 477 251 5419 83853 PRMR-Based 477 251 4679 84593 482 246 5220 84052 20	0	Methods WGCNA BICOR PLSR-Based PRMR-Based	690 691 302 478	38 37 426 250	FP 15630 15345 124 4200	73642 73927 89148 85072	690 691 302 478	38 37 426 250	FP 15630 15345 124 4200	73642 73927 89148 85072
10 WGCNA 648 80 14672 74600 689 39 15373 73899 BICOR 691 37 15347 73925 691 37 15345 73927 PLSR-Based 500 228 6275 82996 481 247 5649 83623 PRMR-Based 491 237 4939 84333 473 255 4841 84431 15 WGCNA 689 39 15627 73645 689 39 15557 73715 BICOR 691 37 15347 73927 691 37 15349 73923 PLSR-Based 480 248 6114 83158 477 251 5419 83853 PRMR-Based 477 251 4679 84593 482 246 5220 84052 20 WGCNA 637 91 12435 76837 689 39 15459 73813 <th< th=""><th>0</th><th>Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA</th><th>690 691 302 478 564</th><th>38 37 426 250 164</th><th>FP 15630 15345 124 4200 16620</th><th>73642 73927 89148 85072 72652</th><th>690 691 302 478 688</th><th>38 37 426 250 40</th><th>FP 15630 15345 124 4200 15420</th><th>73642 73927 89148 85072 73852</th></th<>	0	Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA	690 691 302 478 564	38 37 426 250 164	FP 15630 15345 124 4200 16620	73642 73927 89148 85072 72652	690 691 302 478 688	38 37 426 250 40	FP 15630 15345 124 4200 15420	73642 73927 89148 85072 73852
BICOR 691 37 15347 73925 691 37 15345 73927 PLSR-Based 500 228 6275 82996 481 247 5649 83623 PRMR-Based 491 237 4939 84333 473 255 4841 84431 15 WGCNA 689 39 15627 73645 689 39 15557 73715 BICOR 691 37 15347 73927 691 37 15349 73923 PLSR-Based 480 248 6114 83158 477 251 5419 83853 PRMR-Based 477 251 4679 84593 482 246 5220 84052 20 WGCNA 637 91 12435 76837 689 39 15459 73813 BICOR 691 37 15343 73929 691 37 15343 73929 PLSR-Based	0	Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR	690 691 302 478 564 691	38 37 426 250 164 37	FP 15630 15345 124 4200 16620 15337	73642 73927 89148 85072 72652 73935	690 691 302 478 688 691	38 37 426 250 40 37	FP 15630 15345 124 4200 15420 15333	73642 73927 89148 85072 73852 73939
BICOR 691 37 15347 73925 691 37 15345 73927 PLSR-Based 500 228 6275 82996 481 247 5649 83623 PRMR-Based 491 237 4939 84333 473 255 4841 84431 15 WGCNA 689 39 15627 73645 689 39 15557 73715 BICOR 691 37 15347 73927 691 37 15349 73923 PLSR-Based 480 248 6114 83158 477 251 5419 83853 PRMR-Based 477 251 4679 84593 482 246 5220 84052 20 WGCNA 637 91 12435 76837 689 39 15459 73813 BICOR 691 37 15343 73929 691 37 15343 73929 PLSR-Based	0	Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based	690 691 302 478 564 691 415	38 37 426 250 164 37 313	FP 15630 15345 124 4200 16620 15337 4731	73642 73927 89148 85072 72652 73935 84541	690 691 302 478 688 691 473	38 37 426 250 40 37 255	FP 15630 15345 124 4200 15420 15333 5403	73642 73927 89148 85072 73852 73939 83869
PLSR-Based 500 228 6275 82996 481 247 5649 83623 PRMR-Based 491 237 4939 84333 473 255 4841 84431 15 WGCNA 689 39 15627 73645 689 39 15557 73715 BICOR 691 37 15347 73927 691 37 15349 73923 PLSR-Based 480 248 6114 83158 477 251 5419 83853 PRMR-Based 477 251 4679 84593 482 246 5220 84052 20 WGCNA 637 91 12435 76837 689 39 15459 73813 BICOR 691 37 15343 73929 691 37 15343 73929 PLSR-Based 510 218 6164 83108 469 259 4705 84567 PRMR-Based <th>5</th> <th>Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based</th> <th>690 691 302 478 564 691 415 396</th> <th>FN 38 37 426 250 164 37 313 332</th> <th>FP 15630 15345 124 4200 16620 15337 4731 2834</th> <th>73642 73927 89148 85072 72652 73935 84541 86438</th> <th>690 691 302 478 688 691 473 473</th> <th>38 37 426 250 40 37 255 255</th> <th>FP 15630 15345 124 4200 15420 15333 5403 4841</th> <th>73642 73927 89148 85072 73852 73939 83869 84431</th>	5	Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based	690 691 302 478 564 691 415 396	FN 38 37 426 250 164 37 313 332	FP 15630 15345 124 4200 16620 15337 4731 2834	73642 73927 89148 85072 72652 73935 84541 86438	690 691 302 478 688 691 473 473	38 37 426 250 40 37 255 255	FP 15630 15345 124 4200 15420 15333 5403 4841	73642 73927 89148 85072 73852 73939 83869 84431
15 WGCNA 689 39 15627 73645 689 39 15557 73715 BICOR 691 37 15347 73927 691 37 15349 73923 PLSR-Based 480 248 6114 83158 477 251 5419 83853 PRMR-Based 477 251 4679 84593 482 246 5220 84052 20 WGCNA 637 91 12435 76837 689 39 15459 73813 BICOR 691 37 15343 73929 691 37 15343 73929 PLSR-Based 510 218 6164 83108 469 259 4705 84567 PRMR-Based 513 215 7147 82125 478 250 4658 84614 25 WGCNA 688 40 15542 73730 690 38 15540 73732 <th< th=""><th>5</th><th>Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based</th><th>690 691 302 478 564 691 415 396 648</th><th>FN 38 37 426 250 164 37 313 332 80</th><th>FP 15630 15345 124 4200 16620 15337 4731 2834 14672</th><th>73642 73927 89148 85072 72652 73935 84541 86438 74600</th><th>690 691 302 478 688 691 473 473</th><th>38 37 426 250 40 37 255 255 39</th><th>15630 15345 124 4200 15420 15333 5403 4841 15373</th><th>73642 73927 89148 85072 73852 73939 83869 84431 73899</th></th<>	5	Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based	690 691 302 478 564 691 415 396 648	FN 38 37 426 250 164 37 313 332 80	FP 15630 15345 124 4200 16620 15337 4731 2834 14672	73642 73927 89148 85072 72652 73935 84541 86438 74600	690 691 302 478 688 691 473 473	38 37 426 250 40 37 255 255 39	15630 15345 124 4200 15420 15333 5403 4841 15373	73642 73927 89148 85072 73852 73939 83869 84431 73899
BICOR 691 37 15347 73927 691 37 15349 73923 PLSR-Based 480 248 6114 83158 477 251 5419 83853 PRMR-Based 477 251 4679 84593 482 246 5220 84052 20 WGCNA 637 91 12435 76837 689 39 15459 73813 BICOR 691 37 15343 73929 691 37 15343 73929 PLSR-Based 510 218 6164 83108 469 259 4705 84567 PRMR-Based 513 215 7147 82125 478 250 4658 84614 25 WGCNA 688 40 15542 73730 690 38 15540 73732 PLSR-Based 470 258 4618 84654 480 248 5836 83436 PRMR-Based <th>5</th> <th>Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based</th> <th>690 691 302 478 564 691 415 396 648 691</th> <th>FN 38 37 426 250 164 37 313 332 80 37</th> <th>FP 15630 15345 124 4200 16620 15337 4731 2834 14672 15347</th> <th>73642 73927 89148 85072 72652 73935 84541 86438 74600 73925</th> <th>690 691 302 478 688 691 473 473 689 691</th> <th>38 37 426 250 40 37 255 255 39 37</th> <th>15630 15345 124 4200 15420 15333 5403 4841 15373 15345</th> <th>73642 73927 89148 85072 73852 73939 83869 84431 73899 73927</th>	5	Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based	690 691 302 478 564 691 415 396 648 691	FN 38 37 426 250 164 37 313 332 80 37	FP 15630 15345 124 4200 16620 15337 4731 2834 14672 15347	73642 73927 89148 85072 72652 73935 84541 86438 74600 73925	690 691 302 478 688 691 473 473 689 691	38 37 426 250 40 37 255 255 39 37	15630 15345 124 4200 15420 15333 5403 4841 15373 15345	73642 73927 89148 85072 73852 73939 83869 84431 73899 73927
PLSR-Based 480 248 6114 83158 477 251 5419 83853 PRMR-Based 477 251 4679 84593 482 246 5220 84052 20 WGCNA 637 91 12435 76837 689 39 15459 73813 BICOR 691 37 15343 73929 691 37 15343 73929 PLSR-Based 510 218 6164 83108 469 259 4705 84567 PRMR-Based 513 215 7147 82125 478 250 4658 84614 25 WGCNA 688 40 15542 73730 690 38 15540 73732 BICOR 693 35 15583 73689 691 37 15345 73927 PLSR-Based 470 258 4618 84654 480 248 5836 83436 PRMR-Based <th>5</th> <th>Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based</th> <th>690 691 302 478 564 691 415 396 648 691 500</th> <th>FN 38 37 426 250 164 37 313 332 80 37 228</th> <th>FP 15630 15345 124 4200 16620 15337 4731 2834 14672 15347 6275</th> <th>73642 73927 89148 85072 72652 73935 84541 86438 74600 73925 82996</th> <th>690 691 302 478 688 691 473 473 689 691 481</th> <th>38 37 426 250 40 37 255 255 39 37 247</th> <th>15630 15345 124 4200 15420 15333 5403 4841 15373 15345 5649</th> <th>73642 73927 89148 85072 73852 73939 83869 84431 73899 73927 83623</th>	5	Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based	690 691 302 478 564 691 415 396 648 691 500	FN 38 37 426 250 164 37 313 332 80 37 228	FP 15630 15345 124 4200 16620 15337 4731 2834 14672 15347 6275	73642 73927 89148 85072 72652 73935 84541 86438 74600 73925 82996	690 691 302 478 688 691 473 473 689 691 481	38 37 426 250 40 37 255 255 39 37 247	15630 15345 124 4200 15420 15333 5403 4841 15373 15345 5649	73642 73927 89148 85072 73852 73939 83869 84431 73899 73927 83623
PRMR-Based 477 251 4679 84593 482 246 5220 84052 20 WGCNA 637 91 12435 76837 689 39 15459 73813 BICOR 691 37 15343 73929 691 37 15343 73929 PLSR-Based 510 218 6164 83108 469 259 4705 84567 PRMR-Based 513 215 7147 82125 478 250 4658 84614 25 WGCNA 688 40 15542 73730 690 38 15540 73732 BICOR 693 35 15583 73689 691 37 15345 73927 PLSR-Based 470 258 4618 84654 480 248 5836 83436 PRMR-Based 478 250 4476 84796 478 250 4760 84512 30	5	Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based PRMR-Based	690 691 302 478 564 691 415 396 648 691 500 491	FN 38 37 426 250 164 37 313 332 80 37 228 237	FP 15630 15345 124 4200 16620 15337 4731 2834 14672 15347 6275 4939	73642 73927 89148 85072 72652 73935 84541 86438 74600 73925 82996 84333	690 691 302 478 688 691 473 473 689 691 481 473	38 37 426 250 40 37 255 255 39 37 247 255	15345 124 4200 15342 15420 15420 15333 5403 4841 15373 15345 5649 4841	73642 73927 89148 85072 73852 73939 83869 84431 73899 73927 83623 84431
20 WGCNA 637 91 12435 76837 689 39 15459 73813 BICOR 691 37 15343 73929 691 37 15343 73929 PLSR-Based 510 218 6164 83108 469 259 4705 84567 PRMR-Based 513 215 7147 82125 478 250 4658 84614 25 WGCNA 688 40 15542 73730 690 38 15540 73732 BICOR 693 35 15583 73689 691 37 15345 73927 PLSR-Based 470 258 4618 84654 480 248 5836 83436 PRMR-Based 478 250 4476 84796 478 250 4760 84512 30 WGCNA 671 57 13965 75307 790 19 18035 71237 <th< th=""><th>5</th><th>Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based WGCNA BICOR PLSR-Based WGCNA BICOR PLSR-Based</th><th>690 691 302 478 564 691 415 396 648 691 500 491 689</th><th>FN 38 37 426 250 164 37 313 332 80 37 228 237</th><th>FP 15630 15345 124 4200 16620 15337 4731 2834 14672 15347 6275 4939 15627</th><th>73642 73927 89148 85072 72652 73935 84541 86438 74600 73925 82996 84333 73645</th><th>690 691 302 478 688 691 473 473 689 691 481 473 689</th><th>38 37 426 250 40 37 255 255 39 37 247 255 39</th><th>15345 124 4200 15420 15420 15333 5403 4841 15373 15345 5649 4841 15557</th><th>73642 73927 89148 85072 73852 73939 83869 84431 73899 73927 83623 84431 73715</th></th<>	5	Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based WGCNA BICOR PLSR-Based WGCNA BICOR PLSR-Based	690 691 302 478 564 691 415 396 648 691 500 491 689	FN 38 37 426 250 164 37 313 332 80 37 228 237	FP 15630 15345 124 4200 16620 15337 4731 2834 14672 15347 6275 4939 15627	73642 73927 89148 85072 72652 73935 84541 86438 74600 73925 82996 84333 73645	690 691 302 478 688 691 473 473 689 691 481 473 689	38 37 426 250 40 37 255 255 39 37 247 255 39	15345 124 4200 15420 15420 15333 5403 4841 15373 15345 5649 4841 15557	73642 73927 89148 85072 73852 73939 83869 84431 73899 73927 83623 84431 73715
BICOR 691 37 15343 73929 691 37 15343 73929 PLSR-Based 510 218 6164 83108 469 259 4705 84567 PRMR-Based 513 215 7147 82125 478 250 4658 84614 25 WGCNA 688 40 15542 73730 690 38 15540 73732 BICOR 693 35 15583 73689 691 37 15345 73927 PLSR-Based 470 258 4618 84654 480 248 5836 83436 PRMR-Based 478 250 4476 84796 478 250 4760 84512 30 WGCNA 671 57 13965 75307 790 19 18035 71237 BICOR 691 37 15343 73929 691 37 15345 73927 PLSR-Based	5	Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based WGCNA BICOR PLSR-Based WGCNA BICOR PLSR-Based PRMR-Based	690 691 302 478 564 691 415 396 648 691 500 491 689 691	FN 38 37 426 250 164 37 313 332 80 37 228 237 39 37	FP 15630 15345 124 4200 16620 15337 4731 2834 14672 15347 6275 4939 15627 15347	73642 73927 89148 85072 72652 73935 84541 86438 74600 73925 82996 84333 73645 73927	690 691 302 478 688 691 473 473 689 691 481 473 689 691	38 37 426 250 40 37 255 255 39 37 247 255 39 37	15345 124 4200 15420 15420 15333 5403 4841 15373 15345 5649 4841 15557 15349	73642 73927 89148 85072 73852 73939 83869 84431 73899 73927 83623 84431 73715 73923
PLSR-Based 510 218 6164 83108 469 259 4705 84567 PRMR-Based 513 215 7147 82125 478 250 4658 84614 25 WGCNA 688 40 15542 73730 690 38 15540 73732 BICOR 693 35 15583 73689 691 37 15345 73927 PLSR-Based 470 258 4618 84654 480 248 5836 83436 PRMR-Based 478 250 4476 84796 478 250 4760 84512 30 WGCNA 671 57 13965 75307 790 19 18035 71237 BICOR 691 37 15343 73929 691 37 15345 73927 PLSR-Based 491 237 5223 84049 476 252 5038 84234	5	Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based WGCNA BICOR PLSR-Based PLSR-Based PLSR-Based PRMR-Based	690 691 302 478 564 691 415 396 648 691 500 491 689 691 480	FN 38 37 426 250 164 37 313 332 80 37 228 237 39 37 248	FP 15630 15345 124 4200 16620 15337 4731 2834 14672 15347 6275 4939 15627 15347 6114	73642 73927 89148 85072 72652 73935 84541 86438 74600 73925 82996 84333 73645 73927 83158	690 691 302 478 688 691 473 689 691 473 689 691 477	38 37 426 250 40 37 255 255 39 37 247 255 39 37 255	15345 124 4200 15420 15420 15333 5403 4841 15373 15345 5649 4841 15557 15349 5419	73642 73927 89148 85072 73852 73939 83869 84431 73899 73927 83623 84431 73715 73923 83853
PRMR-Based 513 215 7147 82125 478 250 4658 84614 25 WGCNA 688 40 15542 73730 690 38 15540 73732 BICOR 693 35 15583 73689 691 37 15345 73927 PLSR-Based 470 258 4618 84654 480 248 5836 83436 PRMR-Based 478 250 4476 84796 478 250 4760 84512 30 WGCNA 671 57 13965 75307 790 19 18035 71237 BICOR 691 37 15343 73929 691 37 15345 73927 PLSR-Based 491 237 5223 84049 476 252 5038 84234	10 15	Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based WGCNA BICOR PLSR-Based PLSR-Based PLSR-Based PRMR-Based PRMR-Based	690 691 302 478 564 691 415 396 648 691 500 491 689 691 480 477	FN 38 37 426 250 164 37 313 332 80 37 228 237 39 37 248 251	15630 15345 124 4200 16620 15337 4731 2834 14672 15347 6275 4939 15627 15347 6114 4679	73642 73927 89148 85072 72652 73935 84541 86438 74600 73925 82996 84333 73645 73927 83158 84593	690 691 302 478 688 691 473 689 691 473 689 691 477 482	38 37 426 250 40 37 255 255 39 37 247 255 39 37 251 246	15345 124 4200 15420 15333 5403 4841 15373 15345 5649 4841 15557 15349 5419 5220	73642 73927 89148 85072 73852 73939 83869 84431 73899 73927 83623 84431 73715 73923 83853 84052
25 WGCNA 688 40 15542 73730 690 38 15540 73732 BICOR 693 35 15583 73689 691 37 15345 73927 PLSR-Based 470 258 4618 84654 480 248 5836 83436 PRMR-Based 478 250 4476 84796 478 250 4760 84512 30 WGCNA 671 57 13965 75307 790 19 18035 71237 BICOR 691 37 15343 73929 691 37 15345 73927 PLSR-Based 491 237 5223 84049 476 252 5038 84234	10 15	Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PLSR-Based PLSR-Based PRMR-Based PRMR-Based WGCNA BICOR PLSR-Based WGCNA BICOR PLSR-Based	690 691 302 478 564 691 415 396 648 691 500 491 689 691 480 477 637	FN 38 37 426 250 164 37 313 332 80 37 228 237 39 37 248 251 91	FP 15630 15345 124 4200 16620 15337 4731 2834 14672 15347 6275 4939 15627 15347 6114 4679 12435	73642 73927 89148 85072 72652 73935 84541 86438 74600 73925 82996 84333 73645 73927 83158 84593 76837	690 691 302 478 688 691 473 473 689 691 477 482 689	38 37 426 250 40 37 255 255 39 37 247 255 39 37 251 246	1549 1549 1549 1540 15420 15420 15333 5403 4841 15373 15345 5649 4841 15557 15349 5419 5220 15459	73642 73927 89148 85072 73852 73939 83869 84431 73899 73927 83623 84431 73715 73923 83853 84052 73813
BICOR 693 35 15583 73689 691 37 15345 73927 PLSR-Based 470 258 4618 84654 480 248 5836 83436 PRMR-Based 478 250 4476 84796 478 250 4760 84512 30 WGCNA 671 57 13965 75307 790 19 18035 71237 BICOR 691 37 15343 73929 691 37 15345 73927 PLSR-Based 491 237 5223 84049 476 252 5038 84234	10 15	Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PLSR-Based PLSR-Based PRMR-Based PRMR-Based WGCNA BICOR PLSR-Based WGCNA BICOR PLSR-Based	690 691 302 478 564 691 415 396 648 691 500 491 689 691 480 477 637 691	FN 38 37 426 250 164 37 313 332 80 37 228 237 39 37 248 251 91 37	FP 15630 15345 124 4200 16620 15337 4731 2834 14672 15347 6275 4939 15627 15347 6114 4679 12435 15343	73642 73927 89148 85072 72652 73935 84541 86438 74600 73925 82996 84333 73645 73927 83158 84593 76837 73929	690 691 302 478 688 691 473 473 689 691 477 482 689 691	38 37 426 250 40 37 255 255 39 37 247 255 39 37 251 246 39 37	1549 1549 1549 1540 15420 15420 15333 5403 4841 15373 15345 5649 4841 15557 15349 5419 5220 15459 15343	73642 73927 89148 85072 73852 73939 83869 84431 73899 73927 83623 84431 73715 73923 83853 84052 73813 73929
PLSR-Based 470 258 4618 84654 480 248 5836 83436 PRMR-Based 478 250 4476 84796 478 250 4760 84512 30 WGCNA 671 57 13965 75307 790 19 18035 71237 BICOR 691 37 15343 73929 691 37 15345 73927 PLSR-Based 491 237 5223 84049 476 252 5038 84234	10 15	Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based WGCNA BICOR PLSR-Based PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PLSR-Based PRMR-Based	690 691 302 478 564 691 415 396 648 691 500 491 480 477 637 691 510	FN 38 37 426 250 164 37 313 332 80 37 228 237 39 37 248 251 91 37 218	FP 15630 15345 124 4200 16620 15337 4731 2834 14672 15347 6275 4939 15627 15347 6114 4679 12435 15343 6164	73642 73927 89148 85072 72652 73935 84541 86438 74600 73925 82996 84333 73645 73927 83158 84593 76837 73929 83108	690 691 302 478 688 691 473 473 689 691 477 482 689 691 469	38 37 426 250 40 37 255 255 39 37 247 255 39 37 251 246 39 37 259	1549 1549 1549 1549 15420 15420 15333 5403 4841 15373 15345 5649 4841 15557 15349 5419 5220 15459 15459 15343 4705	73642 73927 89148 85072 73852 73939 83869 84431 73899 73927 83623 84431 73715 73923 83853 84052 73813 73929 84567
PRMR-Based 478 250 4476 84796 478 250 4760 84512 30 WGCNA 671 57 13965 75307 790 19 18035 71237 BICOR 691 37 15343 73929 691 37 15345 73927 PLSR-Based 491 237 5223 84049 476 252 5038 84234	10 15 20	Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based WGCNA BICOR PLSR-Based PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PLSR-Based PRMR-Based PRMR-Based	690 691 302 478 564 691 415 396 648 691 500 491 480 477 637 691 510 513	FN 38 37 426 250 164 37 313 332 80 37 228 237 39 37 248 251 91 37 218 215	FP 15630 15345 124 4200 16620 15337 4731 2834 14672 15347 6275 4939 15627 15347 6114 4679 12435 15343 6164 7147	73642 73927 89148 85072 72652 73935 84541 86438 74600 73925 82996 84333 73645 73927 83158 84593 76837 73929 83108 82125	690 691 302 478 688 691 473 473 689 691 477 482 689 691 469 478	38 37 426 250 40 37 255 255 39 37 247 255 39 37 251 246 39 37 259 250	1549 1549 1549 1549 15420 15420 15333 5403 4841 15373 15345 5649 4841 15557 15349 5419 5220 15459 15343 4705 4658	73642 73927 89148 85072 73852 73939 83869 84431 73899 73927 83623 84431 73715 73923 83853 84052 73813 73929 84567 84614
PRMR-Based 478 250 4476 84796 478 250 4760 84512 30 WGCNA 671 57 13965 75307 790 19 18035 71237 BICOR 691 37 15343 73929 691 37 15345 73927 PLSR-Based 491 237 5223 84049 476 252 5038 84234	10 15 20	Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based WGCNA BICOR PLSR-Based PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based	690 691 302 478 564 691 415 396 648 691 500 491 480 477 637 691 510 513	FN 38 37 426 250 164 37 313 332 80 37 228 237 39 37 248 251 91 37 218 215 40	FP 15630 15345 124 4200 16620 15337 4731 2834 14672 15347 6275 4939 15627 15347 6114 4679 12435 15343 6164 7147	73642 73927 89148 85072 72652 73935 84541 86438 74600 73925 82996 84333 73645 73927 83158 84593 76837 73929 83108 82125 73730	690 691 302 478 688 691 473 473 689 691 477 482 689 691 469 478	38 37 426 250 40 37 255 255 39 37 247 255 39 37 251 246 39 37 259 250 38	15345 124 4200 15420 15333 5403 4841 15373 15345 5649 4841 15557 15349 5419 5220 15459 15343 4705 4658	73642 73927 89148 85072 73852 73939 83869 84431 73899 73927 83623 84431 73715 73923 83853 84052 73813 73929 84567 84614 73732 73927
30 WGCNA 671 57 13965 75307 790 19 18035 71237 BICOR 691 37 15343 73929 691 37 15345 73927 PLSR-Based 491 237 5223 84049 476 252 5038 84234	10 15 20	Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based PRMR-Based PRMR-Based PLSR-Based PRMR-Based PRMR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based	690 691 302 478 564 691 415 396 648 691 500 491 480 477 637 691 510 513 688 693	FN 38 37 426 250 164 37 313 332 80 37 228 237 39 37 248 251 91 37 218 215 40 35	FP 15630 15345 124 4200 16620 15337 4731 2834 14672 15347 6275 4939 15627 15347 6114 4679 12435 15343 6164 7147 15542 15583	73642 73927 89148 85072 72652 73935 84541 86438 74600 73925 82996 84333 73645 73927 83158 84593 76837 73929 83108 82125 73730 73689	690 691 302 478 688 691 473 473 689 691 477 482 689 691 469 478 690 691	38 37 426 250 40 37 255 255 39 37 247 255 39 37 251 246 39 37 259 250 38 37	15345 124 4200 15420 15333 5403 4841 15373 15345 5649 4841 15557 15349 5419 5220 15459 15343 4705 4658 15540 15345	73642 73927 89148 85072 73852 73939 83869 84431 73899 73927 83623 84431 73715 73923 83853 84052 73813 73929 84567 84614 73732 73927
BICOR 691 37 15343 73929 691 37 15345 73927 PLSR-Based 491 237 5223 84049 476 252 5038 84234	10 15 20	Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based PRMR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based PLSR-Based PRMR-Based	690 691 302 478 564 691 415 396 648 691 500 491 689 691 480 477 637 691 510 513 688 693 470	FN 38 37 426 250 164 37 313 332 80 37 228 237 39 37 248 251 91 37 218 215 40 35 258	FP 15630 15345 124 4200 16620 15337 4731 2834 14672 15347 6275 4939 15627 15347 6114 4679 12435 15343 6164 7147 15542 15583 4618	73642 73927 89148 85072 72652 73935 84541 86438 74600 73925 82996 84333 73645 73927 83158 84593 76837 73929 83108 82125 73730 73689 84654	690 691 302 478 688 691 473 473 689 691 477 482 689 691 469 478 690 691 480	38 37 426 250 40 37 255 255 39 37 247 255 39 37 251 246 39 37 259 250 38 37 248	15345 1244200 15345 1244200 15420 15333 5403 4841 15373 15345 5649 4841 15557 15349 5419 5220 15459 15343 4705 4658 15540 15345 5836	73642 73927 89148 85072 73852 73939 83869 84431 73899 73927 83623 84431 73715 73923 83853 84052 73813 73929 84567 84614 73732 73927 83436
PLSR-Based 491 237 5223 84049 476 252 5038 84234	5 10 15 20 25	Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based PRMR-Based PRMR-Based PRMR-Based	690 691 302 478 564 691 415 396 648 691 500 491 689 691 480 477 637 691 510 513 688 693 470 478	FN 38 37 426 250 164 37 313 332 80 37 228 237 39 37 248 251 91 37 218 215 40 35 258 250	FP 15630 15345 124 4200 16620 15337 4731 2834 14672 15347 6275 4939 15627 15347 6114 4679 12435 15343 6164 7147 15542 15583 4618 4476	73642 73927 89148 85072 72652 73935 84541 86438 74600 73925 82996 84333 73645 73927 83158 84593 76837 73929 83108 82125 73730 73689 84654 84796	690 691 302 478 688 691 473 473 689 691 477 482 689 691 469 478 690 691 480 478	38 37 426 250 40 37 255 255 39 37 247 255 39 37 251 246 39 37 259 250 38 37 248 250	1549 1549 1549 1549 1549 1540 15420 15333 5403 4841 15373 15345 5649 4841 15557 15349 5419 5220 15459 15343 4705 4658 15540 15345 5836 4760	73642 73927 89148 85072 73852 73939 83869 84431 73899 73927 83623 84431 73715 73923 83853 84052 73813 73929 84567 84614 73732 73927 83436 84512
	5 10 15 20 25	Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based PRMR-Based PRMR-Based PRMR-Based PRMR-Based PRMR-Based PRMR-Based PRMR-Based	690 691 302 478 564 691 415 396 648 691 500 491 689 691 480 477 691 510 513 688 693 470 478 671	FN 38 37 426 250 164 37 313 332 80 37 228 237 39 37 248 251 91 37 218 215 40 35 258 250 57	FP 15630 15345 124 4200 16620 15337 4731 2834 14672 15347 6275 4939 15627 15347 6114 4679 12435 15343 6164 7147 15542 15583 4618 4476 13965	73642 73927 89148 85072 72652 73935 84541 86438 74600 73925 82996 84333 73645 73927 83158 84593 76837 73929 83108 82125 73730 73689 84654 84796 75307	690 691 302 478 688 691 473 473 689 691 477 482 689 691 469 478 690 691 480 478	38 37 426 250 40 37 255 255 39 37 247 255 39 37 251 246 39 37 259 250 38 37 259 250 39 37 251 246 39 37 251 247 255 39 37 251 246 39 37 251 265 39 37 265 39 37 265 39 37 265 39 37 265 39 37 265 39 37 266 39 37 266 39 37 266 39 37 266 39 37 266 39 37 266 37 266 37 266 37 266 37 266 37 267 267 267 267 267 267 267 26	15345 1244200 15420 15420 15333 5403 4841 15373 15345 5649 4841 15557 15349 5419 5220 15459 15343 4705 4658 15540 15345 5836 4760	73642 73927 89148 85072 73852 73939 83869 84431 73899 73927 83623 84431 73715 73923 83853 84052 73813 73929 84567 84614 73732 73927 83436 84512 71237
	5 10 15 20 25	Methods WGCNA BICOR PLSR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based PRMR-Based PRMR-Based WGCNA BICOR PLSR-Based PRMR-Based PRMR-Based PRMR-Based	690 691 302 478 564 691 415 396 648 691 500 491 689 691 480 477 691 513 688 693 470 478 671 691	FN 38 37 426 250 164 37 313 332 80 37 228 237 39 37 248 251 91 37 218 215 40 35 258 250 57 37	FP 15630 15345 124 4200 16620 15337 4731 2834 14672 15347 6275 4939 15627 15347 6114 4679 12435 15343 6164 7147 15542 15583 4618 4476 13965 15343	73642 73927 89148 85072 72652 73935 84541 86438 74600 73925 82996 84333 73645 73927 83158 84593 76837 73929 83108 82125 73730 73689 84654 84796 75307 73929	690 691 302 478 688 691 473 473 689 691 477 482 689 691 469 478 690 691 480 478 790 691	38 37 426 250 40 37 255 255 39 37 247 255 39 37 251 246 39 37 259 250 38 37 259 250 37 251 246 39 37 37 251 246 39 37 37 251 247 255 39 37 251 246 37 255 39 37 257 257 257 257 257 257 257 25	15345 1244200 15420 15420 15333 5403 4841 15373 15345 5649 4841 15557 15349 5419 5220 15459 15343 4705 4658 15540 15345 5836 4760	73642 73927 89148 85072 73852 73939 83869 84431 73899 73927 83623 84431 73715 73923 83853 84052 73813 73929 84567 84614 73732 73927 83436 84512 71237 73927

Figure 3. Performance evaluation of methods on the syntren300 dataset across different outlier levels with a distribution of $N(\mu=1, \sigma=5)$.

Figure 4. Performance evaluation of methods on the syntren300 dataset across different outlier levels with a distribution of $N(\mu=100, \sigma=10)$.


Figure 5. Performance evaluation of methods on the syntren300 dataset across different outlier levels with a distribution of t(2).

Following the construction of network structures (for both outlier-included and outlier-excluded datasets), we examined module trait relationships to identify modules significantly associated with mouse body weight. To assess biological relevance, Gene Ontology (GO) enrichment analysis was performed for each identified module. Only modules showing statistically significant associations with the trait (p < 0.05) were considered. Enrichment was considered successful if at least one GO term was significantly enriched at an adjusted p-value < 0.05 (Benjamini-Hochberg correction). The number of genes in such modules served as a proxy for the number of "correctly identified genes". This approach integrates both statistical association and biological validation.

It is important to note that, unlike in the simulation study where the ground truth of gene-gene or gene-trait associations is known, in real biological data the exact set of truly relevant genes is essentially unknown. As a result, classical performance metrics such as TP, TN, FP, and FN cannot be directly calculated for real datasets. Instead, we adopt a composite evaluation strategy that combines statistical significance (module-trait correlation) with biological relevance (significant GO enrichment) to define "correctly identified genes". This approach provides a practical and interpretable proxy for evaluating biological validity in the absence of ground truth.

Significant module-trait relationships were observed for the blue, magenta, salmon, cyan, brown, and purple modules (p < 0.05). Scatter plots for the blue and magenta modules (Figs. 6B and 6C) revealed a strong positive correlation between gene significance and module membership, indicating that these modules contained genes strongly associated with both the trait and their network module.

The number of genes correctly identified for each method is summarized in Table 3, based on the full set of 3,600 genes. For example, the blue module, identified by the PRMR-based method (using the dataset excluding the outlier), consisted of 428 genes, of which 423 were eligible for GO enrichment analysis. This module was significantly associated

Figure 6. Module-trait relationships: correlation analysis between gene modules and body weight. The red boxes indicate a statistically significant positive relationship between a module and weight, while the green boxes suggest a significant negative relationship. (A) Module-phenotype correlation diagram. (B) and (C) Scatter plot showing the correlation between the blue and magenta module genes and weight. The horizontal axis represents the degree of module membership, and the vertical axis represents gene significance.

Table 3. Number of correctly identified genes out of the full set of 3600 genes by different methods, with and without outliers.

Outlier	WGCNA	BICOR	PLSR-based	PRMR-based
Without	1539	1053	1028	1053
With	944	1016	978	1080

with body weight and showed enrichment for several biological functions. The PRMR-based method again demonstrated strong robustness to outliers or leverage points. While WGCNA identified more genes when the outlier was excluded, its performance declined markedly when the outlier was included. In contrast, the PRMR-based method maintained high classification performance and biological interpretability even in the presence of the outlier. This robustness was not observed in the BICOR or PLSR-based methods, both of which also showed degraded performance when outliers were present. Thus, the PRMR-based approach outperformed the WGCNA, BICOR, and PLSR-based methods under noisy, real-world conditions in terms of gene identification consistency and biological validation through GO enrichment.

4. Conclusion

This study introduces a Partial Robust M-Regression (PRMR)-based approach for constructing gene co-expression networks (GCNs), specifically designed to handle outliers and leverage points common challenges in gene expression data. By iteratively down-weighting outlying observations, the method computes connectivity scores that remain robust and stable even under substantial data contamination, thereby preserving biologically meaningful structures without discarding potentially informative variation. Conventional methods such as weighted gene co-expression network analysis (WGCNA), bi-weighted mid-correlation (BICOR), and partial least squares regression (PLSR)-based connectivity scores generally perform well on clean datasets. However, their performance degrades markedly in the presence of moderate to severe outliers. WGCNA and BICOR show relatively stable, yet lower, classification performance, while PLSR-based approaches suffer sharp declines in metrics such as precision and F1 score with even minimal contamination.

In contrast, the PRMR-based method consistently demonstrates superior robustness, strong reliability under contamination, and balanced performance. By down-weighting outliers instead of excluding them, it protects the global network structure while preserving signals from extreme but potentially informative observations. Across different contamination scenarios and outlier-generating distributions (e.g., large mean shifts, increased variance), PRMR maintains high performance in simulation studies, particularly on F1 and Matthews Correlation Coefficient (MCC). In the simulation setup using the E. coli syntren300 network, the PRMR-based method achieves higher or comparable specificity, precision, F1 score, and MCC relative to the WGCNA, BICOR, and PLSR-based networks, especially when the data deviate from ideal conditions.

In the real-data application, using mouse liver gene expression data, the PRMR-based network effectively identified biologically significant genes through module-trait correlation and Gene Ontology (GO) enrichment analysis. In particular, it outperformed other methods when a known outlier was included, maintaining biological interpretability and stability, while WGCNA and others showed a decrease in performance.

Together, the results of both simulation and real data analysis provide compelling evidence that the PRMR-based network is statistically robust, biologically valid, resistant to contamination and imbalance, and suitable for high-dimensional genomic data analysis. Future directions can include extending the PRMR-based framework to more complex datasets and integrating domain-specific prior knowledge (e.g., known pathways or phenotypic traits) to further enhance interpretability and biological insight. In summary, the PRMR-based network method addresses a critical gap in GCN construction by offering a reliable, interpretable, and outlier-resilient alternative to standard approaches in modern gene expression studies.

Acknowledgements

We would like to thank the editor and the reviewers for their constructive comments, which significantly improved the quality of the original manuscript.

Author contributions. All the co-authors have contributed equally in all aspects of the preparation of this submission.

Conflict of interest statement. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding. The first author is supported by the Department of Scientific Research Projects (BAP Project No: 2021.KB.FEN.038)

Data availability. All codes and data are available on GitHub (https://github.com/olmezayca/Simulation-Study and https://github.com/olmezayca/GNA-with-Robust-Methods).

References

- [1] M. Ackermann and K. Strimmer. A general modular framework for gene set enrichment analysis. BMC Bioinform. 10, 120, 2009.
- [2] I.J. Broce, L. Stein, E. Jones and T. Kwan. C9orf72 gene networks in the human brain correlate with cortical thickness in C9-FTD and implicate vulnerable cell types. Front. Neurosci. 18, 1258996, 2024.
- [3] J.B. Brown. Classifiers and their metrics quantified. Mol. Inform. 37, 1700127, 2018.
- [4] Q. Chen, R. Liu, X. Wang and H. Chen. Identification and analysis of spinal cord injury subtypes using weighted gene co-expression network analysis. Ann. Transl. Med. 9, 466, 2021.
- [5] D. Chicco and G. Jurman. The Matthews correlation coefficient (MCC) should replace the ROC AUC as the standard metric for assessing binary classification. BioData Min. 16, 4, 2023.
- [6] R Core Team et al., R: A language and environment for statistical computing, R Found. Stat. Comput., Vienna, 2013.
- [7] D.J. Cummins and C.W. Andrews. Iteratively reweighted partial least squares: a performance analysis by Monte Carlo simulation. J. Chemom. 9, 489507, 1995.
- [8] S. Datta. E xploring relationships in gene expressions: a partial least squares approach. Gene Expr. 9, 249, 2018.
- [9] Y. Di, D. Chen, W. Yu and L. Yan. Bladder cancer stage-associated hub genes revealed by WGCNA co-expression network analysis. Hereditas **156**, 111, 2019.
- [10] A.S. Feltrin, P.R. Castro, L.F. Silva and R. Costa. Assessment of complementarity of WGCNA and NERI results for identification of modules associated to schizophrenia spectrum disorders. PLoS One 14, e0210431, 2019.
- [11] E. Galán-Vásquez and E. Perez-Rueda. Identification of modules with similar gene regulation and metabolic functions based on co-expression data. Front. Mol. Biosci. 6, 139, 2019.
- [12] A. Ghazalpour, B. Bennett, S. Plaisier and J. Chen. Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet. 2, e130, 2006.
- [13] D.J. Guo, R. Lin and Y. Li. Identification of breast cancer prognostic modules via differential module selection based on weighted gene co-expression network analysis. BioSystems. 199, 104317, 2021.
- [14] M. Hubert and S. Verboven. Robust methods for partial least squares regression. J. Chemom. 17, 537-549, 2003.
- [15] S. Langfelder and S. Horvath. Fast R functions for robust correlations and hierarchical clustering. J. Stat. Softw. 46, 117, 2012.
- [16] S. Langfelder and S. Horvath. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 113, 2008.
- [17] B. Liebmann, P. Filzmoser and K. Varmuza. Robust and classical PLS regression compared. J. Chemom. 24, 111120, 2010.
- [18] W. Li, Y. Zhang, L. Zhang and Q. Wang. Weighted gene co-expression network analysis to identify key modules and hub genes associated with atrial fibrillation. Int. J. Mol. Med. 45, 401416, 2020.
- [19] S. Pan, Y. Lin, X. Liu and L. Wang. A comprehensive weighted gene co-expression network analysis uncovers potential targets in diabetic kidney disease. J. Transl. Intern. Med. 10, 359368, 2023.

- [20] Y. Peng, X. Chen, Q. Zhang and D. Liu. Identification of immune-related biomarkers in adrenocortical carcinoma: immune-related biomarkers for ACC. Int. Immunopharmacol. 88, 106930, 2020.
- [21] V. Pihur, S. Datta and S. Datta. Reconstruction of genetic association networks from microarray data: a partial least squares approach. Bioinformatics 24, 561568, 2008.
- [22] E. Polat, The effects of different weight functions on partial robust m-regression performance: a simulation study. Comms. in Stats. - Sim. and Comput. 49:4, 1089-1104, 2020.
- [23] S. Serneels, K. Suykens, B. De Moor and S. Van Huffel. Partial robust M-regression. Chemom. Intell. Lab. Syst. **79**, 5564, 2005.
- [24] T. Van Den Bulcke, K. Van Leemput, B. Naudts and P. Van Remortel. SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms. BMC Bioinform. 7, 112, 2006.
- [25] F. Wang, H. Miao, S. Zhang, X. Hu, Y. Chu, W. Yang and J. Chen. Weighted gene co-expression network analysis reveals hub genes regulating response to salt stress in peanut. BMC Plant Biol. 24, 425, 2024.
- [26] B. Wang, X. Li, Y. Zheng and R. Zhang. Research on a weighted gene co-expression network analysis method for mining pathogenic genes in thyroid cancer. PLoS One 17, e0272403, 2022.
- [27] S. Wold, M. Sjöström and L. Eriksson. PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58, 109130, 2001.
- [28] C.H. Zheng, Y. Li, L. Wang and W. Zhang. Gene differential coexpression analysis based on biweight correlation and maximum clique. BMC Bioinform. 15, 17, 2014.
- [29] B. Zhang and S. Horvath. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, 129, 2005.