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This paper chronicles the fusion of the Adaptive Neural Fuzzy Inference System (ANFIS) and Ultra Wideband 
(UWB) technology for navigation system optimization in Indoor Autonomous Guided Vehicles (AGVs). In the 
Industry 4.0 era, the significance of accurate, effective and flexible AGV systems cannot be overemphasized in 
the industrial applications of today. UWB has centimeter-level location accuracy because of its low power 
consumption and large bandwidth, and is therefore very suitable for challenging indoor environments. In 
response to the challenge of high installation costs and environmental sensitivity, the ANFIS model is utilized to 
integrate the learning ability of artificial neural networks with the inference ability of fuzzy logic in order to 
increase the accuracy and effectiveness of UWB signal data processing. The real-time adaptive navigation of the 
system is also supported by dynamically adjusting the motor control according to the vehicle position using Pulse 
Width Modulation (PWM). The approach enables AGVs to adapt to environmental changes in a flexible manner, 
improving their performance in dynamic industrial environments. Future work can involve the investigation of 
UWB integration with other sensors or sensor technologies or application in cluster robotics to enable 
coordination and navigation in dynamic environments to be improved. 
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Introduction 
Automated Guided Vehicles (AGVs) play a critical role 

in modern industrial automation and the autonomous 
management of material handling operations in factory 
and warehouse environments. They exhibit efficiency and 
precision by following paths determined by sensors, 
magnetic strips and other advanced guidance 
mechanisms. In the context of Industry 4.0, AGV systems 
are shifting from rigid centralized structures to flexible 
and decentralized structures, prioritizing features such as 
flexibility, durability and scalability, adapting to dynamic 
industrial environments and increasing the resilience of 
systems[1]. In contexts of smart factories, the tools have 
now evolved as an integral part of next-generation 
manufacturing system design. When combined with 
technologies like machine learning, data analytics and 

artificial intelligence, the tools enhance efficiency and 
performance in systems[2]. The self-driving car capability 
of dealing with sensing, decision-making, and control 
processes in real-time is enhanced through advancements 
in computer vision, wireless communications, machine 
learning, and sensor technologies. But there are 
challenges for them to make reliable decisions in complex 
traffic environments[3]. Proper sensing and navigation of 
positions is of paramount significance for the reliable 
functioning of AGVs[4]. Since position systems like GPS are 
not robust enough to be used in obscured environments, 
technologies like UWB, IMU, and WiFi are used to 
compensate for this limitation. However, these systems 
are afflicted by integration and environmental effects that 
cause accuracy and reliability problems[5]. 

http://cumfad.cumhuriyet.edu.tr/
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Position detection systems are technologies that 
determine the location of objects or persons and provide 
position determination through the utilization of diverse 
technologies in both indoor and outdoor environments 
[6], [7]. ANFIS [8] is an artificial intelligence model that is 
a combination of artificial neural networks (ANN) [9] and 
fuzzy logic (FL) [10] systems. The combination of ANN's 
learning capability with FL's heuristic inference power 
allows for effective modelling and control of complex 
systems [11]. The ANFIS method yields more precise 
results by processing a variety of sensor data in position 
detection and by combining UWB, IMU, and WiFi signals, 
which minimizes errors and improves position accuracy, 
particularly in dynamic indoor environments [12]. 

AGV systems are designed to navigate a 
predetermined route, utilizing a range of technologies, 
including magnetic tapes, underground cables, lasers, 
optical sensors and RFID (Radio Frequency Identification) 
tags [13]. The principal benefit of these systems is their 
capacity for high precision in the operation of a specific 
route. However, this advantage is accompanied by two 
significant drawbacks: a lack of flexibility and the difficulty 
of rapidly adapting to changes in the route [12].  The use 
of UWB based AGV navigation systems is becoming 
increasingly prevalent in industrial contexts, largely due to 
their capacity for highly precise positioning. By offering 
precise positioning with a wide bandwidth and low power 
consumption, these systems facilitate the safe movement 
of AGVs, particularly in complex and dynamic indoor 
environments [14]. UWB technology offers consistent 
performance even in harsh environmental conditions, as 
the signal is resistant to multipath effects. However, UWB-
based systems have a high installation cost, and the 
correct placement of base stations can be challenging in 
large-scale applications [15]. Furthermore, the presence 
of certain materials, including metallic surfaces, has the 
potential to impede the transmission of UWB signals, 
resulting in a decline in signal performance [16]. 

The present research aims at enhancing the precision, 
reliability and efficacy of AGVs in dynamic indoor settings. 
UWB technology and ANFIS are proposed as options, 
particularly in precision-demanding and complex 
industrial settings. The primary objective of the research 
is to enhance the flexibility, scalability, and versatility of 
AGV systems in Industry 4.0, beyond the current 
technologies' limitations. In addition to the disadvantages 
of UWB systems like high initial installation costs and 
vulnerability to environmental factors, the integration of 
UWB technology with the Internet of Things (IoT), artificial 
intelligence, and data analysis is likely to boost the 
industrial value of such systems. Besides the 
enhancement of indoor navigation, the study hopes to 
offer a crucial solution to key criteria such as safety, speed 
and cost-effectiveness in the industry. The approach is 
regarded as a pioneering work to both academic and 
industrial community. 

Theoretical Background 
AGVs are now an integral component of modern-day 

industrial automation, particularly in the form of Industry 

4.0. In the wake of growing pressures for efficiency, 
accuracy and regulation in industrial procedures, 
technologies to support AGV systems have been a priority 
area of research in recent times. This chapter presents a 
theoretical model to integrate UWB technology and ANFIS 
for the navigation of AGVs. The chapter goes on to look at 
the independent principles and capability of UWB and 
ANFIS, bearing in mind their potential use combined in 
dynamic indoor environments, and demonstrating their 
potential to solve problems in existing AGV systems. The 
technical and theoretical foundations of these 
technologies are presented in an attempt to facilitate 
facile comprehension of their synergies and their 
potential in improving AGV performance in the Industry 
4.0 revolution. 

AGV Positioning System with ANFIS Integration 
AGVs utilize various navigation technologies, i.e., GPS, 

RFID, and LIDAR, which are accurate along pre-mapped 
routes but struggle indoors due to signal interference and 
walls. Hence, alternative tools like Ultra-Wideband 
(UWB), IMU, and WiFi are increasing their popularity for 
indoor location. Latest technologies utilize smart systems 
like ANFIS, ANN, and FL to improve AGV navigation. These 
systems combine the neural network adaptability with the 
fuzzy logic understandability, enabling dynamic 
adjustments to changing surroundings. ANFIS enhances 
navigation by integrating neural learning and fuzzy 
inference, improving trajectory planning and obstacle 
avoidance in complicated indoor environments [17]. UWB 
systems, based on ANFIS or hybrid ANFIS-ANN 
configurations, reduce errors and improve positioning 
accuracy in dynamic environments. Simulations show 
ANFIS controllers navigate AGVs effectively through 
congested spaces, performing real-time adjustments to 
optimize routes [18]. The integration of ANFIS with sensor 
data fusion such as UWB, LIDAR, and IMU significantly 
improves obstacle avoidance and positioning in GPS-
denied indoor environments by allowing real-time data 
interpretation and adaptive path adjustment[19]. These 
advancements emphasize the importance of intelligent 
navigation in AGV technology, with ANFIS, ANN, and Fuzzy 
Logic enabling robust and precise navigation in dynamic, 
obstructed environments. 

Ultra-Wide Band (UWB) Technology 
UWB technology, being a system that is more than 500 

MHz wireless communications, has high speeds of 
transmission and very precise positioning ability. It has 
very useful applications where communication needs to 
have short distance range, ideal examples being intricate 
interior navigation which can be managed with it very 
conveniently. [20], [21]. UWB technology employs a wide 
frequency range, from 3.1 GHz to 10.6 GHz, and operates 
at low energy levels, thereby creating minimal 
interference with other wireless technologies [22]. These 
characteristics render UWB an optimal choice for 
applications that necessitate precise indoor positioning. 
UWB offers the advantages of a wide bandwidth, low 
power consumption, high-resolution positioning, and low 
latency [23]. UWB signals can penetrate walls and 
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obstacles, providing accurate location data even in 
complex indoor environments, especially where multiple 
paths and signal reflections are present [20]. The minimal 
interference with other wireless systems makes this 
technology a reliable solution [20]. Nevertheless, the 
utilization of UWB is constrained by several factors, 
including its limited range, high cost, and regulatory 
restrictions in certain regions [24]. Ultra-wideband (UWB) 
signals utilize time difference-based (TOA) or time 
difference of arrival (TDOA) techniques for location. The 
broad frequency band reduces the effect of multipath and 
signal reflections, offering high accuracy in indoor 
environments. UWB is therefore most appropriate for 
applications requiring centimeter-level positioning and 
tracking accuracy[25]. The theoretical basis of UWB is 
based on the Shannon-Hartley Theorem [26]. According to 
this theorem, as the bandwidth of a communication 
channel increases, the data transmission rate also 
increases. UWB technology in AGV systems provides 
precise positioning and navigation, enhancing operational 
efficiency and reducing the probability of collision within 
complicated indoor environments. UWB technology 
provides centimeter precision, which is crucial for safe and 
efficient AGV navigation. Literature also explores how 
UWB is combined with AI-based systems like ANFIS to 
create more flexible and versatile AGV guidance in 
dynamic environments.[22]. 

ANFIS (Adaptive Neuro-Fuzzy Inference System) 
The ANFIS offers a robust and adaptable modelling 

approach by integrating FL and ANN. By combining the 
adaptability of fuzzy logic with the learning capacity of 
neural networks, this system is a noteworthy solution, 
particularly in modelling non-linear and intricate systems 
[27]. ANFIS is a model-based data modeling technique 
widely used in prediction, classification, and control 
systems. It combines two key elements: FL and ANN. FL 
processes imprecise or uncertain data, and variables can 
take any value within a range, which is useful for modeling 
non-linear systems. ANN, derived from the biological 
nervous system, learn as they process input data and are 
especially good at dealing with large sets of data and 
learning from them.[28], [29], [30], [31]. 

ANFIS architecture contains five layers (Figure 1). The 
input layer receives the system variables and assigns each 
one to a fuzzy set in which each node is a fuzzy 
membership function. In the second layer, the inputs are 
transformed into fuzzy sets and each node calculates the 
antecedent degree of membership of a rule. The third 
level is the rule level, applying the fuzzy rules and 
computing the product of antecedents. The fourth is the 
inference level, computing every rule's consequences. The 
output level then gathers all rule outputs with a weighted 
average approach in order to come up with the 
output[27]. 

The learning process of ANFIS is typically conducted in 
two stages. In the initial stage, the forward pass, the input 
data are fed through the network, and the resulting 
output values are calculated. During this stage, the neural 
network optimizes the outcomes of the fuzzy rules 
[32][33]. In the second stage, the back propagation 
process, the discrepancy between the calculated output 
value and the actual value is reduced. This process entails 
the updating of the neural network weights through the 
application of the back propagation algorithm [34]. The 
two-step process enhances the modelling capacity of 
ANFIS, facilitating the attainment of precise results in 
nonlinear systems.  

UWB Based Signal Detection 
In the system, the use of a UWB signal as the radio 

frequency technology in the positioning system of the 
AGV vehicle is preferable. The Asymmetric Duplex Two-
Way Ranging (ADS-TWR) method, which is the focus of the 
study, necessitates two signal transmissions and 
measurements, thereby enabling the calculation of two 
distinct round-trip times[35], [36]. Figure 2 depicts the 
time of arrival (ToA)-based asymmetric duplex two-way 
ranging (ADS-TWR) method between two devices. Round 
time is employed to represent the total time utilized for a 
signal to go between the devices and back, considering 
the time from transmission of the signal to receiving the 
signal and then the receiving-transmission interval of the 
response. The response time is the time required by a 
device to generate and send a response upon receiving 
the signal, from receiving the signal to sending the 
response. 

Using the ADS-TWR method, the time of flight (ToF) of 
the signal between two devices is calculated using 
Equation 2.a and the distance is calculated using Equation 
2.b.
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

=  
�𝑇𝑇𝑟𝑟𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟1  ×  𝑇𝑇𝑟𝑟𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟2  ×  𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟1  ×  𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2�
�𝑇𝑇𝑟𝑟𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟1 +  𝑇𝑇𝑟𝑟𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟2 +  𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟1 +  𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2�

 (2. 𝑎𝑎) 

𝑑𝑑
=  𝑐𝑐 
× 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇                                                                                (2. 𝑏𝑏) 

The DWM1000 Ultra-Wideband (UWB) module, 
integrated with the DW1000 System-On-Chip, is a key 
component of the developed positioning application. This 
module adheres to the IEEE 802.15.4-2011 UWB standard 
and operates across four RF bands (3.5–6.5 GHz), 
supporting both Two-Way Ranging (TWR) and Time 
Difference of Arrival (TDoA) signal measurement 
techniques. Controlled via an SPI interface, the DWM1000 
facilitates precise positioning in indoor environments. Its 
application circuit, shown in Figure 3, highlights the 
seamless integration of the UWB module with the 
microcontroller, ensuring efficient data acquisition and 
processing. 
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Figure 1. Five layer-based working of the ANFIS architecture [30]. 

Figure 2. Asymmetric Double Sided Two-Way Ranging Method 

Figure 3. DWM1000 UWB Module Application Circuit Diagram. 
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Figure 4. Prototype Indoor Positioning Board Circuit Diagram and Visualization. 

ESP32 UWB Pro development board uses Ultra 
Wideband technology and ESP32 microcontroller, 
supporting precise positioning and wireless 
communication with increased speed for real-time 
positioning systems (RTPS). ESP32 Wrover module 
features a dual-core Tensilica Xtensa LX6 CPU with 32-bit 
Harvard architecture. Widely used in IoT applications, it 
supports WiFi, Bluetooth v4.2, and BLE protocols on the 
2.4GHz band with 80-240 MHz clock speed and minimum 
power requirements like deep sleep modes. The board 
has the DW1000 chip as the UWB module.  The prototype 
of the indoor positioning board, as indicated by Figure 4, 
integrates the ESP32 UWB Pro development board with 
the ADS-TWR technique for distance measurement using 
UWB signals. The ESP32 microcontroller supports dual-
core processing and communication protocols like WiFi 
and Bluetooth, enabling high data transmission rates for 
real-time positioning systems, as shown in the circuit 
diagram. 
Architecture of AGV Guidance System on ANFIS Theory 

The primary objective of this study is to investigate the 
potential of ANFIS theory as a robust tool for the planning 
of routes for AGV systems, particularly in indoor 
environments characterized by complexity and 
dynamism. The proposed system comprises the following 
processes, as illustrated in Figure 5.  

Initially, a system for detecting locations indoors was 
developed based on the fingerprint method. [37], [38]. To 
ensure the feasibility and precision of the system, a 25x25 
meter indoor space was defined with four UWB 
transmitters mounted at the corners, as shown in Figure 
6. The transmitters recorded the x and y coordinates at
regular intervals, populating a full database. Figure 6 also
shows the communication network between the receivers 
and the system during the online training and offline
testing stages of the fingerprint positioning method used
in the research.

The UWB Tag module periodically transmits Time-of-
Flight (ToF) data to the Edge Computing (EC) unit, 
implemented on a Raspberry Pi 4. This communication 
occurs via the HTTP protocol over a wireless local area 
network (WLAN) established within the experimental 
area. A LAMP (Linux, Apache, MySQL, PHP) server was 
configured to acquire, process, store, and visualize the 
transmitted data [40]. The signal vectors retrieved via the 
HTTP protocol are dealt with in the EC unit using a PHP 
script and are stored in the fingerprint database. This 
database forms the basis of the accurate determination of 
location and thus improves the system's efficiency and 
reliability regarding indoor positioning. In order to 
understand the data as measured more easily, the 
statistical decision measures are shown in Table 1 and the 
system parameter correlation in Table 2. 

Figure 5. Illustration of the Physical Environment where Measurements were Taken 
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Figure 6: Communication Architecture 

Statistical Analysis of Measurement Data 
Statistical characteristics of the data show the data to be 

apt for ANFIS models. X and y coordinates are symmetrically 
distributed with minimal skewness, indicating minimal effect 
of outliers. Access point (Ap) values are consistent, with 
minimal standard deviation and variance, and grouped 
around lower times. Negative kurtosis indicates that the data 
is clear from the effect of extreme values. Consistency within 
the dataset enables good learning in ANFIS, which enables 
greater accuracy. Finally, the balance and stability of the 
dataset provide a good basis for ANFIS models, ensuring 
stable performance in both theoretical applications and 
practical applications, especially in signal detection and range 
measurement. 

The correlation matrix from Table 2 is of critical 
significance in the understanding of dataset variable 
relationships. The low correlation between X and Y 
coordinates (-0.027) illustrates independent variable 

distribution, enhancing spatial variability. Positive 
relationships between Ap1 and X and Y coordinates (0.65 and 
0.70) confirm the high relationship of Ap1 with the 
measurement points. Low correlation between Ap1 and Ap2 
(0.04) illustrates independent signal times, controlled by 
diverse factors. The strong negative correlation of Ap3 and 
Ap4 (-0.91) suggests that these points vary inversely and 
should be modeled together. Similarly, the strong negative 
correlations of Ap3 with Ap1 and Ap2 (-0.89 and -0.05) 
suggest the predominant effect of Ap3 on the data and its 
complex distribution. Overall, the matrix suggests the 
consistency of the dataset and its systematic nature. Some 
variables are independent, and others are highly correlated, 
as needed by multivariate analysis for adaptive models like 
ANFIS. The low correlations also indicate that access points 
are influenced by environmental factors, and the model must 
account for this variability, offering both data validity and 
modeling flexibility. 

Table 1. Statistical Decision Measures of Measurement Values Used for ANFIS Models 
x Coord. y Coord. Ap1 Ap2 Ap3 Ap4 

Average 12.34971 12.93344 0.06221 0.06256 0.06095 0.06048 
Standard Error 0.05973 0.06309 0.00020 0.00020 0.00020 0.00021 
Median 12.37293 13.03086 0.06525 0.06551 0.06348 0.06310 
Standard Deviation 6.91291 7.30149 0.02305 0.02363 0.02312 0.02374 
Sample Variance 47.78833 53.31176 0.00053 0.00056 0.00053 0.00056 
Kurtosis -1.21159 -1.25372 -0.56770 -0.55728 -0.61243 -0.59531
Skewness 0.00052 -0.04843 -0.36143 -0.33249 -0.29579 -0.28643
Smallest 0.34806 1.04839 -0.00008 0.00132 0.00300 0.00168
Biggest 24.03432 24.04719 0.11110 0.11281 0.11260 0.11144

Table 2. Correlation Between System Parameters 

y Coord. y Coord. Ap1 Ap2 Ap3 Ap4 

x Coord. 1 
y Coord. -0.027455642 1 
Ap1 0.650586632 0.704712058 1 
Ap2 -0.682587395 0.716642044 0.043161631 1 
Ap3 -0.668862677 -0.687243534 -0.896854088 -0.054212614 1 
Ap4 0.682142024 -0.716363812 -0.078978256 -0.911198064 0.018144616 1 
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Proposed Methodology: Adaptive Navigation via 
Virtual Coordinate Systems 

Accurate path tracking is critical in autonomous 
vehicle control systems and navigation. Traditional AGVs 
use physical guidance, but virtual coordinates are 
proposed in this work for more dynamic and flexible path 
tracking. The vehicle continuously compares its own 
calculated x and y coordinates with the target and 
calculates the steering angle. Through differential drive 
mechanism, the vehicle trajectory is an arc depending on 
right-left wheel differential rotational rates computed 
dynamically to minimize the angular difference. After 
calculation of steering angle, ANFIS-trained fuzzy rules are 
applied to vary the wheel speeds in order to allow quick 
and effective drive system response. The system is a 
closed-loop feedback that constantly updates the 
vehicle's position to stay on track. The approach eschews 
physical tracks and enables accurate navigation in dense 
space. Fuzzy rules with ANFIS provide smooth control and 
facilitate scalability, flexibility, and enable quick and 
dependable movement, particularly indoors in real-time. 

In the proposed study, the real-time position of the 
AGV was determined using indoor positioning theory 
based on the ANFIS and fingerprint approach. The 
measured data (Table 1) were utilized to develop two 
distinct models using the ANFIS methodology. The first 
model was designed to predict the y position by 
employing data obtained from four different access 
points. The second model was developed to estimate the 
x position using the same data set [39], [40], [41]. The two 
models in question process the input data with the aid of 
fuzzy rules and neural networks, thereby achieving high 
accuracy in the estimation of locations. This approach 
demonstrates the effectiveness of the ANFIS method in 

improving the accuracy and reliability of the positioning 
system. One of the main objectives of this study is to 
determine the instantaneous x and y positions accurately 
with the data received from the access points while the 
AGV is moving in a closed environment. To this end, the 
Fuzzy Inference System (FIS) functions generated by the 
trained ANFIS models are employed [42], [43]. The system 
is integrated into the AGV for deploying the rule sets 
necessary to deliver real-time position information. 
Integrated into the AGV, this allows the AGV to get a quick 
and accurate estimation of its position through the x and 
y coordinates using the data collected while moving. As 
such, the AGV can have very accurate position information 
in real-time while moving indoors, thus significantly 
enhancing the efficiency and performance of the system. 

Development and Evaluation of the Model 
In an indoor setting, access points (APs) were 

positioned at the designated x and y coordinates. In this 
environment, time-difference (ToF) values of ultra-
wideband (UWB) signals emitted from four different 
access points (APs) were collected using a mobile system 
and stored in a database as a training set. Two distinct 
ANFIS models (ANFIS_I and ANFIS_II) were developed 
using the aforementioned data [39], [40], [41]. The 
ANFIS_I model was developed with the objective of 
predicting the y coordinate, while the ANFIS_II model was 
developed with the objective of predicting the x 
coordinate. Following the training phase, a series of 
statistical analyses were conducted on the test datasets in 
order to evaluate the performance of both models (Figure 
7). The results of the tests are presented in Tables 3 and 
Table 4, which demonstrate the efficacy of the ANFIS 
models in indoor location estimation. 

Figure 7. Process Flow of the Proposed System 
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Table 3. Correlation Between System Parameters 
ANFIS Model I 

[x, Ap1, Ap2, Ap3, Ap4] [y] 
ANFIS Model II 

[y, Ap1, Ap2, Ap3, Ap4] [x] 
Training Testing while  

Model Train 
Generated 

Model 
Testing 

Training Testing while  
Model Train 

Generated 
Model 
Testing 

R2 0.9976 0.9975 0.9974 0.9973 0.9972 0.9971 
RMSE 0.3558 0.3561 0.3650 0.3668 0.3686 0.3679 
MAPE 0.0940 0.0926 0.0865 0.0661 0.0688 0.0687 
MAE 0.2841 0.2836 0.291 0.2917 0.293 0.2893 

a- Comparations b- Residuals c- Regression 

a- Comparations b- Residuals c- Regression 
  

Figure 8.1 ANFIS Model I, x coordinate Input y coordinate Output 
Figure 8.2 ANFIS Model II, y coordinate Input x coordinate Output 

Coefficient of Determination (R²): This metric indicates 
the extent to which the variance in the dependent variable is 
explained by the model. The R² value ranges from 0 to 1, with 
values close to 1 indicating that the model has a high 
explanatory power [44].  Root Mean Square Error (RMSE): 
RMSE is the square root of the mean square of the squares 
of the differences between predicted values and actual 
values. It is sensitive to large errors and gives more weight to 
the magnitude of the errors [45]. The Mean Absolute Error 
(MAE) is a metric that provides an indication of the average 
absolute value of the discrepancies between the predicted 
and actual values. It is less sensitive than the Root Mean 
Square Error (RMSE) and offers insight into the overall 
magnitude of the errors inherent to the model [46]. The 
Mean Absolute Percentage Error (MAPE) is a statistical 
measure that allows for the expression of errors as a 
percentage. It is a valuable tool for comparing models at 
varying levels of complexity and scale [44]. 

Training ANFIS Models for Location and FIS structure 
In the measurement area depicted in Figure 6, the signal 

values emitted by the access points (APs) at various (x, y) 
coordinates within the indoor environment were measured 

using the architectural configuration illustrated in Figure 7. 
The ANFIS I and ANFIS II models were trained with the flows 
presented in Figure 7, using the measured values as inputs. 
During the training process, the potential membership 
functions for each input were modified sequentially, and the 
parameters that provided the best results were identified. 
The FIS structures developed with these parameters were 
then used for position determination. The resulting values 
are presented in Table 4. 

Table 3 shows the values obtained by statistical decision-
makers during the training of the ANFIS models, which are 
used throughout the process. The graphical representations 
in Figure 8, illustrating the relationships between the 
measured values and the position values generated by the 
ANFIS model, demonstrate the predictive capabilities of the 
models. The steps summarized in Table 4 detail how an 
Automated Guided Vehicle (AGV) or a similar system 
determines its position using UWB signals and ANFIS models 
and regulates its motor movements. The pseudo code is a 
human-readable draft that clearly demonstrates the 
operational principles of the system. 
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Table.4. System Model Pseudo Code 
// Start: Collect sensor data and feed it into the ANFIS model 

  WHILE TaskNotCompleted: 
    // Step 1: Collect real-time data from UWB sensors 

    uwb_signal_data = Collect_UWB_SensorData(AP1, AP2, AP3, AP4) 
    // Step 2: Feed the signal data into the ANFIS I model to estimate the current Y position 

    y_position = ANFIS_I_Model(uwb_signal_data) 
    // Step 3: Feed the same signal data into the ANFIS II model to estimate the current X position 

    x_position = ANFIS_II_Model(uwb_signal_data)  
    // Step 4: Retrieve the next target position (x1, y1) from the route table 

    (x1, y1) = GetNextPositionFromRouteTable() 
    // Step 5: Calculate the angle between the estimated X, Y positions and the target X1, Y1 

    angle = CalculateAngle(x_position, y_position, x1, y1)   
    // Step 6: Send the calculated angle to the FIS system that controls the motors 

    FIS_ControlMotors(angle) 
    // Step 7: Ensure the motors move according to the calculated angle 

    MoveMotors(angle) 
    // Step 8: Check if the current position matches the target position (x1, y1) 

    IF (x_position == x1 AND y_position == y1): 
        // Step 9: Once the target position is reached, retrieve the next target (xn, yn) from the route table 

        (xn, yn) = GetNextPositionFromRouteTable() 
    ENDIF 

    // Step 10: If the route table is completed, finish the task 
    IF (IsTaskCompleted()): 
        BREAK // Exit the loop, task is completed 
    ENDIF 

    // Step 11: Repeat this process iteratively for each point in the route table 
END WHILE 

This pseudo code models a system where UWB sensor 
data is used to determine the current position, calculate 
the path towards a target, and control motor movements 
iteratively until the task is completed. This process is 
repeated each time the vehicle reaches a new destination 
point, continuing until all points in the route table have 
been completed. The following pseudo code models the 
overall operation of the system. In the actual 
implementation, the sensor data collection, signal 
presentation to the ANFIS model and motor control steps 
will be detailed with more specific algorithms and 
hardware-level code. 

Implementation of the ANFIS-Based Positioning 
System in an Indoor Environment 

To validate and assess the applicability of the model, 
measurement points were established at specific intervals 
across the x (horizontal) and y (vertical) coordinates 
within an indoor environment. At each measurement 
point, Time of Flight (TOF) values obtained from the 
access points (Ap1, Ap2, Ap3, and Ap4) were recorded to 
create a dataset. Based on this dataset, two distinct ANFIS 
models were developed: ANFIS I, which is sensitive to the 
x coordinate, and ANFIS II, which is sensitive to the y 

coordinate. During the training process of both models, 
the hyperparameters of the positioning system were 
optimized, enhancing the accuracy of the location 
estimation processes. The performance of the developed 
models was evaluated using a test dataset, with the 
results presented in Table 3. Following the training and 
validation of the ANFIS models, the control board 
responsible for the AGV’s navigation mechanism was 
programmed with code to implement the Fuzzy Inference 
System (FIS) rules defined by ANFIS. This coding enabled 
the AGV to estimate its real-time x and y coordinates 
based on signals collected from the Ap1, Ap2, Ap3, and 
Ap4 access points while in motion. The parameters and 
structures of the membership functions used in the FIS 
rules are detailed in Figure 9. Therefore, the system has 
undergone an extensive validation process in both the 
data collection and model implementation phases, 
ultimately providing a reliable positioning mechanism that 
can operate effectively in dynamic indoor environments 
(Table 4 and Figure 7). The algorithmic code used for all 
these processes is given in Table 5. With this code, the 
(x,y) value is continuously calculated based on the values 
received from the sensor data. 
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Figure 9. AGV Routing Process 

Table.5. Pseudo Code for Arduino Fuzzy Logic System Localization Systems 
Initialization: 

1. Initialize the fuzzy system.
2. Define two fuzzy inputs:

- Input1 with membership functions: "low", "medium", "high".
- Input2 with membership functions: "low", "medium".

3. Define one fuzzy output:
- Output1 with membership functions: "low", "high".

4. Define fuzzy rules:
- Rule 1: IF Input1 is "low" AND Input2 is "low" THEN Output1 is "low".
- Rule 2: IF Input1 is "high" OR Input2 is "high" THEN Output1 is "high".

Setup: 
1. Initialize the serial communication.

Main Loop: 
1. Read sensor data:

- Collect real-time data for Input1 and Input2.
2. Set inputs:

- Assign the collected data to Input1 and Input2 in the fuzzy system.
3. Fuzzification:

- Compute the membership degrees of the inputs.
4. Rule Evaluation:

- Evaluate all fuzzy rules based on the input memberships.
5. Defuzzification:

- Calculate the crisp output value by combining the outcomes of the rules.
6. Output Control:

- Send the defuzzified output to control the system (e.g., motors).
7. Debugging:

- Print the output value for monitoring.
8. Repeat:

- Introduce a delay and repeat the loop for real-time operation.
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In order to optimize the positioning processes of 
autonomous guided vehicles (AGVs) in indoor environments, 
ultra-wideband (UWB) signals and adaptive neuro-fuzzy 
inference system (ANFIS) models were integrated. In the 
initial phase of the study, time-of-flight (ToF) signals obtained 
from ultra-wideband (UWB) access points (Ap1, Ap2, Ap3, 
Ap4) were recorded at various measurement points along 
predetermined x and y coordinates, forming a 
comprehensive database. The data were employed to train 
the ANFIS models, resulting in the development of ANFIS I 
(sensitive to the x-coordinate) and ANFIS II (sensitive to the 
y-coordinate). During the training process, the 
hyperparameters were optimized with the objective of 
enhancing the models' accuracy in real-time predictions of 
the x and y coordinates. 

The developed models were subsequently deployed in 
real-time test scenarios to predict positions based on UWB 
signal measurements. The signals collected from access 
points Ap1-Ap4 were fed into the ANFIS models in order to 

calculate the current position of the vehicle, which was 
represented as (xt, yt). The aforementioned predictions were 
integrated with a route table in order to guarantee that the 
AGV reached its designated target points. The route table 
was employed to ascertain the subsequent target position 
(xt+1, yt+1). The angle between the current position (xt, yt) 
and the target position (xt+1, yt+1) was calculated and 
transmitted to the motor control system, enabling the AGV 
to move towards the next target. 

The discrepancies between the predicted (xt, yt) values from 
the ANFIS models and the target points (xt+1, yt+1) in the route 
table were minimized, thereby ensuring precise route tracking 
by the vehicle. During this process, the motor control system 
dynamically adjusted wheel speeds based on information 
obtained from the ANFIS models, thereby optimizing the 
vehicle's movement. The aforementioned measurement, 
prediction, and real-time control processes were executed using 
the application code presented in Table 5. 

Table 6. Pseudo Code for Arduino Fuzzy Logic System Left and Right Motor PWM value 
// Pseudo Code for Fuzzy Logic Control System 
1. Initialize Fuzzy System:

- Create a fuzzy logic system instance.
- Define input variable `angle_diff` with membership functions:

- "low", "medium", "high"
- Define output variables `leftMotor` and `rightMotor` with membership functions:

- "low", "medium", "high"
2. Define Fuzzy Rules:

- Rule 1:
IF `angle_diff.` IS "low" THEN:

- `leftMotor` IS "low"
- `rightMotor` IS "high"

- Rule 2:
IF `angle_diff.` IS "medium" THEN:

- `leftMotor` IS "medium"
- `rightMotor` IS "medium"

- Rule 3:
IF `angle_diff.` IS "high" THEN:

- `leftMotor` IS "high"
- `rightMotor` IS "low"

3. Setup System:
- Initialize serial communication for debugging and monitoring.

4. Main Loop:
- Input Collection:

- Read input value for `angle_diff.` (e.g., from a sensor).
- Set Inputs:

- Assign the input value to `angle_diff.` in the fuzzy system.
- Fuzzification:

- Compute membership degrees for `angle_diff.`.
- Rule Evaluation:

- Evaluate fuzzy rules based on membership degrees.
- Defuzzification:

- Compute crisp output values for `leftMotor` and `rightMotor`.
- Output Control:

- Use the computed values to control the motor speeds.
- Monitoring:

- Print output values (`leftMotor`, `rightMotor`) for debugging.
- Repeat:

- Wait for a short delay and repeat the loop.
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Fuzzy Logic-Based Motor Control 
In this study, the determination of motor speeds is 

conducted through the utilization of a control system that 
is based on fuzzy logic rules and calculated angle 
difference values. The system utilizes the measured angle 
difference as an input variable, generating the requisite 
PWM values to control the motor speeds accordingly. 
Pulse-width modulation (PWM) signals enable the motors 
to move at specific angles, thereby enabling the vehicle to 
accurately follow the desired route. The fuzzy logic system 
classifies the angle difference into three membership 
functions: low, medium, and high. Based on this 
classification, the system calculates the appropriate PWM 
values for motor speeds. When the angle difference is 
low, the speed of the left motor is reduced, and the speed 
of the right motor is increased. At medium levels, the 
speeds of both motors are balanced. In the event of a high 
angle difference, the left motor is accelerated while the 
speed of the right motor is decreased. These processes 
comprise three principal stages: fuzzification, wherein the 
membership grades of the input values are ascertained; 
rule evaluation, wherein the prescribed rules are applied 
in accordance with the membership grades; and 
defuzzification, wherein the rules' outcomes are 

integrated to calculate the final PWM values that regulate 
the motors [47], [48], [49]. The computed PWM values are 
applied to the motors, enabling the vehicle to adapt to 
dynamic environmental conditions and to follow the 
designated route with precision. This method enhances 
the system's accuracy and flexibility, providing a reliable 
solution in situations where the environment is closed or 
complex. PWM (Pulse Width Modulation) is a technique 
used to control power or signal transmission by 
modulating the pulse width of a signal. PWM typically 
adjusts the average output voltage or power level by 
changing the ratio of "on" and "off" times of a signal. This 
technology is widely used in applications such as motor 
speed control, light brightness adjustment, and precise 
power delivery in electronic circuits. The main advantage 
of PWM is its ability to provide high efficiency by reducing 
energy loss. A PWM signal is defined by a metric called the 
"duty cycle." The duty cycle is the ratio of the time the 
signal is "on" to the total cycle time, expressed as a 
percentage (%). For instance, if the duty cycle is 50% to 
control the speed of a motor, the signal will be on for half 
of the cycle and off for the other half, allowing the motor 
to operate at medium speed [50] (Table 6). 

Table.7. PWM Motor Control Table for Angle-Based Adjustments 
Differences of Angle Right Motor PWM Left Motor PWM 
0 2 2 
1 1 -1
2 1 -1
22 1 -1
44 1 -1
68 2 -2
89 2 -2
90 2 -2
-1 -1 1
-2 -1 1
-17 -1 1
-41 -1 1
-67 -2 2
-81 -2 2
-89 -2 2
-90 -2 2

PWM values for motor control were systematically 
derived using a predefined training table, which correlates 
angular discrepancies with corresponding adjustments for 
the left and right motors. This structured approach 
enables precise and real-time motor adjustments, 
ensuring the AGV maintains its trajectory with high 
accuracy, even in dynamic indoor conditions.This 
approach enables the system to dynamically adapt motor 
speeds based on the angular disparity, enhancing stability 
and performance. For illustration, Table 7 presents 
example PWM values for selected angle differences. 
These values demonstrate the relationship between the 
angular discrepancy and the PWM output, showcasing 

how the system adjusts the left and right motor speeds to 
maintain balance and control. This structured 
methodology ensures that the system operates effectively 
across various scenarios, with PWM values carefully 
calibrated to respond to specific angular conditions. The 
use of a comprehensive training table ensures consistency 
and accuracy in motor speed adjustments, ultimately 
contributing to the system's overall reliability and 
efficiency.  The example coefficient structure is 
summarized in Table 7. This table primarily aims to 
provide the reader with an understanding of the 
relationship between PWM coefficients and angular 
adjustments. 
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Testing the Model and Discussion of Results 
To validate and test the control and operational 

accuracy of the developed AGV system, a structured 
testing scenario was implemented. The steps involved in 
the scenario are systematically described below. A specific 
route was planned for the AGV system to evaluate the 
performance of the developed ANFIS-based indoor 
positioning model. This route was uploaded into the 
system as precise xx and yy coordinates, representing the 
key target points along the AGV’s navigation path. The 
uploaded route served as a benchmark for real-time 
position comparison during the test. 

A structured test scenario was devised for the purpose 
of testing and verifying the control and operational 
accuracy of the developed AGV system. The following 
section provides a detailed account of the methodology 
employed in this scenario. In order to evaluate the 
performance of the developed ANFIS-based indoor 
positioning model, a specific route was planned for the 
AGV system. The route was loaded into the system with 
precise x and y coordinates to represent the main target 
points on the AGV's navigation path. These coordinates 
were used as a reference for real-time position 
comparisons during testing. The coordinates represented 
by the '■' symbol and colored in red in Figure 10 are the 
coordinates that the AGV is required to follow in a closed 
environment and were entered into the system. 

An indoor positioning system that integrates an 
adaptive neuro-fuzzy inference system (ANFIS) with a 
fingerprinting approach is employed to ascertain the real-
time position of the automated guided vehicle (AGV) as it 
traverses the planned route. The process is comprised of 
the following steps:  
• Data Collection: Real-time signals were gathered

from Ultra Wideband (UWB) access points situated
within the experimental setting.

• The ANFIS model was employed for the following
purposes: The collected signal data were processed in

two separate ANFIS models, designated ANFIS I and 
ANFIS II. ANFIS I was responsible for estimating the y-
coordinate, while ANFIS II was tasked with estimating 
the x-coordinate. 

• Real-time Location Output: The ANFIS models
provided continuous and accurate updates regarding
the current position of the AGV, expressed as (x,y)
coordinates. The ANFIS models continuously and
accurately updated the current position of the AGV as 
(x,y) coordinates. In Figure 10, the points represented
by x in blue and ‘♦’ symbol are the coordinates that
the AGV is desired to follow in the closed
environment and entered into the system.

The ability of ANFIS models to represent real-time
position data with high precision is critical for the system's 
performance. To assess the accuracy of the models, the 
actual x and y coordinates along the "Actual Route" path 
were compared with the instantaneous values generated 
by the ANFIS models. 

The accuracy analysis is presented through two key 
graphs: 
• Figure 11-a: Displays the regression relationship

between the actual x coordinates and the estimated
x coordinates produced by the ANFIS models. This
graph illustrates the accuracy of the ANFIS models in
predicting x-axis values.

• Figure 11-b: Depicts a difference graph representing
the discrepancies between the actual values and
those generated by the ANFIS models. In this graph,
the proximity of the differences to the zero line
indicates how closely the ANFIS models align with
the actual values.
This analysis was conducted to validate the ability of
the ANFIS models to accurately and consistently
predict real-time position data along the actual route, 
providing critical insights into the reliability of the
system

Figure 10. AGV Routing Process 



Yüksek and Elik / Journal of Engineering Faculty, 3(1): 38-54,2025 

51 

Figure 12. Identification of Sharp Turning Points for Optimized Route Navigation 

During the real-time route comparison and angular 
adjustment process, the AGV's current position was 
continuously compared with the next target position on the 
planned route. In this process, the angular difference between 
the AGV's current position and the target position was 
calculated, and directional adjustments were made 
accordingly. However, calculating the angle for every point 
along the route significantly reduced system performance. 
Frequent angular adjustments resulted in excessive directional 
changes for the AGV, increasing computation time and 
decreasing overall efficiency. To address this issue, sharp 
turning points along the route were identified, as shown in 
Figure 12. The AGV estimated its current position in real time 
using the ANFIS model and calculated the angle only for the 
next sharp turning point on its path. This method effectively 
reduced computation time, eliminated unnecessary 
directional changes, and optimized the AGV's navigation 
performance. Based on the calculated angular difference, the 
system dynamically adjusted the AGV's direction to align it 
with the planned route, ensuring smoother and more efficient 
navigation. The red points shown in Figure 12 represent the 
sharp turns along the route, indicating the locations where the 
AGV system will execute a turn within the algorithm. The blue 
points, on the other hand, represent the possible (x,y)(x, y) 
positions determined by the ANFIS models at specific intervals 
as the AGV progresses toward the target sharp points. 

The movement and directional control of the AGV were 
achieved through a wheel mechanism integrated with ANFIS-
based fuzzy logic rules. In this system, the calculated angular 
difference served as the input variable for the fuzzy logic 
controller. Based on this input, the fuzzy logic rules generated 
Pulse Width Modulation (PWM) coefficients for the left and 
right wheels. These coefficients dynamically adjusted the 
forward or backward motion and the individual speeds of each 
wheel, ensuring that the AGV moved accurately in the desired 

direction. The generated PWM values were transmitted to the 
motor control board, and the speed and direction of the 
wheels were adjusted accordingly. 

Application of the Developed Method for Calculating 
PWM Coefficients 

The control mechanism was enhanced with a continuous 
feedback loop, enabling precise and reliable route tracking. 
The AGV's current position was updated at regular intervals in 
real time and continuously compared with the next sharp 
turning point on the planned route. When deviations from the 
planned path were detected, the system recalculated the 
angular difference and applied necessary corrections instantly, 
ensuring alignment with the route. This dynamic correction 
process was executed within the pre-programmed logic of the 
control system, maintaining accurate position tracking for the 
AGV. 

Integrating the fuzzy logic-based control mechanism with 
the real-time feedback loop minimized unnecessary 
directional changes and optimized processing time. With 
ANFIS-based position estimation and dynamic adjustments, 
the AGV achieved smooth and precise navigation even in 
complex environments. This approach not only reduced the 
system's computational load but also significantly improved 
route tracking performance, providing a reliable navigation 
solution. 

The process described above can be summarized using a 
block diagram representation similar to Table 8. This 
representation provides a clear and systematic overview of the 
steps involved in calculating PWM coefficients and controlling 
the AGV's movement. The block diagram highlights the 
integration of ANFIS-based position estimation, angular 
difference calculation, and fuzzy logic-based motor control to 
achieve smooth and precise navigation. The process can be 
outlined as follows: 
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Table.8. flow diagram representation 
1. Start Process

o Initialize inputs: Δθ and Sbase

2. Acquire Real-Time Position
o Read current (xcurrent,ycurrent) and target (xtarget,ytarget) positions.

3. Calculate Angular Difference
o Compute Δθ=atan2(ytarget−ycurrent,xtarget−xcurrent)

4. Apply PWM Calculation Logic
o Use proportional or fuzzy logic rules to calculate PWMleft and PWMright

5. Constrain PWM Values
o Ensure PWM values are within acceptable operational ranges.

6. Transmit PWM Coefficients
o Send the calculated values to the motor control system.

7. Feedback Loop
o Compare the AGV’s real-time position with the planned route.
o Recalculate Δθ and update PWM values if necessary.

8. End Process
o Terminate the process upon reaching the final target.

Conclusion 
In this study, the aim is to enhance indoor navigation of 

Automated Guided Vehicles (AGVs) by utilizing Ultra-
Wideband (UWB) technology with the Adaptive Neuro-Fuzzy 
Inference System (ANFIS). With Industry 4.0 advancing and the 
environment indoors becoming more complicated, the AGV 
must navigate effectively, accurately, and safely. UWB boasts 
centimeter-level positioning accuracy, power efficiency, and 
insensitivity to multipath effects, rendering it an appropriate 
choice for indoor navigation. While problems such as 
installation costs and environmental sensitivity typify ANFIS 
integration, higher accuracy and effectiveness are gained with 
the application of the capabilities of fuzzy logic and neural 
network learning. 

Experimental outcomes indicate that the system's high 
accuracy measures an R² of 0.997 and low values for RMSE and 
MAE, proving its dependability. Flexibility and responsiveness 
over traditional systems with physical guides like magnetic strips 
are made possible through the virtual coordinate-based 
approach. Dynamic control of motors by the system through 
PWM techniques provides optimal time and energy. Real-time 
data integration allows AGVs to be highly responsive to varying 
environments, sustaining smooth movement. This approach 
offers great benefits in industrial and logistics applications, 
improving material handling in factories, warehouses, and smart 
manufacturing facilities, boosting security and cost savings. It 
also has potential for broader application, including in smart 
cities and medicine, showing its versatility and scalability. 

Conclusionarily, the integration of UWB with ANFIS is a 
groundbreaking solution for AGV navigation in indoor 
environments, addressing significant issues like accuracy, cost 
savings, and flexibility. The study finds usefulness in academic 
and industrial use with prospects for smart navigation systems 
extensions. The next line of research would be examining UWB 
in swarm robotics to improve coordination and accuracy in 
settings that are complex, with integrating into swarm 
intelligence algorithms like PSO or ACO. Hybrid systems that 
combine UWB with other sensors like LIDAR or visual 
odometry would also improve reliability in interference- or 
obstacle-rich environments, unlocking new applications for 
Industry 4.0 and beyond. 
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