Determination of Enteric Methane Emissions from Cattle Production by Using Tier-2 Method

Büşra Yaylı1* and İlker Kılıç1

¹Bursa Uludağ University, Faculty of Agriculture, Department of Biosystems Engineering, 16059, Bursa, TURKEY

Received: 20.07.2021; Accepted: 09.08.2021; Published Online: 22.09.2021

ABSTRACT

Livestock farms are known to be important greenhouse gas producers. Especially in the agriculture sector, the most important source of anthropogenic methane (CH₄) emission is ruminant animals. In recent studies of dairy cattle, it is noted that most of the formation of CH₄ gas occurs as a result of enteric fermentation. In this study, it was aimed to evaluate the CH₄ emissions resulting from enteric fermentation of cattle during the 2004-2020 period in Turkey. The Tier-2 method adopted by the Intergovernmental Panel on Climate Change (IPCC) was used adopted for data generation and calculation of emission factors for the calculation of CH₄ emissions for enteric fermentation in cattle. Based on the study results, the required gross energy (GE) value and enteric fermentation emission factors (EF) were calculated according to cattle sub-categories. It has been observed that methane gas emissions of 541 kT to 907 kT CH₄ gas emissions were calculated. Methane emission can be suppressed by changes made in feed rations, added oil and various additives to reduce methane emissions in the rumen. In addition, breeding high yielding species with low methane production is one of the strategies that can reduce methane formation.

Keywords: Emissions, Enteric fermentation, IPCC, Methane

INTRODUCTION

Agriculture sector is one of the most important factors that affect the generation of methane emissions. Especially ruminant animals that carried out enteric fermentation, produces 21-25% of global anthropogenic methane emissions (Lascano and Cardenas 2010). Cattle are important methane (CH₄) sources in Turkey as well as in many countries due to their high population and their ruminant digestive systems. Enteric fermentation contributes to methane emission since cattle have large intestines. The two most important sources of methane in agriculture are enteric fermentation and manure. In ruminant animals, 80% of methane gas is produced during the microbial fermentation of cellulosic feeds in the rumen and 20% as a result of the decomposition of manure (Vergé *et al.* 2009). Yaylı and Kılıç (2020), reported in their study that 86.8% of CH₄ emissions from dairy farms in Turkey are caused by enteric fermentation.

The energy of methane gas formed by microbiological fermentation cannot be used by the body and is released to the atmosphere, and the energy taken with the feeds cannot be used by the animal, causing low yield and economic loss (Arslan and Çelebi 2017). In addition, methane is a serious greenhouse gas with a global warming potential that is 28 times greater than carbon dioxide (CO₂) (IPCC 2014). Therefore, as CH₄ emissions increase, their negative impact on global climate change also increases.

It is observed that the methane emission generated by the enteric fermentation of cattle followed a fluctuating course between 1961 and 2018 in Turkey (FAOSTAT 2021) (Table 1). It has been observed that enteric methane emission occurs in higher amounts in years when the number of animals is higher. With the formation of 589.920 Gg of CH_4 gas in 2018, it has been the year with the highest emission in the last 58 years. This is because the increase in the cattle population in 2018. In addition, methane gas, which is a by-product of enteric fermentation in ruminant animals, can vary depending on the age, weight, gender of animals, digestibility, quality and quantity of feed (Popa *et al.* 2016). Digestibility can be used for any nutrient as well as for all feeds. Only the digestibility of the feeds by animals differs. The lower the digestibility of feed in animals, the higher the methane emissions (Yayh and Kılıç 2020).

^{*} Corresponding author: busrayayli@uludag.edu.tr

Figure 1. Cattle Numbers and Enteric Fermentation CH4 Emissions of Turkey (FAOSTAT 2021).

Unless a technique is developed to measure actual methane emissions from enteric fermentation, estimation can be made based on theoretical estimates derived from research findings (Garnsworthy *et al.* 2012). In calculating methane emissions from enteric fermentation, using Tier methods determined by the Intergovernmental Panel on Climate Change, animal species (cattle, goat sheep, pigs, chickens, etc.) or according to subgroups (dairy cows, beef cattle, etc.) is obtained by multiplying the appropriate emission factors by the national animal population numbers (IPCC 2019). Tier 1-2-3 methods have been developed according to their scope. The Tier-1 method is a basic method in determining the general characterization by using parameters in calculating emissions. The Tier-2 method is a more detailed method that includes detailed information about farm animals and their subcategories and estimates feed intake. The Tier-3 method, on the other hand, is a comprehensive method that develops country-specific methodologies and adopts a measurement-based approach for emission factors.

In this study, the CH_4 gas emission resulting from enteric fermentation, in Turkey between 2004-2020, was estimated using the Tier-2 method and reduction strategies were emphasized.

MATERIALS AND METHODS

It is necessary to collect data such as live weight, milk yield, and live weight gain for animal categories. However, obtaining these data from individual living things is not a realistic approach. These data should be drawn from case studies and, where available, statistical databases (IPCC 2019). In this study, since there is no specific dataset for cattle in Turkey, necessary data were obtained from relevant databases and sources. Cattle numbers in Turkey was obtained from the data provided by Turkish Statistical Institute (TUIK) (TUIK 2021) (Table 1). Because the numbers for the year 2020 for dairy cows were not published, methane emissions from dairy animals in this year could not be calculated.

Veer	Cattle species sub-category					
rear	Lactating cow	Bulls	Cattle/Buffalo			
2004	3 915 083	413 084	9 760 162			
2005	4 036 302	409 764	10 221 641			
2006	4 224 484	450 351	10 521 529			
2007	4 259 900	474 784	10 646 674			
2008	4 111 683	554 337	10 391 902			
2009	4 165 509	495 664	10 315 501			
2010	4 397 203	488 868	10 965 658			
2011	4 801 360	543 350	11 940 619			
2012	5 478 359	619 946	13 402 401			
2013	5 659 212	675 981	13 856 867			
2014	5 664 131	679 193	13 666 030			
2015	5 598 773	666 731	13 461 106			
2016	5 495 044	657 091	13 565 137			
2017	6 038 545	635 889	15 469 136			
2018	6 413 789	750 905	16 469 998			
2019	3 411 084	836 561	17 035 770			
2020	ND*	958 017	17 199 954			

Table 1. Cattle numbers in Turkey between 2004-2020 year by animal categories (head) (TUIK 2021).

*No data

The equations used to find the enteric fermentation CH_4 emission factor are given in Table 2 as equation (I) and equation (II). When calculating gross energy (GE), the energies an animal needs for its activities and care such as maintenance, activity, lactation, work, pregnancy, growth, (MJ day⁻¹) were calculated. The methane conversion factor (Y_m) was taken as 6.5% by using equation (II) for the enteric fermentation emission factor (IPCC 2006; Thakuri *et al.* 2020). Total emissions from enteric fermentation were calculated by equation (III).

Table 2. Tier-2 equations about CH4 emission derived from enteric fermentation used for cattle for net energy	y requirements
and methane emission factor.	

$GE = \{[(NE_m + NE_a + NE_1 + NE_{work} + NE_p) / REM] + [(NE_g) / REG]\} / DE$	(I)
$CE = \operatorname{groot}_{OM} OM \operatorname{day}^{-1}$	
OE = gloss energy (WJ day)	
NE_m = net energy required by the animal for maintenance (MJ day ')	
$NE_a = net energy for animal activity (MJ day-1)$	
$NE_{l} = net energy for lactation (MJ day^{-1})$	
$NE_{work} = net energy for work (MJ day^{-1})$	
$NE_p = net energy required for pregnancy (MJ day-1)$	
NE_g = net energy needed for growth (MJ day ⁻¹)	
REM = ratio of net energy available in a diet for maintenance to digestible energy	
REG = ratio of net energy available for growth in a diet to digestible energy consumed	
DE = digestibility of feed expressed as a fraction of gross energy	
EF=[GE*(Y _m /100)]*365/55.65	(II)
EF = emission factor for enteric fermentation (kg CH4 head-1 yr-1)	
$GE = gross energy intake (MJ day^{-1})$	
Y_m = methane conversion factor, per cent of gross energy in feed converted to methane	
The factor 55.65 (MJ kg CH4 ⁻¹) is the energy content of methane	
Em = Number of animals *EF	(III)
Em = methane emissions from enteric fermentation (kg CH4 yr-1)	

Holstein type cattle are generally preferred in dairy cattle breeding in Turkey. In this study, the weight characteristics of cattle were obtained from the relevant standards (Anonymous 2018; Ardıclı et al., 2018;

Anonymous 2020; QMS 2020). It was taken into account that the cattle were raised in the barn and did not spend much energy for feeding. For a typical Holstein-type cattle, daily weight gains should maintain growth rate at an average of 750 g day⁻¹ (Wathes *et al.* 2014). Turkey has not show high performance by lagging behind with an average milk yield of 2.513 kg compared to European Union countries according to the latest statistics (EHRC 2009).

RESULTS AND DISCUSSION

Enteric fermentation CH₄ emission factors (EFs) were calculated based on the daily gross energies of cattle and the information using the equation specified in Table 3. Energy required to maintenance for the animal (NE_m) is the energy that is not gained or lost to keep the animal in balance. The average NE_m values calculated 52.5, 65.8 and 34 MJ day⁻¹ head⁻¹ for lactating cow, bulls and cattle/buffalo, respectively. Energy required for animal activity (NE_a) is required for animals to access food and water. It is based on the feeding situation rather than the feed characteristics. IPCC guidelines define for cattle the necessary coefficient for net energy for animal activity (NE_a) situation in barns, pastures and grazing large areas. Cattle expend significant energy on pasture and grazing large areas to acquire feed and water. On the other hand, animals raised in barns expend very little or no energy. In the IPCC guidelines, the relevant coefficient expends in the barn for cattle and buffalo is specified as 0. Since cattle breeding in the stall were taken into account in this paper, the energy (NE_a) spent for daily activities of animals was considered as 0 MJ day⁻¹ head⁻¹. Net energy required for animal growth (NEg) is the energy required for weight gain in animals (NRC 1996). Neg values are 19.3, 18.6 and 20.25 MJ day-1 head-1 for lactating cow, bulls and cattle/buffalo, respectively. Net energy required for lactation (NE_1) is a function of the amount of milk produced in animals and the energy required for lactation (NRC 1989). NE₁ values were calculated as 82.5 MJ day⁻¹ head⁻¹ for all cattle. Lactation energy for calves only is 0 MJ day⁻¹ head⁻¹. The energy required for work (NE_{work}) in animals is the energy that expresses draft for cattle and buffaloes (Ibrahim 1985; Lawrence 1985). Nework values are 57.8, 72.4 and 37.5 MJ day⁻¹ head⁻¹ for lactating cow, bulls and cattle/buffalo, respectively. The energy required for pregnancy (NE_p) in animals is the energy required for their pregnancy (IPCC 2006). Ne_p values are 5.3, 6.6 and 3.4 MJ day⁻¹ head⁻¹ for lactating cow, bulls and cattle/buffalo, respectively. Energies required for gross energy could not be calculated since the population data of lactating cows for 2020 has not been published.

-		NEm	NEa	NEg	NEı	NEwork	NEp	GE
2004	LC	205 660 936	0	75 550 720	322 994 348	226 227 030	20 566 094	43 287 711
	В	27 179 415	0	7 685 003	34 079 430	29 897 356	2 717 941	5 087 093
	C/B	332 862 091	0	197 616 185	536 808 910	366 148 300	33 286 209	78 602 693
	LC	212 028 621	0	77 889 925	332 994 915	233 231 483	21 202 862	44 627 988
2005	В	26 960 971	0	7 623 238	33 805 530	29 657 068	2 696 097	5 046 207
	C/B	348 600 443	0	206 959 853	562 190 255	383 460 487	34 860 044	82 319 178
2006	LC	221 913 899	0	81 521 338	348 519 930	244 105 289	22 191 390	46 708 651
	В	29 631 447	0	8 378 317	37 153 958	32 594 591	2 963 145	5 546 033
	C/B	358 827 870	0	213 031 753	578 684 095	394 710 657	35 882 787	84 734 302
	LC	223 774 316	0	82 204 773	351 441 750	246 151 748	22 377 432	47 100 233
2007	В	31 239 049	0	8 832 868	39 169 680	34 362 953	3 123 905	5 846 923
	C/B	363 095 834	0	215 565 592	585 567 070	399 405 418	36 309 583	85 742 148
2008	LC	215 988 416	0	79 344 578	339 213 848	237 587 257	21 598 842	45 461 449
	В	36 473 345	0	10 312 870	45 732 803	40 120 679	3 647 334	6 826 611
	C/B	354 407 050	0	210 407 166	571 554 610	389 847 755	35 440 705	83 690 361
2009	LC	218 815 918	0	80 383 277	343 654 493	240 697 510	21 881 592	46 056 585
	В	32 612 876	0	9 221 319	40 892 280	35 874 164	3 261 288	6 104 058
	C/B	351 801 459	0	208 860 258	567 352 555	386 981 605	35 180 146	83 075 072
2010	LC	230 986 900	0	84 854 357	362 769 248	254 085 590	23 098 690	48 618 345
2010	В	32 165 724	0	9 094 886	40 331 610	35 382 297	3 216 572	6 020 366

Table 3. Net energy requirements for maintenance (NE_m), activity (NE_a), growth (NE_g), lactation (NE_l), work (NE_{work}), and pregnancy (NE_p), and daily Gross energy (GE) intake unit for animal category (MJ day⁻¹).

	C/B	373 974 515	0	222 024 132	603 111 190	411 371 966	37 397 451	88 311 060
	LC	252 217 435	0	92 653 515	396 112 200	277 439 179	25 221 744	53 086 968
2011	В	35 750 440	0	10 108 468	44 826 375	39 325 484	3 575 044	6 691 307
	C/B	407 224 737	0	241 764 386	656 734 045	447 947 211	40 722 474	96 162 831
	LC	287 780 474	0	105 717 801	451 964 618	316 558 521	28 778 047	60 572 311
2012	В	40 790 177	0	11 533 458	51 145 545	44 869 194	4 079 018	7 634 580
	C/B	457 077 579	0	271 361 413	737 132 055	502 785 337	45 707 758	107 935 177
	LC	297 280 757	0	109 207 784	466 884 990	327 008 833	29 728 076	62 571 939
2013	В	44 477 074	0	12 575 931	55 768 433	48 924 782	4 447 707	8 324 646
	C/B	472 576 758	0	280 563 088	762 127 685	519 834 434	47 257 676	111 595 183
	LC	297 539 154	0	109 302 708	467 290 808	327 293 069	29 753 915	62 626 327
2014	В	44 688 412	0	12 635 687	56 033 423	49 157 254	4 468 841	8 364 202
	C/B	466 068 424	0	276 699 168	751 631 650	512 675 266	46 606 842	110 058 293
	LC	294 105 871	0	108 041 472	461 898 773	323 516 458	29 410 587	61 903 686
2015	В	43 868 458	0	12 403 844	55 005 308	48 255 304	4 386 846	8 210 733
	C/B	459 079 663	0	272 550 026	740 360 830	504 987 630	45 907 966	108 407 953
	LC	288 656 944	0	106 039 777	453 341 130	317 522 638	28 865 694	60 756 791
2016	В	43 234 182	0	12 224 502	54 210 008	47 557 600	4 323 418	8 092 018
	C/B	462 627 553	0	274 656 365	746 082 535	508 890 308	46 262 755	109 245 759
	LC	317 207 277	0	116 527 905	498 179 963	348 928 005	31 720 728	66 766 092
2017	В	41 839 168	0	11 830 061	52 460 843	46 023 084	4 183 917	7 830 917
	C/B	527 561 832	0	313 207 059	850 802 480	580 318 016	52 756 183	124 579 464
	LC	336 919 000	0	123 769 119	529 137 593	370 610 900	33 691 900	70 915 035
2018	В	49 406 799	0	13 969 815	61 949 663	54 347 479	4 940 680	9 247 329
	C/B	561 695 387	0	333 471 736	905 849 890	617 864 925	56 169 539	132 639 827
	LC	179 185 659	0	65 824 875	281 414 430	197 104 225	17 918 566	37 715 170
2019	В	55 042 650	0	15 563 357	69 016 283	60 546 916	5 504 265	10 302 175
	C/B	580 990 563	0	344 927 048	936 967 350	639 089 620	58 099 056	137 196 227
	LC	-	-	-	-	-	-	-
2020	В	63 034 011	0	17 822 921	79 036 403	69 337 412	6 303 401	11 797 895
	C/B	586 589 920	0	348 251 319	945 997 470	645 248 912	58 658 992	138 518 470
191			00.1					

LC: Lactating cow, B:Bulls, C/B:Cattle/Buffalo

Methane emission factors by animal categories are 47 kg CH₄ year⁻¹ head⁻¹ for lactating cow (LC) and 52.5 kg CH₄ year⁻¹ head⁻¹ was calculated for bulls (B). In the cattle/buffalo category, emission factors were determined in 24 sub-categories according to the data of TUIK. In the determination of the total emissions, the methane emission calculation was made by using the emission factor obtained for each category. Average emission factor (EF) in the cattle/buffalo category was calculated as 34.3 kg CH₄ year⁻¹head⁻¹. Enteric methane emission rates according to cattle species between 2004-2020 are given in Figure 2. Bulls need the most energy per animal. However, since the group with the highest population is cattle/buffalo, cumulative emissions are mostly generated by this animal subcategory. Enteric methane emission of this group decreased in parallel because it observed that the number of animals decreased by approximately half in 2019 in the lactating cow.

Figure 2. Enteric methane emission rates by cattle animal categories in 2004-2020 in Turkey (kT CH4 year⁻¹).

Enteric methane emissions from cattle have followed a fluctuating course in the last 20 years in Turkey. (Figure 3). Since lactating cow numbers for 2020 cannot be obtained from the TUIK database, only enteric emissions from the bull and cattle/buffalo categories are indicated for this year. A significant increase is expected in the number of ruminant animals to meet the increasing population food demand and increasing in ruminant animals, which constitute 33% of anthropogenic methane gas emissions, it is predicted that this rate will increase to 70% in the next 20-30 years (Gür and Öztürk 2021).

Figure 3. Total enteric fermentation methane emissions from cattle in 2004-2020 in Turkey (kT CH4 year⁻¹).

Enteric fermentation CH_4 emission rates of cattle according to geographical regions of Turkey were also examined for 2019 (Figure 4). Cattle numbers have according to the regions the Mediterranean is 1 363 715 head, the Black Sea is 2 538 371 head, Aegean is 2 838 421 head, Marmara is 2 322 203 head, Eastern Anatolia is 3 824 561 head, Southeastern Anatolia is 1 711 662 head and Central Anatolia is 3 557 442 heads (TUIK, 2021).

Figure 4. Enteric methane emissions by region (ton CH₄ year⁻¹).

CONCLUSIONS

In this study, country-specific CH₄ EFs for enteric fermentation of cattle was developed using the IPCC Tier 2 methodology and also geographic regions were compared. For calculations, necessary data were obtained from relevant databases and sources, except number of animals. At the end of the study, country-specific CH₄ EFs by animal categories are 47 kg CH₄ year⁻¹ head⁻¹ for lactating cow and 52.5 kg CH₄ year⁻¹ head⁻¹ was calculated for bulls. Eastern Anatolia region among geographic regions has the highest enteric methane emissions due to higher number of animal. When we compared our results to other counties in this study, enteric methane emissions calculated for all sub-categories in this study are similar to Asian countries and lower than European countries. Differences in feed formula and feeding can be a reason for this situation. According to the sectoral analysis of greenhouse gas emissions (GHG) published by TURKSTAT in 2019, the agriculture sector, which also includes emissions from animals, ranks second after the energy sector. So, it can be say that the cattle are one of the main sources of GHG emissions in Turkey. But the cattle production contribute to the household economy in rural side and dietary needs in the country. To decrease GHG emissions, enteric methane emissions from cattle should be decreased. Different strategies are considered for methane emissions from enteric fermentation. It has been

reported in various studies that changes in feed rations that suppress methane emission reduce the digestibility of the feed and reduce the emission (Haque *et al.* 2001; Akçil and Denek 2013; Güleçyüz and Kılıç 2018). Therefore, using concentrated feed instead of roughage, adding oil or various additives into the feed can suppress the formation of CH_4 gas in the rumen. Genetic selection that produces low methane, and increasing productivity by breeding productive species are other reduction strategies that can reduce methane formation.

REFERENCES

Akçil E, and Denek N (2013). Investigation of Different Levels Eucalyptus (Eucalyptus camaldulensis) Leaves Effect on In Vitro Methane Production of Some Roughages. *Harran University Journal of the Faculty of Veterinary Medicine*, 2(2): 75-81.

Anonymous (2018). Büyükbaş Hayvancılık Sektörü. <u>https://ekonomi.isbank.com.tr/contentmanagement/Documents/</u> <u>tr11_sektor_rap/sr201804_buyukbashayvanciligi.pdf</u> (Accessed on 12/08/2021)

Anonymous (2020). Manda Yetiştiriciliği. http://www.veteriner.cc/manda/murrah.asp (Accessed on 24/05/2021).

- Ardicli S, Dince, D, and Balci F (2018). Evaluation of slaughter weights and carcass traits of bulls marketed in South Marmara Region of Turkey. Harran Üniversitesi Veteriner Fakültesi Dergisi, 7(1): 45-50.
- Arslan C, and Çelebi E (2017). Studies on reduction of ruminal methane production in ruminants. *Atatürk University Journal of Veterinary Sciences*, 12(3): 327-337.

Doreau M, Martin C, Morgavi DP, and Eugene M. (2011). Reducing methane emission in ruminants: is it an achievable goal?. In: Ranilla MJ (ed), Carro MD (ed), Ben Salem H (ed), Morand-Fehr P (ed). Challenging strategies to promote the sheep and goat sector in the current global context. Zaragoza, Spain, Universidad de Leon, CIHEAM, CSIC, 2011. pp. 65-73.

EHRC (2009). The European Holstein and Red Holstein Confederation, 28th European Holstein and Red Holstein Conference. https://www.euholsteins.com/conference-documents/ (Accessed on 25/05/2021).

FAOSTAT (2021). Food and agriculture data, Emissions - Agriculture. http://www.fao.org/faostat/en/#home (Accessed on 08/06/2021).

- Garnsworthy PC, Craigon J, Hernandez-Medrano JH, and Saunders N (2012). On-farm methane measurements during milking correlate with total methane production by individual dairy cows. *Journal of dairy science*, 95(6): 3166-3180.
- Güleçyüz E, and Kılıç Ü. (2018). Determining In Vitro Gas Production Kinetics and Methane Production of Wheat Straw and Soybean Straw Pelleted with Different Additives, Turkish Journal of Agricultural and Natural Sciences, 5(1): 13-21.
- Gür G. and Öztürk H. (2021). Methane mitigation strategies in ruminants. *Bulletin of Veterinary Pharmacology and Toxicology Association*, 12(1): 43-54.
- Haque N, Saraswat ML, and Sahoo A (2001). Methane production and energy balance in crossbred male calves fed on rations containing different ratios of green sorghum and wheat straw. *The Indian Journal of Animal Sciences*, 71(8).
- Ibrahim MNM (1985). Nutritional status of draught animals in Sri Lanka. In: Draught Animal Power for Production. ACIAR (Australian Centre for International Agricultural Research) Proceedings Series No. 10, ed. JW Copland. Canberra, A.C.T., Australia: ACIAR.
- IPCC (2006). IPCC guidelines for national greenhouse gas inventories. Agriculture, Forestry, and Other Land Use. Intergovernmental Panel for Climate Change (IPCC). vol.4. Institute for Global Environmental Strategies, Hayama, Japan.
- IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
- IPCC (2019). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Emissions From Livestock And Manure Management, Chapter 10: Emissions from Livestock and Manure Management (Accessed on 20/05/2021)
- Kaya A, Kaya H, and Çelebi Ş (2012). Studies to reduce the production of methane from ruminant. *Atatürk University Journal of the Agricultural Faculty*, 43(2): 197-204.
- Lascano CE, and Cárdenas E (2010). Alternatives for methane emission mitigation in livestock systems. *Revista Brasileira de Zootecnia*, 39, 175-182.
- Lawrence PR (1985). A review of nutrient requirements of draught oxen. In: Draught Animal Power for Production. ACIAR (Australian Centre for International Agricultural Research) Proceedings Series No. 10., ed. JW Copland. Canberra, A.C.T., Australia: ACIAR.
- Naqvi SMK, and Sejian V (2011). Global climate change: Role of livestock, Asian Journal of Agricultural Sciences, 3:19-25.
- NRC (1996). Nutrient Requirements of Beef Cattle, 7th Revised Ed. Washington, DC: The National Academies Press.

NRC (1989) Nutrient Requirements of Dairy Cattle, 6th Ed. . Washington, D.C. U.S.A: National Academy Press.

Popa D, Popa R, Vidu L, and Nicolae C (2016). Emission of methane from enteric fermentation of cattle and buffaloes in Romania between 1989-2014. Agriculture and Agricultural Science Procedia, 10, 289-298.

- Thakuri S, Baskota P, Khatri SB, Dhakal A, Chaudhary P, Rijal K, and Byanju RM (2020). Methane emission factors and carbon fluxes from enteric fermentation in cattle of Nepal Himalaya. *Science of The Total Environment*, 746, 141184.
- TUIK (2021). Türkiye İstatistik Kurumu, Hayvancılık İstatistikleri. https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1 (Accessed on 20/05/2021).
- Wathes DC, Pollott GE, Johnson KF, Richardson H, and Cooke JS (2014). Heifer fertility and carry over consequences for life time production in dairy and beef cattle. *Animal*, 8, 91-104.
- Vergé XPC, Dyer JA, Desjardins RL, and Worth D (2009). Long-term trends in greenhouse gas emissions from the Canadian poultry industry. *The Journal of Applied Poultry Research*, 18, 210–222.

J. BIOL. ENVIRON. SCI., 2021, 15(43), 1-9

- Yaylı B, and Kılıç İ (2020). Estimation of global warming potential by Tier-1 method of dairy cattle farms. *International Journal of Biosystems Engineering*, 1(2): 79-86.
- Yusuf RO, Noor ZZ, Abba AH, Abu Hassan MA, and Din MFM (2012). Greenhouse gas emissions Quantifying methane emissions from livestock. *American J. of Engineering and Applied Sciences*, 5 (1): 1-8.
- QMS (2020). Quality Meat Scotland, Cattle & Sheep Standards. https://www.qmscotland.co.uk/sites/default/files/ qms_cattle_and_sheep_standards_2020_final_20200110.pdf (Accessed on 24/05/2021)