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Abstract

Mathematical modeling of tumor—immune interactions provides valuable insights into the
nonlinear dynamics that govern tumor progression and response to treatment. In this study,
a deterministic model of the tumor—immune system under chemotherapy is investigated

with a focus on spectral entropy and basin of attraction analyses. Spectral entropy is applied
to quantify the temporal complexity of system dynamics and to detect transitions between
qualitatively distinct behavioral regimes, such as steady states, oscillatory patterns, and
potentially chaotic trajectories. Basin of attraction analysis investigates how variations
in the initial populations of tumor and immune cells determine the long-term behavior
of the system, including tumor elimination, persistent oscillations, or uncontrolled tumor
growth. By combining spectral entropy with basin mapping, the framework captures both
the temporal irregularity and the sensitivity to initial conditions inherent in tumor—immune
dynamics, which may help guide the design and timing of more effective therapeutic
interventions.
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1. Introduction

The use of mathematical models has become an essential interdisciplinary tool in cancer research, bridging mathematics, biology, and
medicine to enhance understanding of cancer initiation, progression, and treatment. These models provide a structured framework for
simulating complex biological processes, such as immune system activation and suppression. They also help identify the key factors of
tumor behavior, whether it is eliminated, remains dormant, or grows uncontrollably. By adjusting model parameters, researchers can evaluate
how treatment timing, dosage, and immune status influence therapeutic outcomes.

A wide range of models has been developed to study tumor—immune interactions. One foundational contribution by Kuznetsov et al. [1]
introduced a nonlinear tumor—-immune model, using parameter estimation and bifurcation analysis to determine the conditions for tumor
elimination or persistence. Subsequent studies expanded these deterministic models [2—6]. Bifurcation analysis has also been used to
explore the effects of immune system strength and pulsed therapy on tumor dynamics [7]. To capture the nonlinear and often unpredictable
behavior of tumor growth, discrete and chaotic models have been proposed. A discrete map-based model demonstrated that tumor growth
can transition between exponential, periodic, and chaotic patterns depending on parameter values [8]. A chaotic differential equation model
demonstrated that variations in nutrient levels, such as glucose and oxygen, significantly influence tumor proliferation [9].

Time-delay effects have also been systematically investigated in mathematical oncology [10-13]. These models revealed oscillatory and
chaotic behaviors that offer further insights into tumor relapse and immune regulation.

Mathematical modeling has also played a key role in the development of therapeutic strategies involving immunotherapy, chemotherapy,
and their combinations [14—16]. Optimal control frameworks have been employed to develop effective treatment strategies, including
immunotherapy and dendritic cell vaccination [17-19]. The efficiency of various combined treatments involving chemotherapy and
radiotherapy has also been explored through mathematical modeling. These studies have examined how treatment intensity influences
tumor dynamics and transitions to chaotic behavior [20-22]. Additionally, models that incorporate immunotherapy have been developed to
investigate tumor oscillations and the potential for long-term relapse [23].

Recent advances in tumor—-immune modeling include the integration of stochastic effects, spatial heterogeneity, and advanced control
techniques. Stochastic models have demonstrated that random environmental fluctuations can significantly influence tumor progression and
treatment efficacy [24]. The incorporation of the Allee effect in both deterministic and stochastic frameworks has provided valuable insights
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into tumor extinction dynamics [25,26]. Spatiotemporal models, which capture the spatial distribution and interaction of tumor and immune
cells, have provided important insights into glioma control through immunotherapy [27, 28].

Additional efforts have focused on stabilizing chaotic tumor dynamics. A non-feedback control method has been proposed to regulate chaotic
tumor behavior [29], while suboptimal dosing strategies have been shown to sustain chaos and delay tumor elimination [30]. Stochastic
modeling has revealed that small perturbations can dramatically impact tumor outcomes [31-34]. Additionally, external interventions such
as ultrasound and oncotripsy have been explored as potential tools to modulate chaos and enhance treatment effectiveness [35,36].

The complex interplay between tumor dynamics and the immune response during chemotherapy is inherently nonlinear and highly sensitive
to both initial biological conditions and treatment parameters. Accurately characterizing these dynamics is essential for evaluating treatment
efficacy and developing optimized therapeutic strategies.

In this study, spectral entropy (SE) is proposed as a diagnostic tool to analyze tumor—immune dynamics from both temporal and spatial
perspectives. Spectral entropy quantifies the unpredictability of a time-series signal and is computed as the Shannon entropy of its normalized
power spectral density (PSD) [37]. As a measure of temporal complexity, SE values indicate the degree of disorder in the system. Low
SE reflects stable, predictable behavior, while high SE indicates irregular or oscillatory dynamics, potentially corresponding to unstable
tumor—immune interactions or treatment resistance.

SE has been widely applied across various scientific domains. In biomedical signal processing, it has been used to detect state transitions and
anomalies in EEG signals [38]. In speech processing, SE has applications in speaker identification and speech recognition [39-41], while in
mechanical systems, it enables early fault detection by identifying subtle changes in vibration patterns [42]. These diverse applications
highlight spectral entropy’s capability to analyze complex and unpredictable behaviors; however, its application to tumor—immune modeling
remains relatively unexplored.

To advance the analysis of tumor-immune interactions, spectral entropy is integrated with basin of attraction analysis to develop a
spatial-spectral framework for exploring tumor—immune responses under varying chemotherapy intensities and initial conditions. Basin of
attraction analysis reveals the system’s long-term behavior by identifying how different initial conditions converge to distinct outcomes, such
as tumor elimination, persistent oscillations characterized by recurring tumor growth and immune response, or uncontrolled growth.
Numerical simulations are conducted to assess the sensitivity of spectral entropy to variations in system parameters and initial states. This
integrated spatial-spectral approach provides novel insights into the interplay between temporal and spatial dynamics in tumor—-immune
systems and highlights the potential of spectral entropy as a tool for optimizing chemotherapy strategies.

2. Tumor-Immune Model

In this study, we consider a deterministic model proposed in [20], which extends the model developed in [1] by incorporating an additional
term to represent the effects of chemotherapy. This model describes the interactions between immune effector cells and tumor cells.
The system is formulated as the following set of ordinary differential equations:

X = Geri — uxz—O6x
n-+z
z = az(l—ﬁz)—xz—ﬂ (2.1)
1+z
where x represents the population density of immune effector cells, and z denotes the population density of tumor cells. The term — lj’_zz v

describes the effects of chemotherapy, where b represents the maximum efficacy of the drug. The parameter ¢ represents the natural rate of
effector cell production in the tumor environment. The nonlinear term p n{iz models immune stimulation due to tumor antigens, where p and
7N are parameters associated with tumor-specific antigens. The parameter u characterizes the rate at which tumor cells inactivate effector
cells, and 0 is the natural death rate of effector cells.

To better illustrate the important characteristics of the quantitative dynamics of tumor cell density, a rescaling z = y* is applied to the system
(2.1), as previously introduced in [31]. In terms of the variables x and y, the system (2.1) can be reformulated as:
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The parameter values used in this study are based on experimental data and previous modeling efforts presented in [1]:
c =0.1181, p=1.131, n=20.19, u=0.001, 6§=0.374 a=1.636, B =0.002. (2.3)

The tumor-free equilibrium of the system corresponds to the point (%,y) = (% , O). Linearization about this point yields the Jacobian matrix,

whose eigenvalues are given by:
c
M =-8, =025 (a— 3 —b) .
The first eigenvalue A, is always negative, indicating stability in the x-direction. The second eigenvalue A, governs stability in the tumor cell
population. In the absence of chemotherapy (b = 0), the tumor-free state is stable if the tumor growth rate satisfies o¢ < %. However, when
o> %, stability requires a sufficiently large treatment intensity. Specifically, the tumor-free equilibrium is locally asymptotically stable if:

(o)
b>bo=0o- (2.4)

where b, denotes the minimum chemotherapy threshold required to stabilize the tumor-free equilibrium.

As noted in [31], the condition in (2.4) does not guarantee global tumor elimination. Nonlinear systems can exhibit multiple attractors, such
as tumor persistence and tumor-free states, with basins of attraction that depend strongly on initial conditions. In such cases, a treatment
strategy that is effective for one set of initial conditions may prove ineffective for another.
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3. Spectral Entropy

The spectral entropy (SE) of a time series x(n), where n =0,1,2,...,N — 1, is computed as follows [37]:
The signal is first mean-centered:

1 N—1
) =)= X a0

where %(n) denotes the mean-centered signal. The discrete Fourier transform (DFT) of %(n) is computed as
N1 ‘
X(k) =Y x(n)e 2PN k=0,1,2,...,N—1.
n=0

where j = y/—lis the imaginary unit.
The one-sided power spectrum is then obtained by:

2
s(k) = X k:0,1,2,37.,.,%71.

The total spectral power is defined as

oz

1
Stotal = Z S(k)
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which is used to normalize the power spectrum and form a probability distribution py as:
Sk) Xk
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The spectral entropy is then computed using Shannon’s entropy formula:

N1
2
SE=—) pilnpy
k=0
and normalized spectral entropy is given by:
SE
SE(N) = N 3.1
In(3)

4. Simulation Results

In this section, the dynamical behavior of the tumor—immune model described by Equation (2.2) is investigated using the parameter values
specified in Equation (2.3). The influence of the chemotherapy efficacy parameter b on the long-term dynamics is analyzed through the
construction of a bifurcation diagram and phase portraits. The impact of initial conditions on the system’s long-term behavior is examined
using phase portraits, basins of attraction analysis, and spectral entropy (SE).

To construct the bifurcation diagram, the system governed by Equation (2.2) was numerically integrated using the initial conditions x(0) = 0.5
and y(0) = 0.5. For each value of the chemotherapy efficacy parameter b, the maximum values of the tumor population variable y were
recorded and plotted, as shown in Figure 4.1. A total of 50,000 time series data points were used in the computation, with the first 10,000
points discarded to remove the transients.

As the chemotherapy efficacy parameter b is varied, the system exhibits three distinct dynamical regimes, as shown in Figure 4.1:

* For 0 < b < 0.9, the system settles into a stable equilibrium characterized by a high tumor burden. In this range, the chemotherapy
intensity is insufficient to significantly reduce tumor growth, and the immune response fails to control the tumor population effectively.

e For 0.9 < b < by, where b, = 1.329, a pitchfork bifurcation occurs near b = 0.9. The system transitions from a steady state to periodic
behavior in tumor dynamics, characterized by alternating phases of tumor reduction and regrowth. Such patterns may arise during
treatment cycles that provide only temporary control over tumor progression without achieving long-term elimination.

* For b > b, the tumor population collapses to zero, and the system stabilizes at the tumor-free equilibrium (%,0). In this case, the
combined effects of chemotherapy and immune response are sufficient to eliminate the tumor from the system.

Phase portraits of system (2.2) were generated for various values of the chemotherapy efficacy parameter b, using fixed initial conditions
x(0) = 0.5 and y(0) = 0.5, as shown in Figure 4.2. For small values of b, particularly when b < 0.9, trajectories converged to a high-tumor
steady state. As b approached 0.9, the system transitioned to a limit cycle, indicating periodic oscillations in both tumor and immune cell
populations. Biologically, the emergence of such periodic behavior reflects a recurrent pattern of tumor remission and relapse, where the
immune system intermittently suppresses tumor progression, followed by tumor regrowth.

To further investigate the role of initial conditions, the system was analyzed at the critical value b = 0.9. Four distinct initial conditions
were considered, and the corresponding phase trajectories are presented in Figure 4.3. The outcomes showed that the system could evolve
toward either a high-tumor steady state or a limit cycle, depending on the initial state. This indicates the presence of multistability in the
tumor—immune dynamics, where different long-term behaviors coexist under the same parameter value.
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Figure 4.1: Bifurcation diagram of the tumor—immune system with respect to the chemotherapy efficacy parameter b, which represents the maximum
effectiveness of the drug. The diagram shows the maximum values of the tumor population variable y as b increases, illustrating changes in the system’s
behavior. These changes highlight the sensitive dependence of tumor—immune interactions on the value of b.
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Figure 4.2: Phase portraits of system (2.2) for different values of the Figure 4.3: Phase portraits of system (2.2) at b = 0.9, showing how differ-
chemotherapy parameter b, with initial conditions x(0) = 0.5 and y(0) =0.5.  ent initial conditions affect long-term behavior. Each trajectory represents
The trajectories illustrate the system’s response to as b increases from 0.75 a different initial condition.

to 1.25. Increasing b affects the behavior of tumor—immune oscillations.

The spectral entropy (SE) of the system (2.2) was computed using Equation 3.1 as a function of b, for two different initial conditions:
x(0) =0.5, y(0) =0.5 (red curve) and x(0) = 1.5, y(0) = 1.5 (blue curve), as shown in Figure 4.4. In comparison with the bifurcation
diagram presented in Figure 4.1, the SE values remain low for b < 0.9, indicating steady-state behavior. A sharp increase in SE is observed
near b = 0.9, indicating a transition to oscillatory or complex dynamics. For b > b, = 1.329, SE values decrease again, reflecting a return to
regular, tumor-free dynamics. The divergence between the red and blue curves highlights the system’s sensitivity to initial conditions and
demonstrates multistability in the tumor—immune interactions.
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Figure 4.4: Spectral entropy (SE) as a function of the bifurcation parameter b, computed for two initial conditions: x(0) = 0.5, y(0) = 0.5 (red) and
x(0) = 1.5, y(0) = 1.5 (blue). The SE quantifies the complexity of system dynamics as b varies. A sharp increase in SE indicates a transition to oscillatory or
complex behavior. The figure highlights how this transition occurs at different values of b depending on initial conditions, demonstrating multistability in the
system.
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To examine the sensitivity of long-term dynamics to initial conditions, basins of attraction were computed over the domain x(0), y(0) € [0, 3],
using a 400 x 400 grid with evenly spaced values along each axis. This grid was utilized to explore a wide range of initial conditions and to
capture the system’s behavior across different regions of its phase space. The analysis was performed at a fixed value of the chemotherapy
efficacy parameter b, selected to represent the critical transition period associated with bifurcations in system dynamics.

For each initial condition, the corresponding attractor was identified using a recurrence-based automated classification technique, as described
in [43]. This method enables efficient classification of attractors without requiring detailed prior knowledge of the system’s dynamics. The
resulting classification map is shown in Figure 4.5, where each point represents an initial condition and is colored according to the type of
attractor reached over time.

Two primary regions were identified within the state space:

* Purple Region: This region corresponds to a stable, steady state characterized by a high tumor burden. Initial conditions within this
region lead to tumor persistence with minimal or no reduction. This indicates that chemotherapy is ineffective or the immune response
is insufficient.

* Gray Region: This region is associated with oscillatory dynamics, where the system exhibits periodic limit cycle behavior. Tumor
levels fluctuate between high and low states, reflecting a scenario in which the immune system intermittently suppresses tumor growth
but fails to achieve complete elimination.

0 05 1 15 2 25 3
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Figure 4.5: Basin of attraction of system (2.2) for initial conditions x(0),y(0) € [0,3], at a fixed parameter value of b. The purple region corresponds to
trajectories converging to a stable steady state with high tumor burden, while the gray region represents initial conditions that lead to oscillatory dynamics
associated with a limit cycle. The figure illustrates the coexistence of distinct long-term behaviors and shows that outcomes depend sensitively on initial
conditions.

The basins of attraction shown in Figure 4.5 reveal sharply defined boundaries between dynamic regimes. This indicates high sensitivity
to initial conditions. Even small changes in the initial tumor—immune states can lead to significantly different long-term behaviors. The
presence of distinct attractor regions confirms that the system is multistable, which means that different therapeutic outcomes can occur
depending on the initial tumor—-immune conditions.

To further investigate the dynamical complexity within these regions, spectral entropy was computed for each trajectory across the grid of
initial conditions. SE quantifies the unpredictability and complexity of the system’s temporal behavior. Figure 4.6 presents the SE values
over the same domain x(0),y(0) € [0, 3], with each point corresponding to the SE value of a specific initial condition.
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Figure 4.6: Spectral entropy of system (2.2) evaluated over the domain x(0),y(0) € [0,3] for a fixed value of . Colors indicate the SE values, with dark blue
representing regular (low-complexity) dynamics and red representing complex or chaotic oscillatory behavior. This figure provides a phase space map of
dynamical complexity, illustrating how different initial conditions lead to qualitatively distinct temporal patterns in terms of entropy.
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Low SE values, shown in dark blue in Figure 4.6, correspond to stable high-tumor states. These points predominantly appear within the
purple region of the basin of attraction plot in Figure 4.5, where the system converges to a steady equilibrium with a persistently high tumor
burden. Conversely, higher SE values, shown in warmer colors such as yellow and red, indicate more complex or oscillatory behavior. These
values occur in the gray region of the basins of attraction in Figure 4.5, associated with limit cycle dynamics where tumor and immune cell
populations fluctuate over time.

The SE map complements the basin of attraction diagram by revealing the degree of dynamical complexity in each region. While the basins
of attraction illustrate the long-term outcomes, the SE map highlights areas exhibiting chaotic or complex transient dynamics. Notably, near
the boundary between the purple and gray regions, small variations in initial conditions lead to significant changes in the final state, reflected
by high SE values. This sensitivity suggests the presence of multiple possible therapeutic outcomes, even with slight differences in initial
tumor and immune cell densities.

5. Conclusion

This study presented a spatial-spectral framework to analyze tumor—-immune dynamics under chemotherapy by integrating basin of attraction
mapping with spectral entropy analysis. Basin mapping revealed multistability, which shows that identical treatment parameters can lead
to different outcomes depending on the initial tumor-immune conditions. A wider basin corresponding to a desirable state, such as low
tumor burden, indicates a more robust therapeutic outcome and improved long-term tumor control. Spectral entropy provided a quantitative
measure of temporal complexity and effectively highlighted regime transitions, with high values near bifurcations and along intricate basin
boundaries. The combined approach identified regions highly sensitive to both treatment parameters and initial conditions. These findings
offer valuable insights to guide the design of more predictable and effective treatment strategies.
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