

Çankaya University Journal of Science and Engineering

Volume 15, No. 1 (2018) 023-037

Date Received: 10/11/2016

Date Accepted: 09/01/2018

ISSN 2564 – 7954 © 2018 Çankaya University

Permanent Persistent Turing Machine: A new

Model for Interactive Computation

Sepehr Ebrahimi Mood1, Mohammad Masoud Javidi2,*

1Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran.

2Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran.

E-mail: sepehr_ebrahimi@math.uk.ac.ir , javidi@uk.ac.ir

Abstract: Since the computation of human life is in the progress rapidly and there is interaction in their

computational process, we need to offer new concepts in computational theory, especially in the interactive

computation to obviate these needs. In this paper, we introduce a new model for interactive computation.

First, we briefly review interactive computation concept. Then, we provide and explain Persistent Turing

Machine, as a model for interactive computation. There are some disadvantages in definitions of this

model. For example, there is not functional property in the computational process of these models. As well

as, the language which was accepted by this model, defined as a set of streams. Whereas, in other

computational models, we use a set of strings, for indicating the language which was accepted by a model.

As a result, we cannot compare the languages were accepted by these models, with the other models and

their languages. Next, we propose Permanent Persistent Turing Machine (PPTM), as a model of interactive

computation, so that, eliminate these disadvantages. After that, we define sets and relationships were

accepted by the PPTMs and introduce their properties in details. Finally, we compare the computational

power of this model with other classical models; and we prove that the computational power of the

proposed model is more than Turing machine and it can compute some problems, which are not computed

by Turing machine.

Keywords: Interactive Computation, Permanent Persistent Turing Machine, Persistent Turing Machine,

Permanent Recursive Languages, Permanent Recursive Enumerable Languages.

1. Introduction

By concept, the word "computation" is synonymous with counting and calculus. Moreover the

computer is a technical device that performs the computation process. After the widespread

application of electronic computers in 1950 that could not only count but also perform tasks

and computing values for functions, theoretical and physical concepts were also included in

mailto:sepehr_ebrahimi@math.uk.ac.ir
mailto:javidi@uk.ac.ir

24 S. Mood et al.

the definition of computers. Theoretical concepts are described based on computers' capability

to do the counting or computing value for a function. The Church-Turing thesis is an example

of these types of concepts [10].

According to traditional theory of computation, in which Turing machine is considered as a

reference computational model related to the computability of problems, a process is called

successful if its related computations halts within a finite time and the desirable output

produced. Looking at today's computers based on this viewpoint, many of the computational

processes are classified as unsuccessful. For example, consider a computer system responsible

for monitoring a function of the respiratory system, that continuously performs its

computational processes. This system halts when the patient is dead. The operating system is

another example of computers that continuously perform computation processes; halt in such

systems indicates that the computer has been unsuccessful in performing its related tasks. On

the other hand, many of today's computers, do not calculate the value of a function; but rather,

they have the duty of performing services and tasks required by users. Web servers are good

examples of such computational models.

Nowadays, computational devices communicate with their environment to perform their tasks.

By further development of science in the field of computer engineering, and widespread

application of electronic computers for daily tasks, the need for introducing new concepts of

computation theories, compatible with available developments, has been noticed [1]. In fact,

having interaction with the surrounding environment is an undeniable component of today's

computational systems [11]. As a result, we also need to define computational models that are

capable of interacting with their surrounding environment. Turing machine, as a closed

computational model, is devoid of such a capability [2].

In 1998, Wegner introduced the concept of interactive machine and showed that it has higher

computational capability than Turing machine, because they can models interactive

computations [3]. Moreover, a set of interactive grammars was described and a suitable

position was considered for these grammars within Chomsky's hierarchy. The interactive

machine is a type of Turing machine which is dynamically capable of reading and writing on

its tape. This capability has transformed Turing machines from a closed and pre-defined

system into a dynamic and active one that is capable of interaction with its external

environment. This characteristic is imposed to the machine by providing one or multiple data

streams as input or providing symmetrical or asymmetrical communication with the

environment [4]. Persistent Turing machine (PTM) that was introduced by Goldin [5], is also

capable of performing interactive computations. This model has a persistent tape which is

CUJSE 15, No. 1 (2018) 25

called state of the machine. PTMs perform their task using their state and the input stream.

Kosub in [12], investigate the persistent Turing machine which is a computational model for

interactive computation. Some computability concepts such as essential and conditional

computability are studied in ref. [12]. Some computational models for interactive

computations such as interactive Turing machines (ITMs) and reactive Turing machines

(RTMs) are investigated in [13] and their computational behavior is compared.

The behavior of interactive machines is determined according to the data stream. A data

stream is a time-sensitive model composed of a sequence of strings .Wegner defined a

recursive stream over the sets as follows [3]:

Definition 1.1. Suppose 𝐴 ⊂ Σ∗ is a set; then, a stream over 𝐴 is a recursive sequence 𝑆 =<

𝑎, 𝑆′ >, in which 𝑎𝜖𝐴 and 𝑆′ are other streams over the set 𝐴.

Previous computational models for interactive computation have some disadvantages. Their

input should be streams over the alphabet; but, other computational models defined on strings

as their input. Moreover, these computational models have not functional behavior. It means,

they can produce different output for the same input at different time step. In this paper, we

proposed permanent persistent Turing machine (PPTM) a new model for interactive

computation. The proposed model can compute some relations over strings. Furthermore, this

model has the functional behavior. We defined permanent recursive and permanent recursive

enumerable languages which are computable by PPTMs. Then, we prove that the

computational power of the proposed model is more than Turing machine; and they can solve

some problems which are not computable by TMs.

This paper is organized as follows. In section 2, the definition of the persistent Turing

machine and some notions and preliminaries are described. The definition of the proposed

model, permanent persistent Turing machine, and some properties of this model is

investigated in section 3. In section 4, we study the computational behavior of the proposed

model and compare the computational power of this model with the standard Turing machine,

and finally, section 5 contains a brief conclusion.

2. Persistent Turing Machine

Persistent Turing Machine (PTM) which is proposed by Goldin [5], is a generalization of

Turing machine that is capable of performing interactive computations. In fact, this model is

utilized for performing interactive sequential computations as a dynamic stream of an ordered

pair of inputs and outputs. A PTM is a special type of Turing machine that utilizes three

distinct tapes (input, output, and work tapes) for its computations.

26 S. Mood et al.

The contents of work tape are permanently stored even after the completion of computations

and end of the computational process. This tape acts as a memory for the PTM and its

contents show the state of the machine (which is different from that of Turing machine) before

and after computation process. Therefore, state of a PTM is defined by the strings of infinite

length. Formally, Goldin provided a definition of the persistent Turing machine in [5] as

follows:

Definition 2.1. A Persistent Turing Machine (PTM) is a type of multi-tape Turing machine

with a permanent (persistent) work tape whose contents are preserved between sequential

computations by the Turing machine. Contents of this tape before and after the computations

are called state of the PTM.

Computations of a PTM like 𝑃, is a mapping of 𝜑𝑃: 𝐼 × 𝑊 → 𝑂 × 𝑊, where 𝐼, 𝑂 and 𝑊 are

input-output streams and machine’s work tape (state of the machine), respectively. In fact, the

machine 𝑃 transforms input stream < 𝑖1, 𝑖2, 𝑖3, . . . > into output stream < 𝑜1, 𝑜2, 𝑜3, . . . > and

during this computation process, it uses contents of work tape, i.e. state of machine. At the

beginning and end of the computation process, the machine is always in a null state; after the

computational processes, machine’s state is preserved to be used for the next steps. Intuitively,

in each computational step, machine’s output can be determined as a computable function of

its input and state (i.e. contents of work tape) [5]. For further clarification about how these

machines perform computational tasks, we use an example mentioned in [2].

Example 2.2. Consider a PTM, A, whose computational task is as follows:

𝜑𝐴(𝑟𝑒𝑐𝑜𝑟𝑑𝑥, 𝑦) = (𝑜𝑘, 𝑦𝑥)

𝜑𝐴(𝑝𝑙𝑎𝑦𝑏𝑎𝑐𝑘, 𝑥) = (𝑥, 𝑥)

𝜑𝐴(𝑒𝑟𝑎𝑠𝑒, 𝑦) = (𝑑𝑜𝑛𝑒, 𝜀)

The task of 𝐴 is to store, display, and delete strings. The key point is that the content of work

tape is used as a part of providing a definition for 𝜑𝐴 and does not have any effect on the

performance of 𝐴 machine. Now, consider the following stream as an input stream for this

machine:

< 𝑟𝑒𝑐𝑜𝑟𝑑𝐴, 𝑟𝑒𝑐𝑜𝑟𝑑𝐵𝐶, 𝑒𝑟𝑎𝑠𝑒, 𝑟𝑒𝑐𝑜𝑟𝑑𝐷, 𝑟𝑒𝑐𝑜𝑟𝑑𝐸, 𝑝𝑙𝑎𝑦𝑏𝑎𝑐𝑘, … >

This machine produces the following output stream on this input steam:

< 𝑜𝑘, 𝑜𝑘, 𝑑𝑜𝑛𝑒, 𝑜𝑘, 𝑜𝑘, 𝐷𝐸, . . . >

During this computational process, state of the machine is changed as:

CUJSE 15, No. 1 (2018) 27

< 𝜀, 𝐴, 𝐴𝐵𝐶, 𝜀, 𝐷, 𝐷𝐸, 𝐷𝐸, . . . >

This computational model can compute interactive problems. Goldin presented interactive

problems in interactive streams as follows [5]:

Definition 2.3. Suppose that 𝐼 and 𝑂 are input and output streams for a PTM, 𝑃, respectively.

Interactive stream for 𝑃 is a stream of ordered pairs in the form of (𝑖, 𝑜), whose first and

second components are chosen from the input and the corresponding output streams.

For instance, in the above-mentioned example, the interactive stream is as follows:

< (𝑟𝑒𝑐𝑜𝑟𝑑𝐴, 𝑜𝑘), (𝑟𝑒𝑐𝑜𝑟𝑑𝐵𝐶, 𝑜𝑘), (𝑒𝑟𝑎𝑠𝑒, 𝑑𝑜𝑛𝑒), (𝑟𝑒𝑐𝑜𝑟𝑑𝐷, 𝑜𝑘), . . . >

The state of a PTM is not explicitly visible in the machine’s interactive stream. However, it

acts on the machine’s output implicitly. Furthermore, in order to compare the computational

behavior of two different PTMs, Goldin introduced the concept of 𝐿(𝑃), which is the

language of a PTM, as follows:

Definition 2.4. Set of all possible interactive streams for every PTM like 𝑃 constitutes the

language of machine 𝑃.

According to this definition, two PTMs, 𝑃1 and 𝑃2, are equal if: 𝐿(𝑃1) = 𝐿(𝑃2). Moreover,

the behavior of a PTM is described by computation tasks over data streams. In fact, the

language of a PTM is a set of interactive streams that cannot be compared with the language

of a Turing machine which is composed of a set of strings. Furthermore, the behavior of a

PTM has not functional property [5]. In other words, for a given input provided at different

times, there is the possibility of producing different outputs. For instance, in example 2.2, the

output of the PTM for input 𝑝𝑙𝑎𝑦𝑏𝑎𝑐𝑘, given to the machine at different times, would be

different according to the state of PTM.

3. Permanent Persistent Turing Machine

A Permanent Persistent Turing Machine (PPTM) is a type of PTM used for interactive

computations and has the functional property. This computational model produces a unique

output for a given input. However, this output can be different for different interactive

streams.

28 S. Mood et al.

Definition 3.1. A Persistent Turing Machine, 𝑃, is called a Permanent Persistent Turing

Machine (PPTM), if during a given interactive stream, such as 𝑆, and for any desirable input

string, it produces a unique output string at different repetitions and times.

Example 3.2. Due to the definition provided in example 2.2, suppose a computational model

that computes the following output stream O, for a given input stream, I:

𝐼 =< 𝑟𝑒𝑐𝑜𝑟𝑑𝐴, 𝑟𝑒𝑐𝑜𝑟𝑑𝐵𝐶, 𝑝𝑙𝑎𝑦𝑏𝑎𝑐𝑘, 𝑒𝑟𝑎𝑠𝑒, 𝑝𝑙𝑎𝑦𝑏𝑎𝑐𝑘, 𝑟𝑒𝑐𝑜𝑟𝑑𝐸, 𝑝𝑙𝑎𝑦𝑏𝑎𝑐𝑘, . . . >

𝑂 =< 𝑜𝑘, 𝑜𝑘, 𝐴𝐵𝐶, 𝑑𝑜𝑛𝑒, 𝐴𝐵𝐶, 𝑜𝑘, 𝐴𝐵𝐶, . . . >

After the command playback is executed at the first time (the third command in the input

stream) and output 𝐴𝐵𝐶 is printed, this computer always returns the same output (𝐴𝐵𝐶), by

executing the 𝑝𝑙𝑎𝑦𝑏𝑎𝑐𝑘 command as an input, irrespective of the tape content. On the other

words, the behavior of this model has the functional property; hence, it always computes the

same output for an input. The content of the work tape in this machine during the process is as

follows:

< 𝜀, 𝐴, 𝐴𝐵𝐶, 𝐴𝐵𝐶, 𝜀, 𝜀, 𝐸, 𝐸, . . . >

According to the output stream, the fifth command result is 𝐴𝐵𝐶, while there is no symbol in

the machine’s work tape. As a result, this PTM has the property defined in 3.1; thus, this

machine is a PPTM.

In order to be able to analyze the behavior of a PPTM and to discuss its computing power, the

languages that are accepted by this computational model must be defined. But, some notations

should be introduced before this definition. As mentioned in the definition 1.1 one data stream

is a time-sensitive model composed of a sequence of strings. For instance, the stream 𝑆 over

the set 𝐴 is denoted by 𝑆 =< 𝑠1, 𝑠2, 𝑠3, . . . >, in which the order of elements 𝑠1, 𝑠2, 𝑠3, . . . ∈ 𝐴

is important. We define 𝑆𝑘 as a notation (symbol) to refer to 𝑘 first component of stream 𝑆.

Hence, 𝑆𝑘 is equal with the following stream:

𝑆𝑘 =< 𝑠1, 𝑠2, 𝑠3, . . . , 𝑠𝑘 >

Obviously, an interactive stream in a computing machine is a stream whose elements are in

the form of ordered pairs of input and output in each computational step and are represented

as:

𝑆 =< (𝑖1, 𝑜1), (𝑖2, 𝑜2), (𝑖3, 𝑜3), . . . >

CUJSE 15, No. 1 (2018) 29

Where 𝑜𝑗 is the output corresponding to input 𝑖𝑗 at 𝑗𝑡ℎ step. Now, after introducing the

required definitions, we provide the following definition for relation 𝑅𝑀,𝑆 which is

computable by the PPTM, M, with the interactive stream, 𝑆.

Definition 3.3. Relation 𝑅𝑀,𝑆 ⊆ 𝛴∗ × 𝛴∗ is computable by the PPTM 𝑀 and the interactive

stream 𝑆 if, for every (𝑥, 𝑦) ∈ 𝛴∗ × 𝛴∗ − 𝑅𝑀,𝑆 there would be a number like 𝑘 ∈ 𝑁 such

that, if 𝑆𝑘 = 𝑆′𝑘 for every interactive stream 𝑆′, then (𝑥, 𝑦) ∉ 𝑆′.

Intuitively, the above definition states that, if (𝑥, 𝑦) does not satisfy relation 𝑅𝑀,𝑆, then there is

a number like 𝑘 such that after 𝑘 component of interactive stream 𝑆, it is not possible to reach

output y by input 𝑥. This result may happen in two ways: first, for input 𝑥, the machine

produced an output like 𝑦′ such that 𝑦 ≠ 𝑦′; thus, it would produce output 𝑦′ from input 𝑥 for

any other interactive streams. Therefore: (𝑥, 𝑦) ∉ 𝑆. The second case is that string 𝑥 does not

belong to the inputs of the interactive stream 𝑆. In the following theorem, the relationship

between a computable relation by a PPTM and an interactive stream is reviewed.

Theorem 3.4. If 𝑅𝑀,𝑆 ⊆ 𝛴∗ × 𝛴∗is a relation which is computable by the PPTM, 𝑀, with

interactive stream 𝑆, then: 𝑆 ⊂ 𝑅𝑀,𝑆.

Proof. Suppose that (𝑥, 𝑦) is one of the components of interactive stream 𝑆. Hence, there is

not a number like 𝑘 such that, for any other interactive streams follow, after the k component

of 𝑆 with the input 𝑥, 𝑦 is not computed as the output. That is because the interactive stream 𝑆

itself is one of these streams (computations are carried out by a PPTM) and therefore (𝑥, 𝑦)

cannot be eliminated from all the streams. Hence, (𝑥, 𝑦) ∈ 𝑅𝑀,𝑆.

To complete the proof, we must show that there is an (𝑥, 𝑦) so that (𝑥, 𝑦) ∈ 𝑅𝑀,𝑆, but:

(𝑥, 𝑦) ∉ 𝑆. To do so, the computing machine 𝑀 and the interactive stream 𝑆 are defined as:

𝑀: A PPTM that computes output 1 for the prime numbers regarded as the input.

𝑆: An interactive stream whose first elements are odd natural numbers (consider the

interactive stream produced from odd input stream of number 2 as the input);

According to the definition, no components can be found in 𝑆 that starts with 2. This means:

(2,1) ∉ 𝑆. However, on the other hand, since the Permanent persistent Turing machine 𝑀 is

defied to compute output 1 for input 2, then necessarily: (2,1) ∈ 𝑅𝑀,𝑆.

Now the concepts of permanent recursive (p.recursive) and permanent recursive enumerable

(p.r.e) will be introduced using these computable relations so that the computational behavior

of these hyper-computers can be analyzed.

30 S. Mood et al.

Definition 3.5. Set 𝐿 ⊆ 𝛴∗ is called a permanent recursive (p.recursive) language if

characteristics function 𝜒𝐿, shown below, can be computed as a relation using a PTM and an

interactive stream.

𝜒𝐿(𝑥) = {
1 𝑥 ∈ 𝐿
0 𝑥 ∉ 𝐿

 (3.1)

Based on this definition, a language like 𝐿 is p.recursive if there is such a computability

relation like 𝑅𝑀,𝑆 so that, for every desired 𝑥 ∈ 𝛴∗ if elements 𝑥 are members of language L,

then (𝑥, 1) ∈ 𝑅𝑀,𝑆; otherwise, (𝑥, 0) ∈ 𝑅𝑀,𝑆 .

Corollary 3.6. The domain for defining the computable relation in a p.recursive languages is

𝛴∗.

This conclusion can be derived directly from the above-mentioned definition, because in

characteristic function for every considered string (all the possible strings over language

alphabet), the function output is determined according to being/not being a member of the

language.

Definition 3.7. Language 𝐿 ⊆ 𝛴∗, is a permanent recursive enumerable (p.r.e) language if

and only if there is a computable relation 𝑅𝑀,𝑆 ⊆ 𝛴∗ × 𝛴∗such that:

 𝑥 ∈ 𝐿 ⟺ 𝑥 ∈ 𝐷𝑜𝑚(𝑅𝑀,𝑆).

Similar to the previous definition, the equivalent form of this definition is described by the

following theorem.

Theorem 3.8. Language 𝐿 is a p.r.e language if and only if there is a computable relation like

𝑅𝑀,𝑆 ⊆ 𝛴∗ × 𝛴∗ so that:

𝑥 ∈ 𝐿 ⟺ (𝑥, 1) ∈ 𝑅𝑀′,𝑆′
′ .

Proof. Suppose L is a p.r.e language. Hence, a relation 𝑅𝑀,𝑆 which is computable by the

PPTM M, and interactive stream S, exists so that:

𝑥 ∈ 𝐿 ⟺ 𝑥 ∈ 𝐷𝑜𝑚(𝑅𝑀,𝑆)

Now, we choose the interactive stream 𝑆′ as previous interactive stream 𝑆. PPTM, 𝑀′, is also

defined the same as 𝑀, with the difference that, for an input that 𝑀 halts and produces

different outputs, 𝑀′ also halts, but gives output 1:

𝑀′(𝑥) = {
1 𝑀 ↓ 𝑥
↑ 𝑜. 𝑤

 (3.2)

In this case, the following conclusion holds for any considered string like 𝑥 ∈ 𝛴∗:

CUJSE 15, No. 1 (2018) 31

𝑥 ∈ 𝐷𝑜𝑚(𝑅𝑀,𝑆) ⇒ 𝑀′(𝑥) = 1 ⇒ (𝑥, 1) ∈ 𝑅𝑀′,𝑆′
′ .

Now, the opposite of this theorem will be proved. There is a computable relation 𝑅𝑀′𝑆′
′ so

that:

𝑥 ∈ 𝐿 ⇔ (𝑥, 1) ∈ 𝑅𝑀′,𝑆′
′ .

We must show that 𝐿 is a p.r.e language. In other words, a computable relation 𝑅𝑀,𝑆 should be

defined such that:

𝑥 ∈ 𝐿 ⇔ 𝑥 ∈ 𝐷𝑜𝑚(𝑅𝑀,𝑆).

The interactive stream 𝑆 is defined to be the same as the interactive stream 𝑆′. The PPTM, 𝑀,

is also defined to be the same as machine 𝑀′, with the only difference that, when 𝑀′ halts at

an input with an output other than 1, the computing machine 𝑀 does not halt on that input and

computes the infinite loop.

𝑀(𝑥) = {
1 𝑀′(𝑥) = 1
↑ 𝑜. 𝑤

 (3.3)

In this case, the following relation is satisfied:

𝑥 ∈ 𝐿 ⇔ (𝑥, 1) ∈ 𝐷𝑜𝑚(𝑅𝑀′,𝑆′
′) ⇔ (𝑥, 1) ∈ 𝑅𝑀,𝑆 ⇔ 𝑥 ∈ 𝐷𝑜𝑚(𝑅𝑀,𝑆).

Therefore, 𝐿 is a p.r.e language.

4. Computational Power of a Permanent Persistent Turing

Machine

In this section, first, the properties of a PPTM is described. Then, the computational power

and behavior of the proposed method are compared with other computational models.

Theorem 4.1. Every recursive language like 𝐿 ⊆ 𝛴∗ is a p.recursive language.

Proof. Supposing that 𝐿 ⊆ 𝛴∗ is a recursive language. We will show that the characteristic

function 𝜒𝐿 can be computed using a computable relation such as 𝑅𝑀,𝑆. Since language 𝐿 is a

recursive language, there would be Turing machine 𝑀 that is capable of computing function

𝜒𝐿. [7]. That is:

32 S. Mood et al.

𝑀(𝑥) = {
1 𝑥 ∈ 𝐿
0 𝑥 ∉ 𝐿

 (4.1)

Input stream 𝐼 is so defined that contains all available strings in 𝛴∗. So, the interactive stream

𝑆 over input stream 𝐼 =< 𝑖1, 𝑖2, 𝑖3, . . . > is defined as: 𝑆 =<

 (𝑖1, 𝑀(𝑖1)), (𝑖2, 𝑀(𝑖2)), (𝑖3, 𝑀(𝑖3)), . . . >Now, consider relation 𝑅𝑀,𝑆. For every considered

string like 𝑥 ∈ 𝛴∗, if 𝑥 is a member of language 𝐿, then: (𝑥, 1) ∈ 𝑆 ⇒ (𝑥, 1) ∈ 𝑅𝑀,𝑆. But, if

𝑥 is not a member of language 𝐿, then: (𝑥, 0) ∈ 𝑆 ⇒ (𝑥, 0) ∈ 𝑅𝑀,𝑆. So, the computable

relation 𝑅𝑀,𝑆 has the capability of implementing function 𝜒𝐿. Thus, that is a p.recursive

language.

Theorem 4.2. Every recursive enumerable (r.e) language like 𝐿 ⊆ 𝛴∗ is a p.r.e language.

Proof. Supposing 𝐿 ⊆ 𝛴∗ is an r.e language. The computable relation 𝑅𝑀,𝑆 ⊆ 𝛴∗ × 𝛴∗is

defined so that: 𝑥 ∈ 𝐿 ⇔ 𝑥 ∈ 𝐷𝑜𝑚(𝑅𝑀,𝑆). Since 𝐿 is an r.e language, it is the domain of

computable function like 𝜑𝑀 [8]. The input and interactive streams 𝐼 and 𝑆 the same as the

proof for theorem 4.1 in such a way that all strings 𝛴∗ are covered and the output is

corresponding to the computations of Turing machine 𝑀. Since relation 𝑅𝑀,𝑆 responsible for

performing computations regarding function, 𝜑𝑀 has the same domain, therefore:

𝑥 ∈ 𝐿 ⟺ 𝑥 ∈ 𝐷𝑜𝑚(𝜑𝑀) ⟺ 𝑥 ∈ 𝐷𝑜𝑚(𝑅𝑀,𝑆).

On the other hand, using reasoning similar to the previous theorem, 𝑅𝑀,𝑆 is a computable

relation. Therefore, 𝐿 is a p.r.e language.

Now, by presenting several theorems, we show that opposite cases for the above theorems do

not necessarily hold true. But, before presenting these theorems, we refer to the following

definition, which is non-recursive language according to ref. [9]:

Definition 4.3. Number 𝜏 is an incomputable real number whose 𝑛𝑡ℎ number is one, if 𝑛

indicates an ordered pair for Turing machine and its related input such that the Turing

computations halt on this input. However, if computations do not halt on this input, 𝑛𝑡ℎ digit

of the number 𝜏 would be zero.

Theorem 4.4. The following set is a p.recursive set.

𝐻 = {(1, < 𝑇, 𝜔 >)|𝑇 ↓ 𝜔}.

where < 𝑇, 𝜔 > is the code for the considered Turing machine 𝑇 with its input 𝜔; this

language constitutes all the pairs whose computations are halted.

CUJSE 15, No. 1 (2018) 33

Proof. In order to prove that the above language is p.recursive, we must define a computable

relation 𝑅𝑀,𝑆 that is capable of computing the characteristic function for this set: i.e. 𝜒𝐻. To

do so, we would apply a technique that combines two PPTMs. In other words, first, the initial

input stream is given to the PPTM 𝑀′; then, the interactive stream computed by this

computational model is considered as the input stream for machine 𝑀 and the computable

relation 𝑅𝑀,𝑆 is defined. Consider the PPTM, 𝑀′, in which for computing number 𝜏, a unique

code 𝑛 =< 𝑇, 𝜔 > can be computed for any given number 𝑛 via computational processes

related to the map used for coding pairs of Turing machine and its related input. The task of

the PPTM 𝑀′ is to code the natural numbers for any given input in an order mentioned above

and to show this code as the output.

On the other hand, an input stream to Permanent persistent Turing machine 𝑀′ is also the

ordered digits of 𝜏. Therefore, the interactive stream 𝑆′ which will be obtained from the above

computations is in the form of pairs like: (𝑖, < 𝑇, 𝜔 >). Where 𝑖 is equal to one if

computations by Turing machine 𝑇 halt on input ω; otherwise it is zero. Now we define the

computable relation 𝑅𝑀,𝑆 as:

Suppose that 𝑀 is a PPTM whose given input stream is the same as the interactive stream

computed by machine 𝑀. This machine returns element 𝑖, as an output. As a result, the

interactive stream 𝑆 computed by the 𝑀 is as follows: ((𝑖, < 𝑇, 𝜔 >), 𝑖).

In this interactive stream, if number 𝑖 is equal to one, then Turing machine 𝑇 would halt at

input string 𝜔; if the machine does not halt on that input, the value for 𝑖 would be zero. Now,

relation 𝑅𝑀,𝑆 which is computed by the PPTM 𝑀 and interactive stream 𝑆 as above is

equivalent to language characteristic function 𝐻: i.e. 𝜒𝐻.

The following figures intuitively demonstrate a computation process by PPTMs 𝑀′ and 𝑀

along with their interactive stream.

Fig.1 computational process of Permanent persistent Turing machine 𝑀′

34 S. Mood et al.

Fig.2 computational process of Permanent persistent Turing machine 𝑀

To complete this proof, we need to show that the relation 𝑅𝑀,𝑆 is a computable relation. To do

so, we proof by contradiction and suppose that the relation 𝑅𝑀,𝑆 is not a computable relation.

As a result, there would be an ordered pair like ((𝑖, < 𝑇, 𝜔 >), 𝑖) that does not satisfy the

relation 𝑅𝑀,𝑆; but, there is an interactive stream 𝑆′ so that for any given 𝑘 such that 𝑆′𝑘 = 𝑆𝑘,

the above ordered-pair is a member of stream 𝑆′: ((𝑖, < 𝑇, 𝜔 >), 𝑖) ∈ 𝑆′.

According to the structure of this ordered pair and performance of PPTM 𝑀, we know that the

second element of this pair is also present in the structure of its first element and the machine

𝑀 is independent of inputs arrangement and computes the output solely based on input

structure. In other words, computations over any considered interactive stream are similar to

the computations for the interactive stream 𝑆. Hence, no interactive stream like 𝑆 with such

properties can be presented. Therefore, our assumption is not correct and thus relation 𝑅𝑀,𝑆 is

a computable relation; consequently, this language is also a p.recursive language.

Now, a similar theorem for r.e languages is described. The following theorem shows that there

is a p.r.e language that is not r.e.

Theorem 4.5. The following set is a p.r.e language: 𝐿 = {(0, < 𝑇, 𝜔 >)|𝑇 ↑ 𝜔}.

Where < 𝑇, 𝜔 > is the code related to a considered Turing machine 𝑇 with its related input

string 𝜔. This language contains the code of Turing machine and its related inputs whose

computations are not halted.

Proof. The proof of this theorem is the same as the previous theorem. First, we present a

PPTM 𝑀′; then, by combining its computations with those related to the PPTM 𝑀, the

computable relation 𝑅𝑀,𝑆 will be introduced in such a way that according to the theorem: 3.8

we would have:

(0, < 𝑇, 𝜔 >) ∈ 𝐿 ⇔ ((0, < 𝑇, 𝜔 >),1) ∈ 𝑅𝑀,𝑆.

CUJSE 15, No. 1 (2018) 35

As a result, we show that the above language is a p.r.e language.

Input for the 𝑀′ is an ordered stream composed of the digits of number 𝜏. The output is also

the code < 𝑇, 𝜔 >, proportional to its input based on the map used for the number 𝜏. As a

result, the interactive stream 𝑆 produced by the above machine using the given input is an

ordered pair in the form of (𝑖, < 𝑇, 𝜔 >), in which 𝑖 is the digit related to the computations

of the Turing machine 𝑇 over input 𝜔 for number 𝜏 (Figure 1).

Consider the PPTM 𝑀 whose input is the interactive stream obtained from the computations

related to the 𝑀′ and its output is the opposite of digit 𝑖 present in its input. Thus, the

computations for the Permanent persistent Turing machine 𝑀 with the related interactive

stream are as follows:

Fig.3 computational process of Permanent persistent Turing machine 𝑀

In the interactive stream 𝑆 which is computed by the PPTM 𝑀, if the digit 𝑖 is zero, i.e.

computations by Turing machine 𝑇 do not halt over input 𝜔, then the output would be zero. In

other words, this pair is a member of language 𝐿. Equivalently, we have:

𝑇 ↑ 𝜔 ⟺ (0, < 𝑇, 𝜔 >)𝜖𝐿 ⟺ ((0, < 𝑇, 𝜔 >), 1)𝜖𝑅𝑀,𝑆.

On the other hand, using similar reasoning to the previous theorem, it can be shown that

relation 𝑅𝑀,𝑆 is a computable relation. As a result, language 𝐿 is also a p.r.e language.

According to theorems 4.1 and 4.2 as well as the two above-mentioned theorems, the

following corollary can be extracted:

Corollary 4.6. Recursive languages are a proper subset of p.recursive languages; and, r.e

languages are a proper subset of p.r.e languages.

According to this conclusion, it can be intuitively claimed that the proposed computational

model has higher computing power than Turing machine and is also capable of computing

problems that cannot be solved by Turing machine, such as problems related to interactive

computations.

36 S. Mood et al.

5. Conclusion

Nowadays, interaction has a major role in the human computations. So, the computation

models should interact with their surrounding environments. Persistent Turing machines and

interactive machines are the models which can interact with the environment during their

procedures and computations. The behavior of these models has not functional property.

Besides, the languages admissible by these computational models are also defined in the form

of data streams, while other models used the set of strings when defining their admissible

languages. This difference in definition did not let us compare the languages admissible by

interactive computational models with that of other models. In this paper, a permanent

persistent Turing machine, which was the generalization of the persistent Turing machine, is

introduced, and languages and functions computable by this computing machine are defined

so that all the disadvantages of previous models would be covered. Then, the computational

power of the proposed model is investigated and is concluded to be more than that of Turing

machine.

References

[1] Goldin, Dina, Scott A. Smolka, and Peter Wegner, eds. Interactive computation: The new

paradigm. Springer Science & Business Media, 2006.

[2] Goldin, Dina Q., Scott A. Smolka, Paul C. Attie, and Elaine L. Sonderegger. "Turing

machines, transition systems, and interaction." Information and Computation 194, no. 2

(2004): 101-128.

[3] Wegner, Peter. "Interactive foundations of computing." Theoretical computer science 192,

no. 2 (1998): 315-351.

[4] Syropoulos, Apostolos. Hypercomputation: computing beyond the Church-Turing barrier.

Springer Science & Business Media, 2008.

[5] Goldin, Dina Q. "Persistent Turing machines as a model of interactive computation." In

International Symposium on Foundations of Information and Knowledge Systems, pp. 116-

135. Springer, Berlin, Heidelberg, 2000.

[6] Wegner, Peter. "Interactive foundations of computing." Theoretical computer science 192,

no. 2 (1998): 315-351.

[7] Cooper, B. S. "Computability Theory. Chapman Hall/Crc Mathematics Series." (2003).

[8] Davis, Martin, Ron Sigal, and Elaine J. Weyuker. Computability, complexity, and

languages: fundamentals of theoretical computer science. Newnes, 1994.

[9] Ord, Toby. "Hypercomputation: computing more than the Turing machine." arXiv preprint

math/0209332 (2002).

CUJSE 15, No. 1 (2018) 37

[10] Copeland, B. Jack. "The church-turing thesis." Stanford encyclopedia of philosophy

(2002).

[11] Kolan, Amy J. "Interactive Computation for Undergraduates: The Next Generation."

Journal of Statistical Physics 167, no. 3-4 (2017): 997-1006.

[12] Kosub, Sven. Persistent computations. Inst. für Informatik, 1998.

[13] Luttik, Bas, and Fei Yang. "On the Executability of Interactive Computation." In

Conference on Computability in Europe, pp. 312-322. Springer International Publishing,

2016.

