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Abstract  Öz 

This paper aims to identify influential nodes in complex networks in a 
short period of time by proposing novel formulations. Traditional 
centrality metrics have ranked nodes based on individual centrality 
values, which fall short in identifying several influential nodes 
simultaneously. Recent literature has introduced an optimization model 
as a solution to this limitation; however, this model has some 
shortcomings such as long solution return time and high memory usage. 
In this paper, two novel formulations are presented as alternatives to 
this optimization model, with a primary goal of reducing the time 
needed to obtain solutions. Computational tests have shown that 
whereas the existing model is unable to return a solution within a 5-
hour time frame for a small network with approximately 5,000 nodes, 
the proposed formulations can identify the most influential nodes within 
minutes, even for large networks with more than 100,000 nodes. The 
superiority of the proposed models actually lies in their significant 
reduction in the number of constraints and variables compared to the 
existing model. Additionally, this paper introduces a novel alternative 
formulation that addresses the overlapping effect observed in the 
previous formulations. Computational tests have shown that this model 
surpasses its predecessors in accelerating the spread of influence 
throughout the network without causing additional computational 
burden, thereby setting a better benchmark for future studies in this 
field. 

 Bu makale, yeni formülasyonlar önererek karmaşık ağlardaki etkili 
düğümleri kısa zaman diliminde belirlemeyi amaçlamaktadır. 
Geleneksel merkeziyet ölçümleri, düğümleri bireysel merkeziyet 
değerlerine göre sıralamaktadır, bu da aynı anda birden fazla etkili 
düğümün belirlenmesinde yetersiz kalmaktadır. Güncel literatür bu 
kısıtlamaya çözüm olarak bir optimizasyon modeli sunmuştur, ancak 
bu modelin uzun süren çözüm döndürme süresi ve yüksek bellek 
kullanımı gibi bazı eksiklikleri vardır. Bu makalede, çözümleri elde 
etmede gereken süreyi azaltma ana amacıyla bu optimizasyon 
modeline alternatif olarak iki yeni formülasyon sunulmuştur. 
Hesaplamalı testler, mevcut modelin yaklaşık 5,000 düğümlü küçük bir 
ağ için 5 sa.’lik bir zaman dilimi içinde çözümü döndürmezken, önerilen 
formülasyonların 100,000'den fazla düğümlü büyük ağlar için bile en 
etkili düğümleri dakikalar içinde belirleyebildiğini göstermiştir. 
Önerilen modellerin üstünlüğü aslında mevcut modele kıyasla kısıtların 
ve değişkenlerin sayısının önemli ölçüde azaltılmasında yatmaktadır. 
Ek olarak, bu makale, önceki formülasyonlarda gözlenen örtüşen etki 
sorununu ele alan yeni bir alternatif formülasyon tanıtmaktadır. 
Hesaplamalı testler, bu modelin, ek hesaplama yüküne neden olmadan 
etki yayılımını ağ boyunca hızlandırmada öncekilerden daha üstün 
olduğunu, böylece bu alanda gelecekteki çalışmalar için daha iyi bir 
kıyaslama oluşturduğunu göstermiştir. 

Keywords: Influence maximization, Influential nodes, Optimization, 
Degree centrality, Mathematical modelling. 

 Anahtar kelimeler: Etki maksimizasyonu, Etkili düğümler, 
Optimizasyon, Derece merkezlilik, Matematiksel modelleme. 

1 Introduction 

Complex networks that abstractly represent the interactions in 
various real-world systems help us to understand the 
complexities of complex systems. Within these networks, 
individual elements are represented as nodes, while their 
connections are depicted as edges. Recent practical findings 
have triggered increasing interest in understanding the 
importance of nodes in complex networks in areas such as 
disease control [1],[2], marketing strategies [3],[4], the 
dynamics of public sentiment and rumors [5]-[8], epidemic 
modeling such as Covid-19 [9], spreading rumors [10],[11], 
dissemination of desired information [12], and protein-protein 
interactions [13]. 

The Influential Node Identification Problem (INIP) stands as a 
pivotal quest, aiming to identify a set of K influential nodes that 
exert maximum influence on others within these complex 
networks. For example, INIP was utilized for targeted 
advertising in marketing purposes in [14], as well as in public 
health initiatives to identify pivotal individuals for vaccination 
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programs in [15],[16]. In [17], INIP was used to analyze 
significant countries (and regions) within the global economic 
system, whereas in [18], it was employed to identify influential 
nodes and critical lines within power transmission networks. In 
big data analysis, Szklarczyk et al. [19] applied INIP to uncover 
critical information within extensive datasets, while INIP was 
utilized to study essential neurons within brain neural 
networks in [20].   

The literature addresses the INIP by utilizing various 
established centrality metrics. Freeman [21] examined Degree, 
Closeness, and Betweenness Centrality in human 
communication networks. The importance of a node was 
determined by its degree, betweenness, or closeness, 
depending on the context: degree measures communication 
activity, betweenness measures control over communication, 
and closeness measures independence or efficiency. 
Eigenvector Centrality and Alpha Centrality were proposed to 
measure the importance of nodes in a given network [22]. 
While Alpha Centrality can be applied to all networks, 
Eigenvector Centrality is applicable to networks where the 
status of nodes is influenced by other nodes they contact. These 
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two methods are equivalent when both are applicable. Katz 
Centrality, which extends the concept of Eigenvector Centrality, 
measures the relative importance of a node based on the 
centrality of its neighbors and was first proposed by [23]. Later, 
an algorithm based on Katz Centrality was developed to solve 
the influence maximization problem [24]. Rehm et al. [25] 
utilized Katz Centrality to predict how a medical condition and 
its developments might impact astronaut productivity. Load 
Centrality, which slightly differs from Betweenness Centrality, 
was originally proposed by [26]. This distinction arises from 
the fact that Load Centrality uses a random walk technique to 
consider all paths rather than solely focusing on shortest paths 
like Betweenness Centrality. Harmonic Centrality, based on the 
sum of the inverses of the shortest path lengths, was introduced 
by [27]. This metric resolves the primary issue with Closeness 
Centrality, particularly the existence of pairs of nodes that are 
unreachable from one another, especially in directed networks. 
The aforementioned centrality metrics are mainly suitable for 
unweighted networks, but weights on edges contain additional 
valuable information. Laplacian Centrality was introduced for 
weighted networks by [28]. In this metric, the so-called 
Laplacian energy is calculated for a given network, and the 
importance of a node is determined by the reduction in 
Laplacian energy when that node is removed from the network. 
VoteRank, introduced by [29], determines the ranking of nodes 
in a network using a voting scheme. In VoteRank, each node 
votes for all its incoming neighbors, and the node with the 
highest votes is iteratively selected. It was first used to identify 
influential spreaders in complex networks and tested on real 
datasets in terms of both the affected scale and spreading rate. 
PageRank, first introduced by [30] to rank web pages, found 
applications in various areas, including assessing the 
importance of nodes for web information retrieval [31] and call 
graphs [32]. LeaderRank, introduced by [33], determines the 
ranking of users in social networks. It is similar to PageRank but 
differs in its high tolerance to noisy data and faster convergence 
ability. 

In addition to the well-known centrality metrics, various novel 
heuristic methods have been proposed. He et al. [34] 
introduced a novel selection scheme for critical nodes, 
eliminating similarity during the influence counts. Fei et al. [35] 
proposed the inverse-square law to detect the most influential 
nodes in complex networks. The inverse-square law dictates 
that interactions diminish linearly as the square of distance 
increases. Fei et al. [35] extended this concept for complex 
networks and quantified node influence by aggregating 
attractions with other nodes. Wang et al. [36] introduced seed 
exclusion and centripetal centrality methods to detect vital 
nodes in social networks. Centripetal centrality assesses a 
node's influence by incorporating its global, local, and semi-
local details, producing a more comprehensive result. The 
proposed seed exclusion method was later devised within the 
framework of centripetal centrality. Pu et al. [37] introduced a 
concept called fuzzy local dimension (FLD) to identify 
influential nodes in complex networks, where nodes with a 
higher FLD are considered to possess greater influence. Huang 
et al. [38] introduced a graph partition approach called 
PartitionRank, which accounts for the characteristics of social 
media, specifically microblogging scenarios. In microblogging, 
users can freely choose whom to follow, unlike other social 
networks that require mutual consent for connections. Shang et 
al. [39] proposed the distance gravity method, capable of 
capturing the dynamic interaction between nodes in networks. 

Later, Curado et al. [40] and Xu and Dong [41] expanded the 
distance gravity model proposed by Shang et al. [39], 
introducing the random walk gravity centrality metric and the 
communicability-based gravity model, respectively. The former 
improves the detection of key nodes in complex networks by 
using effective distances in a gravity model and return random 
walks to highlight community structures and enhance node 
centrality. The latter contributes to the literature by addressing 
the heterogeneity of node influence radii and incorporating the 
impact of node locations on connectivity within networks. 
Venunath et al. [42] introduced a golden ratio optimization 
approach to detect the most influential users in social media.  

Jiang et al. [43], however, have expanded the methodology for 
identifying influential nodes beyond heuristic approaches, 
focusing on the mathematical formulation for identifying the 
most influential nodes within a given context. Specifically, Jiang 
et al. [43] aim at optimally identifying influential nodes in 
directed networks by developing an optimization model. 
Through a series of experiments, they validate the efficiency of 
their proposed model when dealing with multiple influential 
nodes. Their developed model requires considerable memory 
allocation and computational time. To the best of our 
knowledge, no study has been proposed for the purpose of 
improvement in this regard. Hence, this paper initially presents 
a novel edge-based formulation to solve this problem with 
reduced computational demands. Later, an equivalent node-
based formulation is introduced to address the challenges 
posed by large networks. A methodology is applied to 
selectively eliminate redundant constraints in node-based 
formulation, thereby further reducing its computational 
complexity. In addition, the aforementioned formulations aim 
at maximizing the total amount of pair influence. Here, some 
influential nodes share common neighbors, leading to an 
inherent issue of overlapping influence during the influence 
calculation. To address this, an alternative formulation with the 
objective of maximizing the number of influenced nodes is 
introduced. Under this formulation, it suffices for a node to have 
just one influential neighbor to be considered as an influenced 
node. This approach aims to reduce the overlapping influence, 
potentially leading to more extensive propagation of influence 
throughout the network. 

Briefly, the contributions of this study can be summarized as 
follows.  

 First, this paper revisits the recent mathematical 
formulation of [43] and revises it a way that saves 
substantial computational time. Hence, the most 
influential nodes even for very large networks can be 
easily identified within a reasonable computational 
time frame, 

 Second, this paper introduces a novel alternative 
optimization model built upon the perspective of 
eliminating overlapping counts in the influence 
calculation. This formulation accelerates the spread of 
influence propagation throughout the network 
without causing additional computational burden. 

The subsequent sections of this paper are organized as follows. 
Section 2 introduces the optimization formulations, along with 
a constraint reduction methodology to accelerate the 
identification of influential nodes in directed networks. Section 
3 outlines comprehensive computational experiments. Finally, 
Section 4 summarizes the paper with concluding remarks and 
proposes suggestions for potential avenues of future research. 
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2 Problem formulations 

Let 𝐺 be a directed network comprising node set denoted as 𝑁 
and arc set denoted as 𝐸. To depict network topology and 
capture interconnectivity information, an adjacency matrix is 
employed, comprising an |𝑁| ∗ |𝑁|  matrix, with "|𝑁|" denoting 
the number of nodes within the network. Let |𝐸| be the number 
of edges in the network. Each entry 𝑎𝑖𝑗 in the adjacency matrix 

𝐴 signifies the adjacency relationship between nodes 𝑖 and 𝑗; it 
assumes a value of 1 to denote a connection between nodes 𝑖 
and 𝑗, and 0 otherwise. The variable 𝑥𝑖𝑗 is a binary variable that 

represents the presence or absence of an incoming edge from 
the influential node 𝑖 to any node 𝑗. Likewise, the variable 𝑦𝑖  
serves as a binary variable, denoting the selection or non-
selection of node 𝑖 as an influential node. Here, the selection of 
influential nodes is constrained by a finite availability of 
resources, represented by an upper limit denoted as 𝐾. The 
aforementioned decision variables are formally defined in the 
following manner. 

𝑥𝑖𝑗 = {
1, if node j is influenced by node i

0, otherwise
 

𝑦𝑖 = {
1, if node i is selected as an influential node

0, otherwise
 

With the above definitions and notations in mind, the influence 
maximization model developed by [43], hereafter referred to as 
IMA, is presented as follows: 

Max ∑ 𝑎𝑖𝑗

𝑖∈𝑁,𝑗∈𝑁

𝑥𝑖𝑗 (1) 

∑ 𝑥𝑖𝑗

𝑛

𝑖=1

≤ 𝐾,    ∀ 𝑗 ∈ 𝑁 (2) 

𝑥𝑖𝑗 ≤ 𝑦𝑖 ,    ∀ 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 (3) 

𝑥𝑖𝑗 ≤ 𝑎𝑖𝑗 ,    ∀ 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 (4) 

𝑥𝑖𝑗 + 𝑦𝑖 + 𝑦𝑗 ≤ 2,    ∀ 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 (5) 

∑ 𝑦𝑖

𝑖∈𝑁

≤ 𝐾 (6) 

𝑥𝑖𝑗 , 𝑦𝑖 ∈ {0,1},    ∀ 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 (7) 

Objective function (1) in model IMA maximizes the influence 
exerted by a designated set of influential nodes within a 
network. Constraints (2) ensure that each node is influenced by 
at most 𝐾 influential nodes. Constraints (3) focus on spreading 
influence through the influential nodes rather than other nodes. 
Constraints (4) guarantee that the influence is limited between 
neighborhoods. Constraints (5) prohibit the involvement of 
interactions between sets of influential nodes in the influence 
calculation. Constraint (6) establishes an upper limit of 𝐾 on the 
number of influential nodes. Finally, Constraints (7) force that 
the decision variables exhibit a binary nature, meaning they 
must possess 0 or 1 value at optimality. Model IMA includes: (1) 
|𝑁| of Constraints (2), (2) |𝑁| ∗ |𝑁| of Constraints (3), (3) |𝑁| ∗
|𝑁| of Constraints (4), (4) |𝑁| ∗ |𝑁| of Constraints (5), (5) one 
Constraint (6), and (6) |𝑁| ∗ |𝑁| + |𝑁| of binary variables.  

Alternatively, we introduce a novel edge-based formulation, 
hereafter referred to as IME, to speed up the resolution of the 

identical problem. IME employs the identical notations to IMA 
and exhibits the following structural framework: 

Max ∑ 𝑥𝑖𝑗

(𝑖,𝑗)∈𝐸

 (8) 

𝑥𝑖𝑗 ≤ 𝑦𝑖 ,    ∀ (𝑖, 𝑗) ∈ 𝐸 (9) 

𝑥𝑖𝑗 ≤ 1 − 𝑦𝑗 ,   ∀ (𝑖, 𝑗) ∈ 𝐸 (10) 

∑ 𝑦𝑖

𝑖∈𝑁

≤ 𝐾 (11) 

𝑥𝑖𝑗 ≥ 0, ∀ (𝑖, 𝑗) ∈ 𝐸, 𝑦𝑖 ∈ {0,1}, ∀ 𝑖 ∈ 𝑁 (12) 

Objective (8) of IME is identical to Objective (1) of IMA, but 
differs in that it is formulated based on the edge set 𝐸, allowing 
the removal of the parameter 𝑎𝑖𝑗 in the objective. Constraints 

(9)-(10) exactly serve the same purpose akin to that of 
Constraints (2)-(5). Note that Constraints (9)-(10) are edge-
based constraints, i.e., the number of constraints is 
proportional to the number of edges in the network.  Constraint 
(6) and (11) are exactly the same. Even though the decision 
variable 𝑥 is now relaxed in Constraint (12) of IME in order to 
further shorten the model run time, it holds the binary nature 
at optimality, as proved in Lemma 2 given below. IME includes: 
(1) |𝐸| of Constraints (9), (2) |𝐸| of Constraints (10), (3) one 
Constraint (11), and (4) |𝐸| of positive variables and |𝑁| of 
binary variables.  

Lemma 1: IME is a NP-complete problem. 

Proof. IME has the following structure. Universe ℒ with |ℒ | =
𝑁. Define a collection of sets Ŋ= {𝐸1, 𝐸2, … 𝐸|𝐸|}, where each 

𝐸𝑖 ⊆ ℒ for all 𝑖 and integer 𝐾 ≤ 𝑁. A feasible set includes Ѱ ∈
[|𝐸|] (where, [|𝐸|] refers to 1,2, …,|𝐸|) such that |Ѱ| ≤ 𝐾. The 
aim is to maximize the cardinality of the union sets of 𝐸𝑖 , 
max |⋃𝑖∈Ѱ𝐸𝑖|. Notice that this problem is a version of the “set 
covering problem”, known as NP-complete problem. Hence, 
this problem falls into the category of NP-complete problems, 
thus categorizing IME as an NP-complete problem. This 
completes the proof. 

Lemma 2. In model IME, an optimal solution is present in which 
the variables 𝑥𝑖𝑗  must hold binary nature. 

Proof.  Observe that the variables 𝑦𝑖  and 𝑥𝑖𝑗  are defined as 

binary variables (0 or 1) and positive variables, respectively in 
Constraints (12). Keeping this fact in mind that Constraints (9) 
enforce that if 𝑦𝑖  is 0 (implying that node 𝑖 is not chosen as an 
influential node), then 𝑥𝑖𝑗  must also be 0 for all edges (𝑖, 𝑗) ∈ 𝐸. 

If 𝑦𝑖  is 1 (implying that node 𝑖 is chosen as an influential node), 
it allows 𝑥𝑖𝑗  to take any positive value within the interval [0,1]. 

Similar to the previous constraint, Constraints (10) imply that 
if 𝑦𝑗  is 1, then 𝑥𝑖𝑗  must be 0 (𝑥𝑖𝑗 ≤ 1 −  1 = 0). If 𝑦𝑗  is 0, it allows 

𝑥𝑖𝑗  to take any positive value within the interval [0,1]. Based on 

these facts, any positive variable  𝑥𝑖𝑗  must hold the following: 

either case (1) 𝑥𝑖𝑗 = 0 or case (2) 0 < 𝑥𝑖𝑗 ≤ 1. In case (1), 𝑥𝑖𝑗  

obviously maintains its binary nature. In case (2), since model 
IME is a maximization problem with an objective equal to the 
sum of the 𝑥𝑖𝑗variables, any positive 𝑥𝑖𝑗variable tends to always 

take its maximum value of 1 within Constraints (9)-(10) instead 
of any fractional value in the range 0 to 1. Given these 
considerations, at optimality, the 𝑥𝑖𝑗  variables are inherently 

driven to take binary values. This completes the proof. 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, 31(2), 155-165, 2025 
G. Karaköse 

 

158 
 

Lemma 3. IME always yields the optimal objective value. 

Proof. From Lemma 1, we have that any strictly positive 
variable 𝑥𝑖𝑗  takes the value of 1 at optimality in IME because of 

its objective function structure. As the objective functions of 
both IMA and IME are the equivalent, showing the constraints of 
IME always produce the true solution space for 𝑥𝑖𝑗  is enough to 

prove this lemma.  Consider a network whose nodes 𝑖 and 𝑗 are 
connected by a direct edge from node 𝑖 to node 𝑗. Here, only four 
distinctive cases are delineated:  

Case (1) : Node 𝑖 is designated as the influenced node 
(i.e., 𝑦𝑖 = 1), while node 𝑗 remains 
uninfluential node (i.e., 𝑦𝑗 = 0). For this 

scenario, since node 𝑖 exerts influence on 
node 𝑗, by the definition of 𝑥𝑖𝑗  variable, the 

variable 𝑥𝑖𝑗  must take the value of 1. From 

Constraints (9) and (10), we obtain 𝑥𝑖𝑗 ≤ 1 

and 𝑥𝑖𝑗 ≤ 1 − 0 = 1, respectively. Thus, 

within the framework of these two 
constraints, 𝑥𝑖𝑗  must take the value of 1, 

which aligns with its intended value, 

Case (2) : Conversely, node 𝑗 is designated as the 
influenced node, while node 𝑖 remains 
uninfluential node. For this scenario, as node 
𝑗 cannot be influenced by an uninfluential 
node 𝑖, the variable 𝑥𝑖𝑗  must be 0. From 

Constraints (9) and (10), we obtain 𝑥𝑖𝑗 ≤ 0 

and 𝑥𝑖𝑗 ≤ 1 − 1 = 0, respectively. Thus, 

within the framework of these two 
constraints, 𝑥𝑖𝑗  should adopt the value of 0, 

which again aligns with its intended value, 

Case (3) : Both node 𝑖 and node 𝑗 are concurrently 
designated as influenced nodes. For this 
scenario, by definition in Constraint (5), the 
variable 𝑥𝑖𝑗  must be set to 0. From 

Constraints (9) and (10), we obtain 𝑥𝑖𝑗 ≤ 1 

and 𝑥𝑖𝑗 ≤ 1 − 1 = 0, respectively. So, the 

solution space satisfying both Constraints (9) 
and (10) forces 𝑥𝑖𝑗  to take the true value of 0, 

Case (4) : Alternatively, neither node 𝑖 nor node 𝑗 is 
designated as influenced nodes. By definition, 
the variable 𝑥𝑖𝑗  must be set to zero, as 

observed in Constraint (3). From Constraints 
(9) and (10), we obtain 𝑥𝑖𝑗 ≤ 0 and 𝑥𝑖𝑗 ≤ 1 −

0 = 1, respectively. So, the solution space 
satisfying both Constraints (9) and (10) 
obviously results in 0, the true value of 𝑥𝑖𝑗 . 

This completes the proof. 

Lemma 3 shows that Constraints (9)-(10) of IME are implicitly 
identical to Constraints (2)-(5) of IMA. Hence, IME presents a 
noteworthy reduction in the number of constraints, as well as 
variables relative to its predecessor, IMA. Specifically, whereas 
model IMA has 3|𝑁|2 + |𝑁| + 1 constraints and |𝑁|(|𝑁| + 1) 
binary variables, IME has 2|𝐸| + 1 constraints and |𝐸| + |𝑁| 
decision variables, of which only |𝑁| number of variables are 
defined as binary variables.  

The aforementioned modeling enhancement is expected to 
result in a substantial decrease in solution time for IME when 

compared to IMA. However, an alternative node-based 
formulation is also introduced for the sake of its scalability for 
larger networks, hereafter referred to as IMN. This compact 
formulation IMN uses a newly defined positive variable 𝑧𝑖 , 
which represents the total number of influential neighbor 
nodes of node 𝑖. Alternatively, 𝑧𝑖  can be defined as the total 
amount of influence exerted on node 𝑖 by its neighbors. Let 𝜗𝑖

𝑜𝑢𝑡  

and 𝜗𝑖
𝑖𝑛 be out-degree and in-degree of node 𝑖, respectively. Let 

ℒ be a sufficiently large positive number, which can be set as 
the maximum out-degree in the network (i.e., ℒ = max

𝑖∈𝑁
{𝜗𝑖

𝑜𝑢𝑡}). 

IMN reads as follows: 

Max ∑ 𝑧𝑖

𝑖∈𝑁

 (13) 

𝑧𝑖 + ℒ𝑦𝑖 ≤ ℒ,    ∀𝑖 ∈ 𝑁 (14) 

𝑧𝑖 ≤ ∑ 𝑦𝑗

𝑗:(𝑗,𝑖)∈𝐸

,   ∀𝑖 ∈ 𝑁 (15) 

∑ 𝑦𝑖

𝑖∈𝑁

≤ 𝐾 (16) 

𝑧𝑖 ≥ 0, 𝑦𝑖 ∈ {0,1}, ∀𝑖 ∈ 𝑁 (17) 

The objective function (13) aims at maximizing the total 
amount of influence, as in Objective (1) and (8). Constraints 
(14) guarantee that if node 𝑖 is selected as an influential node, 
then 𝑧𝑖  must take the value of 0. This implies that the already 
influenced node 𝑖 cannot be influenced by its neighbors. 
Conversely, if node 𝑖 is not selected as an influential node, then 
Constraint (14) becomes a non-binding constraint for given 𝑖.  
For the cases where Constraints (14) are non-binding (i.e., 𝑦𝑖 =
0), Constraints (15) become binding constraints and ensure the 
value of 𝑧𝑖  is restricted by its total number of influential 
neighbor nodes. Constraint (16) is the same as Constraint (11). 
Constraints (17) provide the nature of variables. The 
superiority of IMN over IME lies in its node-based constraints. 
To elaborate further, the number of constraints in the IMN 
model exhibits a linear relationship with the size of the nodes 
of the network, resulting in a more scalability advantage. 
Specifically, IMN includes only 2|𝑁|+1 constraints, |𝑁| binary 
and |𝑁| positive variables.  

Note that Objective (13) and Constraints (15) can be run over 

𝑖 ∈ 𝑁 such that 𝜗𝑖
𝑖𝑛 > 0. This means that node 𝑖 has not 

incoming edge that allows it to be influenced by its immediate 
neighbors. Constraints (14) can be run over 𝑖 ∈ 𝑁 such that 

𝜗𝑖
𝑖𝑛 > 0 and 𝜗𝑖

𝑜𝑢𝑡 > 0, which implies that node 𝑖 should have at 
least one incoming and outgoing edge; otherwise, Constraints 
(14) become unbinding constraints. Such effort further 
eliminates the redundant terms in objective function and the 
redundant set of constraints in Constraints (14)-(15). Similarly, 
the summation term of Constraint (16) can be defined over 𝑖 ∈
𝑁 such that 𝜗𝑖

𝑜𝑢𝑡 > 0 because there is no chance for any node 𝑗 
to be influenced by node 𝑖 if node 𝑖 has no outgoing edges. For 
the sake of space, we do not rewrite the formulation after these 
reductions from scratch, but instead define this reduced-
version of IMN as IMNr in our computational testing. 

Within the influential nodes found by the aforementioned 
formulations, it is possible that some influential nodes share 
common neighbors, leading to an inherent issue of overlapping 
influence. Namely, the substantial similarity between the 
neighbors of these nodes may hinder their effectiveness in 
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influencing the network on a large scale. To address this and 
potentially enhance the initial selection of influential nodes, we 
introduce a third formulation, named hereafter as IMO. Here, 
the superscript “O” is used to refer to overlapping. The 
proposed formulation utilizes a new variable, 𝑤𝑖 , defined as 
follows: 

𝑤𝑖 = { 
1, if node i is influenced by at least 

one of its influential neighbors
0, otherwise

 

Model IMO is outlined as follows. 

Max ∑ 𝑤𝑖

𝑖∈𝑁

 (18) 

𝑤𝑖 + 𝑦𝑖 ≤ 1,    ∀𝑖 ∈ 𝑁 (19) 

𝑤𝑖 ≤ ∑ 𝑦𝑗

𝑗:(𝑗,𝑖)∈𝐸

,   ∀𝑖 ∈ 𝑁 (20) 

∑ 𝑦𝑖

𝑖∈𝑁

≤ 𝐾 (21) 

𝑤𝑖 ≥ 0, 𝑦𝑖 ∈ {0,1}, ∀𝑖 ∈ 𝑁 (22) 

Note that, to best of our knowledge, this solution modelling is 
being utilized for the first time in INIP. The objective function 
(18) now aims at maximizing the number of influenced nodes, 
which eliminates the issue of overlapping. Constraints (19) 
guarantee that when a node is selected as an influential node, it 
is precluded from simultaneously being considered as an 
influenced node. Constraints (20) guarantee that a node can be 
an influenced node, providing that at least one of its neighbors 
is an influential node. Whereas Constraints (22) share 
similarities with Constraints (17) but entail minor variations in 
their specific criteria, Constraint (21) is identical to Constraint 
(16). To enhance computational efficiency of model IMO in our 
computational testing, we redefine the search space for 
Objective (18) and Constraints (19)-(20) to include nodes 𝑖 ∈ 𝑁 

with 𝜗𝑖
𝑖𝑛 > 0, while Constraint (21) is adjusted for nodes 𝑖 ∈ 𝑁 

where 𝜗𝑖
𝑜𝑢𝑡 > 0. 

Lemma 4. In model IMO, an optimal solution is present in which 
the variables 𝑤𝑖  must hold binary nature even though they are 
relaxed for the sake of computational run time.  

Proof.  For each node 𝑖, 𝑤𝑖  is constrained to have a maximum 
value of 1, as stipulated by Constraints (19) in IMO. Given that, 
𝑤𝑖  satisfies the following conditions: 

1. If 𝑦𝑖  equals 1 (indicating that node 𝑖 is chosen as an 
influential node) or ∑ 𝑦𝑗𝑗:(𝑗,𝑖)∈𝐸  equals to 0 (indicating 

that none of neighbors of node 𝑖 are influential nodes), 
or if both conditions are met simultaneously, then 𝑤𝑖  
must be set to 0 as dictated by Constraints (19)-(20). 
In these cases, 𝑤𝑖  maintains its binary natüre, 

2. However, if 𝑦𝑖  equals 1 for node 𝑖 and at least one of 
neighbors of node 𝑖 is an influential node, the model 
assigns 𝑤𝑖  a value of 1 as the objective of IMO is to 
maximize the summation of 𝑤𝑖 . Hence, 𝑤𝑖  again 
retains its binary structure, even though it is relaxed 
in the model. This completes the proof.  

Note that although these reductions do not overcome the 
inherent issue of the scalability of the Mixed Integer 
Programming models IME and IMO (i.e., their NP-completeness 

proved by Lemma 1), the computational testing shows the 
noticeable performance improvement achieved by the 
proposed models. In other words, computational testing 
demonstrates that the reduced complexity in terms of 
constraints and variables translates to better scalability in 
memory usage and solution speed. Hence, the proposed models 
can handle larger instances of the problem more effectively 
than the model IMA from the literature, which has more 
constraints and variables. 

3 Computational tests 

The computational tests were conducted on a personal 
computer equipped with an Intel i7-11800H processor running 
at 2.3 GHz and 16 GB of RAM. To ensure a fair and consistent 
comparison, all experiments were conducted on the same 
platform. The GAMS platform was employed to write and 
implement the mathematical formulations, and CPLEX 12.6.2.0 
was selected as the solver to solve the models, with its default 
settings, except for the optimality gap, which was set to zero. 
This controlled setup eliminates variability due to differing 
hardware or software environments, ensuring that the 
observed differences in computation times are solely 
attributable to the models themselves. A maximum CPU time 
limit of 18,000 seconds (s) was enforced during the 
computational testing. If an instance was not successfully 
solved within this limit, then it was indicated in the tables with 
a “>” symbol. The results obtained from the studied methods 
were evaluated in simulation tests conducted using Python 
3.10. The computational testing consists of two subsections as 
given below.  

3.1 The performance of optimization models 

The first section scrutinizes the performance of the 
optimization models, specifically focusing on their solution 
speed, aiming to show how the proposed models (IME, IMN and 
IMNr) shorten solution times compared to their counterpart IMA 
of [43]. The computational performance of IMO is also 
presented in this section.  

Table 1 summarizes the properties of networks utilized for 
evaluating the performance of all models. In Table 1, |N|, |E|, 〈𝑘〉 
and ℒ respectively represent the node count, edge count, 
average degree, and maximum out-degree in the network, with 
the exclusion of any single-edge cycles. In addition, α, β, and γ 
represent the counts of nodes having outgoing edges, incoming 
edges, and both outgoing and incoming edges, respectively. 
Networks Cage6, Bcspwr06, Hi2010, Shyy161, Ford2 and 
SNAP/email-EuAll were obtained from [44]; networks Anheim, 
GoldCoast and ChicagoRegional were obtained from [45]. Note 
that if parameters 𝛼, 𝛽 and 𝛾 are found to be equal to |N| for a 
given network, the performance of IMNr is not separately 
reported for that network since it exhibits identical 
performance to IMN. In Tables 2 and Table 3, the set of 
influential node values 𝐾 are varied from 1 to 10.  

Table 2 compares the performance of the models by using 
networks having less than 500 nodes. Observe in Table 2 that 
IME and IMN consistently outperform IMA, but the performance 
improvement, in terms of reduced solution time, is relatively 
modest, typically less than one second on average. This, of 
course, is due to the fact that working on small networks masks 
the performance improvement between models. Table 3 
presents a comparison of model performances using networks 
with between 1,000 nodes 10,000 nodes.  
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Table 1. Network properties 

Network |𝑁| |𝐸| 〈𝑘〉 ℒ 𝛼 𝛽 𝛾 
Cage6 93 692 14.88 12 93 93 93 

Anheim 416 914 4.39 6 416 416 416 
Bcspwr06 1454 1923 2.65 11 1083 1003 632 
GoldCoast 4783 11140 4.65 6 4783 4783 4783 

ChicagoRegional 10959 20019 3.65 6 7580 8963 5584 
Hi2010 25016 62063 4.96 57 20183 20055 15222 
Rajat26 50932 200734 7.88 3400 50932 50932 50932 
Shyy161 76480 278882 7.29 5 76480 76480 76480 

Ford2 100196 222246 4.44 29 93920 92374 86098 
SNAP/email-EuAll 265214 418956 3.16 7631 225137 74445 34573 

Table 2. Comparisons of the models using networks Cage6 and Anheim 

 Cage6  Anheim 
  Time (s)   Time (s) 

𝐾 Obj IMA IME IMN 𝐾 Obj IMA IME IMN 
1 12 0.13 0.10 0.09 1 6 1.53 0.22 0.20 
2 22 0.14 0.10 0.09 2 12 1.53 0.10 0.09 
3 33 0.23 0.10 0.09 3 18 1.51 0.10 0.09 
4 44 0.23 0.10 0.09 4 23 1.53 0.10 0.10 
5 54 0.24 0.10 0.10 5 28 1.52 0.10 0.10 
6 63 0.15 0.13 0.10 6 33 1.62 0.10 0.09 
7 72 0.19 0.15 0.11 7 38 1.52 0.10 0.09 
8 80 0.44 0.19 0.21 8 43 1.55 0.10 0.09 
9 89 0.37 0.37 0.23 9 48 1.57 0.10 0.09 

10 98 0.38 0.33 0.21 10 53 1.51 0.10 0.09 

Table 3. Comparisons of the models using networks Bcspwr06 and GoldCast 

 Bcspwr06  GoldCast 
  Time (s)   Time (s) 

𝐾 Obj IMA IME IMN 𝐾 Obj IMA IME IMN 
1 9 102.81 0.30 0.32 1 6 > 2.31 1.59 
2 17 91.98 0.21 0.20 2 12 > 2.20 0.93 
3 24 92.86 0.30 0.20 3 18 > 2.54 0.96 
4 31 84.87 0.21 0.20 4 23 > 2.16 0.87 
5 37 92.91 0.30 0.20 5 28 > 2.25 0.88 
6 43 92.38 0.22 0.20 6 33 > 2.16 0.95 
7 49 87.07 0.31 0.20 7 38 > 2.33 0.95 
8 55 93.09 0.31 0.20 8 43 > 2.28 0.95 
9 61 93.04 0.31 0.20 9 48 > 2.19 0.94 

10 67 94.55 0.20 0.19 10 53 > 2.37 0.95 

As seen in Table 3, when the network size grows, the 
performance improvement between models become more 
apparent compared to Table 2. For example, in Bcswpr06 
network, the average required computational times to obtain 
solutions are 91.42, 0.27 and 0.21 seconds for IMA, IME and IMN, 
respectively. As noticed, the performance of IMA is notably 
inferior, while the performance of IME and IMN is nearly 
indifferentiable, showing very similar results. For GoldCast 
network, IMA could not return the optimal solution within the 
5-hour (18,000 seconds) time frame, whereas IME and IMN 
respectively provided the optimal solution in 2.28 and 1.00 
seconds on average. 

Tables 4, 5 and 6 compare the performance of the models using 
networks having more than 10,000 nodes. The networks in 
these tables are arranged in ascending order based on their 
sizes. These tables only evaluate the performance of the models 
based on 𝐾=5, 10, 50, 100, 250 and 500 values for the sake of 
space.  None of the networks in these tables were solved by IMA 

within a predefined time frame of 5-hour. Observe in Tables 4, 

5 and 6 that IMNr always performed the best when applied. IMN 
always performed better than IME for all networks. For network 
ChicagoRegional in Table 4, IMNr returned solutions more than 
three times faster than IME on average. Likewise, when 
considering the Hi2010 network, IMNr consistently delivers 
solutions in a significantly shorter average time, averaging 
17.49 seconds, compared to IME, which has an average solution 
time of 53.01 seconds. Also, IMN shows superior performance 
compared to IME for the networks in Table 3. With increasing 
network size, the distinction between IMN and IME becomes 
increasingly pronounced. For example, for the largest network 
SNAP/email-EuAll, IMN and IMNr obtain the solution in 3212.21 
and 750.78 seconds on average respectively, while IME obtains 
the solution in 8321.86 seconds. Put differently, IMA solves on 
average 2.6 and 11 times slower than IMN and IMNr, 
respectively. This result can also be interpreted as IMNr 
obtaining the optimal solution, on average, 7,571.08 seconds 
earlier than IME. 
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Table 4. Comparisons of models using networks ChicagoRegional and Hi2010 

 ChicagoRegional  Hi2010 
  Time (s)   Time (s) 

𝐾 Obj IMA IME IMN IMNr 𝐾 Obj IMA IME IMN IMNr 

5 30 > 10.33 3.67 3.20 5 255 > 54.73 21.64 16.94 
10 60 > 10.12 3.64 3.21 10 446 > 50.98 21.33 16.85 
50 263 > 10.00 3.84 3.24 50 1412 > 52.01 22.13 17.93 

100 479 > 10.11 3.77 3.24 100 2253 > 52.18 21.15 17.39 
250 1079 > 10.17 3.85 3.23 250 4139 > 51.65 21.87 17.43 
500 2079 > 10.32 3.86 3.34 500 6534 > 56.54 22.03 18.42 

Table 5. Comparisons of the models using networks Rajat26 and Shyy161 

 Rajat26  Shyy161 
  Time (s)   Time (s) 

𝐾 Obj IMA IME IMN 𝐾 Obj IMA IME IMN 
5 8741 > 235.56 80.29 5 25 > 594.38 176.79 

10 11779 > 262.20 80.25 10 50 > 531.93 188.63 
50 21472 > 227.30 78.05 50 250 > 537.83 205.60 

100 23710 > 332.63 81.23 100 500 > 577.92 216.26 
250 28223 > 242.02 83.78 250 1250 > 548.94 223.12 
500 32796 > 245.04 89.45 500 2500 > 962.60 197.07 

Table 6. Comparisons of models using networks Ford2 and SNAP/email-EuAll 

 Ford2  SNAP/email-EuAll 
  Time (s)   Time (s) 

𝐾 Obj IMA IME IMN IMNr 𝐾 Obj IMA IME IMN IMNr 

5 134 > 815.63 304.41 269.28 5 4218 > 10207.49 3005.24 641.80 
10 244 > 830.00 293.84 272.24 10 7477 > 10115.44 3010.17 644.06 
50 878 > 809.27 295.73 268.07 50 23442 > 7368.62 3001.24 696.80 

100 1482 > 837.75 296.16 269.96 100 36213 > 7847.02 3024.85 731.39 
250 2955 > 832.45 298.72 280.56 250 58355 > 7339.13 3636.20 887.24 
500 5205 > 837.49 299.48 276.05 500 74037 > 7053.45 3595.55 903.39 

 

In brief, Tables from 1 to 6 show that the newly developed 
models are capable of achieving provably optimal solutions 
across a range of test networks in significantly reduced time 
when compared to IMA of [43]. In addition, the node-based 
formulations (i.e., IMN and IMNr) almost always outperform the 
edge-based formulation IME, as expected. Finally, the constraint 
reduction strategy, as applied to IMN (referred to as model 
IMNr), always reduces the needed solution time across various 
networks, including ChicagoRegional, Hi2010, Ford2 and 
SNAP/email-EuAll. The main reason for the differences in CPU 
time is that both IME and IMN greatly reduce the search space 
compared to IMA, which requires generating many redundant 
sets of constraints. This fact holds true for all computational 
testing conducted throughout the paper. However, the 
developed models are still limited as they are MIP models, 
which inherently face the scalability issue (i.e., NP-
Completeness), especially for large real-word networks 
including millions of nodes and arcs. 

Finally, we explore how using model IMO instead of the other 
models impacts the time it consumes to find optimal solutions. 
Hence, Table 7 details the average solution times for all 
optimization models, representing the mean solution times 
corresponding to 𝐾 values from the previous tables. Observe in 
Table 7 that IMO delivers solutions quicker than the other 
models in general. As noted, IMNr and IMO are similar in many 
respects, with slight differences in Constraints (14) and (19) 
and the constraint reduction strategy applied to these 
constraints, respectively. These differences cause relatively 

minor changes in computational time compared to 
comparisons with the other models, as shown in Table 7. 

3.2 Comparison of the methods in minimizing spread  

This section conducts a comparative analysis of the methods 
(i.e., Degree-centrality (DC), IMA, IMO) with regard to the 
influence time metric, which measures the speed at which the 
initially selected influential nodes influence the entire network. 
Since IMA, IME, IMN, and IMNr all yield identical sets of influential 
nodes, we exclusively included IMA and IMO in our testing to 
avoid redundancy. The tests were performed on two small size 
networks IMB32 and GD95a, obtained from [44]. Network 
IBM32 contains 32 nodes and 94 edges; network GD95a 
contains 36 nodes and 57 edges. Note that the objectives of the 
tested methods are not focused on spread-related goals, such as 
slowing down the spread, which can be measured using the 
time metric to influence all nodes. Hence, to assess the efficacy 
of these methods, we estimate the time required to influence all 
nodes by means of simulations following the initial selection of 
influential nodes from networks specified by the examined 
methods.  

In the infection-related literature, various studies generally 
have employed one of the two models: SI (Susceptible-
Infectious) and SIR (Susceptible-Infectious-Recovered). In the 
context of INIP, SI model means that the influenced nodes 
remain influenced indefinitely without recovery. Conversely, in 
the SIR model, influenced nodes exhibit a fixed probability of 
recovering from the influence.  
 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, 31(2), 155-165, 2025 
G. Karaköse 

 

162 
 

 

Table 7. Comparisons of all models in terms of solution return time. 

Network IMA IME IMN IMNr IMO 
Cage6 0.25 0.17 0.13 0.13 0.09 

Anheim 1.54 0.11 0.10 0.10 0.10 
Bcspwr06 92.56 0.27 0.21 0.21 0.18 
GoldCoast > 2.28 1.00 1.00 0.90 

ChicagoRegional > 10.18 3.77 3.24 3.18 
Hi2010 > 53.02 21.69 17.49 17.29 
Rajat26 > 257.46 82.18 82.18 81.42 
Shyy161 > 625.60 201.25 201.25 161.20 

Ford2 > 827.10 298.06 272.69 272.69 
SNAP/email-EuAll > 8321.86 3212.21 750.78 669.64 

*: The numbers highlighted in bold indicate the lowest average solution time for a given network. 

 

Although SIR provides a practical and realistic estimate suitable 
for a wide range of spreading scenarios, SI is used in the 
simulation testing. This decision stemmed from the challenge 
of estimating time to infect all non-influential nodes in SIR as 
nodes recovering from the influence potentially cause the 
spread to cease before influencing all non-influential nodes.  

In SI simulation testing, random numbers are produced for 
every edge at each stage, and influential nodes transmit the 
influence to uninfluenced neighbors if the random number falls 
below a predefined transmission threshold (symbolized 
hereafter as ƿ). This process continues until all nodes become 
influential nodes, at which point we record the expected time it 
took to influence all nodes. The expected average time is 
symbolized hereafter as E(T). In testing, SI simulation test is 
replicated 250,000 times to ensure unbiased E(T) results.  

In contrast to the assertion in paper [43], the monotonicity of 
optimization models (e.g., IMA) is not consistently equal to 1. 
Put differently, diverse optimal results can be attained 
depending on the factors such as the utilized platform, solver, 
and so on. For example, 2, 4 and 1 different alternative optimal 
solutions exist for DC, IMA and IMO, respectively for the 𝐾=3 
scenario. In this regard, to ensure a fair comparison, every 
potential optimal solution scenario is generated for all three 
methods across each 𝐾 value. The resulting average times of 
E(T), a metric to measure the expected speed of the influence 
spread, are then recorded based on the initial 𝐾-node selection 
from the methods. Noticed that the lower the E(T) value, the 
more effective the method is at influencing all nodes in the 
network.  

Observe in Figure 1 that model IMO always fully influence 
IBM32 network faster than both IMA and DC for every value of 
𝐾. While DC generally exhibits the worst performance, there is 
only one instance (i.e., 𝐾=1) where DC, IMA and IMO exhibit 
equal performance in terms of average E(T) values. Although 
not presented in Figure 1, the slowest and fastest E(T) times for 
all three methods were examined for each 𝐾 value in IBM32 
network as well. We observe that while DC generally exhibits 
the worst performance, there is only one instance (i.e., 𝐾=2) 
where IMA outperforms IMO in terms of maximum E(T) value. 

Observe in Figure 2 that IMO always demonstrates the top 
performance in terms of average E(T) times, whereas DC 
consistently exhibits the poorest performance for network 
GD95a. In network GD95a, there is no instance that IMA 
outperforms IMO with respect to average E(T) times. For this 
network, IMO reduced E(T) by approximately to 24.68 % and 
5.27 % on average compared to DC and IMA, respectively.  Even 
though not presented in Figure 2, the slowest and fastest E(T) 

times for all three methods were recorded for each 𝐾 value in 
GD95a network as well.  We observe that IMA surpasses IMO in 
a few cases (i.e., 𝐾=2, 3, and 4) regarding maximum E(T) values 
but consistently falls short in terms of minimum and average 
E(T) values.  

 

Figure 1. Comparisons of the methods in terms of the average 
E(T) for IBM32 network. 

 

Figure 2. Comparisons of the methods in terms of the average 
E(T) for GD95a network 

Note that the parameter ƿ was set to 0.25 in the simulation 
testing. In the following Figures 3, 4 and 5, ƿ values are varied 
between 0.25 and 0.90 to observe the response of DC, IMA and 
IMO to varying ƿ values. The figures demonstrate that as the ƿ 
value increases, the time required to influence the nodes 
decreases. This outcome is expected, as a higher ƿ value 
corresponds to an increased likelihood of influencing 
neighboring nodes for all three methods.  
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Figure 3.  E(T) of DC based on various ƿ values for IBM32. 

 

Figure 4.  E(T) of IME based on various ƿ values for IBM32. 

 

Figure 5.  E(T) of IMO based on various ƿ values for IBM32. 

As seen in the following figures, when the 𝐾 value is increased 
from 1 to 5, the differences in E(T) values become more 
pronounced, particularly at lower ƿ values. This outcome is 
intuitive: as ƿ increases, the likelihood of transferring influence 
to other nodes rises. Consequently, the effect of the initial 
influential node selection's position and size on E(T) weakens 
with higher ƿ values. Since IMA and IMO are scenario-based 
approaches that simultaneously evaluate the impact of multiple 
influential nodes, the enhancement in performance becomes 
more apparent as 𝐾 increases from 1 to 5, especially for IMO, the 
best performing model when simultaneously determining the 
location of 𝐾 influential nodes. 

4 Conclusion 

This paper explores the critical research area of identifying 
influential nodes in complex networks based on a scenario-
based approach where multiple nodes are simultaneously 

selected as influential nodes. Hence, novel formulations are 
introduced to efficiently identify influential nodes in directed 
networks in a short period of time. First two novel formulations 
(i.e., IME and IMN) aim to reduce solution time compared to their 
counterpart in the literature, whereas an alternative 
formulation (i.e., IMO) eliminates overlapping influence effects 
of the previous formulations. Based on the results from Table 2 
to Table 6, the proposed models, IME and IMN, improve upon 
IMA of [43], enabling quicker identification of influential nodes 
with reduced computational resources. Similarly, based on the 
results from Figures 1 and 2, along with Table 7, it is fair to 
conclude that IMO outperforms the other models in terms of 
both faster solution discovery and the performance of the 
obtained solution's influence propagation based on SI 
simulation. These findings demonstrated the power of the 
proposed formulations for determining the most influential 
nodes. However, the developed models are still limited by their 
nature as MIP models, which inherently struggle with 
scalability issues, particularly for large real-world networks 
containing millions of nodes and arcs. Hence, future research 
will focus on proposing innovative heuristic approaches to 
address the challenges in INIP with various objectives. 
Specifically, we will propose a novel path-based algorithm and 
compare it with state-of-the-art methods in the literature. The 
comparison will cover various metrics, including average new 
infections and time to influence half of the uninfluenced nodes. 
Additionally, although the optimization models presented here 
are built upon the context of influence maximization, they can 
be adapted and applied to various real-world domains such as 
epidemiology and marketing. For example, in epidemiology, 
these models can be used to control and mitigate the spread of 
viruses by identifying key individuals for intervention. By 
targeting these key nodes within a network, health authorities 
can optimize vaccination campaigns, quarantine strategies, and 
other preventive measures to effectively respond to outbreaks. 
As exemplified, the proposed models have managerial 
implications for resource allocation and intervention 
strategies. Hence, in the future, it will also be beneficial to 
evaluate the proposed methodologies in the aforementioned 
areas to assess their practical utility. 

5 Author contribution statements 

In the scope of this study, Gökhan Karaköse in the formation of 
the idea, the literature review, the mathematical models, the 
computational experiments, the assessment of obtained 
results, the spelling and checking the article in terms of content 
was contributed. 

6 Ethics committee approval and conflict of 
interest statement 

“There is no need to obtain permission from the ethics 
committee for the article prepared”.  

“There is no conflict of interest with any person / institution in 
the article prepared”. 

7 References 
[1] Wang Z, Andrews MA, Wu ZX, Wang L, Bauch CT. “Coupled 

disease-behavior dynamics on complex networks: A 
review”. Physics of Life Reviews, 15, 1-29, 2015  

[2] Barabási AL, Gulbahce N, Loscalzo J. “Network medicine: a 
network-based approach to human disease”. Nature 
Reviews Genetics, 12(1), 56-68, 2011. 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, 31(2), 155-165, 2025 
G. Karaköse 

 

164 
 

[3] Xiao F, Aritsugi M, Wang Q, Zhang R. “Efficient processing 
of multiple nested event pattern queries over multi-
dimensional event streams based on a triaxial hierarchical 
model”. Artificial Intelligence in Medicine, 72, 56-71, 2016. 

[4] Xiao F, Zhan C, Lai H, Tao L, Qu Z. “New parallel processing 
strategies in complex event processing systems with data 
streams”. International Journal of Distributed Sensor 
Networks, 13(8), 1-1, 2017. 

[5] Vega-Oliveros DA, da Fontoura Costa L, Rodrigues FA. 
“Influence maximization by rumor spreading on 
correlated networks through community identification”. 
Communications in Nonlinear Science and Numerical 
Simulation, 83, 1-13, 2020. 

[6] Yan Z, Zhou X, Ren J, Zhang Q, Du R. “Identifying underlying 
influential factors in information diffusion process on 
social media platform: A hybrid approach of data mining 
and time series regression”. Information Processing & 
Management, 60(5), 1-20, 2023. 

[7] Zhang X, Zhu J, Wang Q, Zhao H. “Identifying influential 
nodes in complex networks with community structure”. 
Knowledge-Based Systems, 42, 74-84, 2013. 

[8] Wang Z, Xia CY, Meloni S, Zhou CS, Moreno Y. “Impact of 
Social Punishment on Cooperative Behavior in Complex 
Networks”. Scientific Reports, 3(1), 1-7, 2013. 

[9] Chang S, Pierson E, Koh PW, Gerardin J, Redbird B, Grusky 
D, et al. “Mobility network models of COVID-19 explain 
inequities and inform reopening”. Nature, 589(7840), 82-
87, 2021. 

[10] Yang Y, Wang X, Chen Y, Hu M, Ruan C. “A novel centrality 
of ınfluential nodes ıdentification in complex networks”. 
IEEE Access, 8, 58742-58751, 2020. 

[11] Zhang J, Yang C, Jin Z, Li J. “Dynamics analysis of SIR 
epidemic model with correlation coefficients and 
clustering coefficient in networks.” Journal of Theoretical 
Biology, 449, 1-13, 2018. 

[12] Banerjee S, Jenamani M, Pratihar DK. “A survey on 
influence maximization in a social network”. Knowledge 
and Information Systems, 62, 3417-3455, 2020. 

[13] Dedeturk BA, Gungor BB. “Evaluation of sub-network 
search programs in epilepsy-related GWAS 
dataset”. Pamukkale University Journal of Engineering 
Sciences, 28(2), 292-298, 2020. 

[14] Zhao Y, Kou G, Peng Y, Chen Y. “Understanding influence 
power of opinion leaders in e-commerce networks: An 
opinion dynamics theory perspective”. Information 
Sciences, 426, 131-147, 2018. 

[15] Cheng CH, Kuo YH, Zhou Z. “Outbreak minimization v.s. 
influence maximization: an optimization framework”. 
BMC Medical Informatics and Decision Making, 20(1), 1-13, 
2020. 

[16] Chaharborj SS, Nabi KN, Feng KL, Chaharborj SS, Phang PS. 
“Controlling COVID-19 transmission with isolation of 
influential nodes”. Chaos, Solitons & Fractals, 159, 1-11, 
2020. 

[17] Kynoch G. “Marashea on the mines: economic, social and 
criminal networks on the South African Gold Fields,  
1947-1999.” Journal of Southern African Studies,  
26(1), 79-103, 2000. 

[18] Xu T, Chen J, He Y, He DR. “Complex network properties of 
Chinese power grid”.  International Journal of Modern 
Physics B, 18(17-19), 2599-2603, 2004. 

 
 

[19] Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, 
Simonovic M, et al. “The STRING database in 2017: quality-
controlled protein-protein association networks, made 
broadly accessible”.  Nucleic Acids Research, 45, 362-368, 
2017. 

[20] Pal C, Acharyya A. A novel architecture design for complex 
network measures of brain connectivity aiding diagnosis. 
Editors: Garguilo GD, Naik GRG. Wearable/Personal 
Monitoring Devices Present to Future, 281-302, 
Singapore, Springer, 2022. 

[21] Freeman LC. “Centrality in social networks conceptual 
clarification”. Social Networks. 1(3), 215-39, 1978. 

[22] Bonacich P, Lloyd P. “Eigenvector-like measures of 
centrality for asymmetric relations”. Social Networks, 
23(3), 191-201, 2001. 

[23] Katz L. “A new status index derived from sociometric 
analysis”. Psychometrika, 18(1), 39-43, 1953. 

[24] Salehi A, Masoumi B. “KATZ centrality with biogeography-
based optimization for influence maximization problem”. 
Journal of Combinatorial Optimization, 40(1), 205-26, 
2020. 

[25] Rehm H, Matar M, Rombach P, McIntyre L. “The effect of 

the Katz parameter on node ranking, with a medical 
application”. Social Network Analysis and Mining, 13, 1-8 
2023.  

[26] Goh KI, Kahng B, Kim D. “Universal Behavior of Load 
Distribution in Scale-Free Networks”. Physical Review 
Letters, 87(27), 1-4, 2001. 

[27] Boldi P, Vigna S. “Axioms for Centrality”. Internet 
Mathematics, 10(3-4), 222-262, 2013. 

[28] Qi X, Fuller E, Wu Q, Wu Y, Zhang CQ. “Laplacian centrality: 
A new centrality measure for weighted networks”. 
Information Sciences, 194, 240-253, 2012. 

[29] Zhang JX, Chen DB, Dong Q, Zhao ZD. “Identifying a set of 
influential spreaders in complex networks”. Scientific 
Reports, 6(1), 1-10, 2016. 

[30] Ma N, Guan J, Zhao, Y. “Bringing PageRank to the citation 
analysis”. Information Processing & Management,  
44(2), 800-810, 2008. 

[31] Langville AN, Meyer CD. “A survey of eigenvector methods 
for web information retrieval”. SIAM review,  
47(1), 135-161, 2005. 

[32] Tunali V, Tüysüz MAA. “Analysis of function-call graphs of 
open-source software systems using complex network 
analysis”. Pamukkale University Journal of Engineering 
Sciences, 26(2), 352-358, 2020. 

[33] Li Q, Zhou T, Lü L, Chen D. “Identifying influential 
spreaders by weighted LeaderRank”. Physica A: Statistical 
Mechanics and its Applications, 404, 47-55, 2014. 

[34] He Q, Lei Z, Wang X, Huang M, Cai Y. “An effective scheme 
to address influence maximization for opinion formation 
in social networks”. Transactions on Emerging 
Telecommunications Technologies, 30(6), 1-15, 2019. 

[35] Fei L, Zhang Q, Deng Y. “Identifying influential nodes in 
complex networks based on the inverse-square 
law”. Physica A: Statistical Mechanics and its 
Applications, 512, 1044-1059, 2018. 

[36] Wang Y, Li H, Zhang L, Zhao L, Li W. “Identifying influential 
nodes in social networks: Centripetal centrality and seed 
exclusion approach”. Chaos, Solitons & Fractals,  
162, 1-15, 2022. 

 
 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, 31(2), 155-165, 2025 
G. Karaköse 

 

165 
 

[37] Pu J, Chen X, Wei D, Liu Q, Deng Y. “Identifying influential 
nodes based on local dimension”. Europhysics 
Letters, 107(1), 1-6, 2014.  

[38] Huang M, Zou G, Zhang B, Gan Y, Jiang S, Jiang K. 
“Identifying influential individuals in microblogging 
networks using graph partitioning”.  Expert Systems with 
Applications, 102, 70-82, 2018. 

[39] Shang Q, Deng Y, Cheong KH. “Identifying influential nodes 
in complex networks: Effective distance gravity model”. 
Information Sciences, 577, 162-179, 2021. 

[40] Curado M, Tortosa L, Vicent J. F. “A novel measure to 
identify influential nodes: return random walk gravity 
centrality”. Information Sciences, 628, 177-195, 2023. 

[41] Xu G, Dong C. “CAGM: A communicability-based adaptive 
gravity model for influential nodes identification in 
complex networks”. Expert Systems with Applications,  
235, 1-15, 2024. 

[42] Venunath M, Sujatha P, Koti P. “Identification of influential 
users in social media network using golden ratio 
optimization method”. Soft Computing, 28(3), 2207-2222, 
2024. 

[43] Jiang C, Liu X, Zhang J, Yu X. “Compact models for 
influential nodes identification problem in directed 
networks”. Chaos: An Interdisciplinary Journal of Nonlinear 
Science, 30(5), 1-12, 2020. 

[44] Davis TA, Hu Y. “The University of Florida Sparse Matrix 
Collection”. ACM Transactions on Mathematical Software 
(TOMS), 38(1), 1-25, 2011. 

[45] Transportation Networks for Research Core 
Team. “Transportation Networks for Research”. 
https://github.com/bstabler/TransportationNetworks. 
(05.10.2023). 

 

https://github.com/bstabler/TransportationNetworks

