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Abstract: Determination of physical and mechanical properties of agricultural products plays an important role in the usage areas of 

the products and industrial applications. Correct determination and evaluation of physical and mechanical properties of agricultural 

products is of critical importance in determining the quality, durability and usage potential of the product. In this study, the 

relationship between moisture content and friction coefficients of Samsoy variety soybean seed, which is a trial material, was 

determined in order to contribute to making correct decisions in industrial design and material selection. The central aim of this 

research is to expose with different moisture contents and friction surfaces well-accepted data-driven models to predict friction 

coefficients for soybean seed using different soft computing techniques. Determination of friction coefficient of agricultural products is 

important in terms of design and functionality of equipment used in post-harvest technologies and agricultural applications. In the 

study, 3 different moisture contents and five different friction surfaces (steel, stainless steel, galvanized sheet, PVC, court fabric) were 

used. Artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), group method of data handling (GMDH) are 

used to predict of friction coefficients. The best accuracy values were recorded as GMDH 7-7-1 for seven input and 7-15-1 model for 

five input structures for kinetic and static friction that were calculated performance criteria R2 = 0.99-0.98, RMSE =0.00004-0.00006 , 

MSE = 0.00009 -0.00011, respectively. These selected the best models predicted which can be used in the soft computing techniques 

determined different conditions to estimating the friction coefficient for soybean seeds. 
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1. Introduction 
Soybeans have a very high nutritional value are among 

the legumes used in animal nutrition. Soybean seeds 

contain high amounts of protein, the amino acid 

composition is not close to that of animal proteins, but it 

is quite good (Altuntaş et al., 2021). It is also the main 

source of valuable vegetable protein and the second 

source of oil, and global demand for soybeans is 

constantly increasing (Niedbała et al., 2022). Postharvest 

biotechnical properties of soybean play an important role 

in the engineering design of equipment and machinery 

for grading, sorting, transportation, processing and 

storage. In addition, some of the main post-harvest 

biotechnical properties of soybean as an agricultural 

material are shape, size, mass, 1000-grain weight, 

volume weight, porosity and coefficient of kinetic and 

static friction on different surfaces as well as mechanical 

properties of soybean seeds against force (Mohsenin, 

1980). It is also important to know the physical 

properties of soybean seeds, especially in the design of 

precision planting machines. In addition, it is important 

to know the mechanical properties of soybean, post-

harvest processing and processing into flour, power 

breaking force, deformation, energy and power values 

(Altuntaş et al., 2021). For example; (Tavakoli et al., 

2009) investigated the physical and mechanical 

properties of Williams soybean variety seeds; (Shirkole 

et al., 2011) investigated the physical and mechanical 

properties of TAMS-38 soybean variety seeds; (Alibaş 

and Köksal, 2015) investigated the physical and 

mechanical properties of ATAEM-II soybean variety at 

different moisture contents; (Altuntaş et al., 2021) 

investigated the biotechnical properties of Türksoy, 

Adasoy and Yeşilsoy soybean varieties. 

Around the world and in our country, various methods 

are used to estimate the physical and chemical properties 

of different plants under various environmental 

conditions, as well as to predict yield and parameters 

that are difficult to measure or calculate. Determination 

of static and dynamic friction coefficients of grain and 

other agricultural products on surfaces made of different 

materials is needed for correct design of warehouse, silo 

structures and transport equipment. The friction 

coefficient, which is one of the important physical and 
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mechanical properties of grain and other agricultural 

products, affects the time of unloading of grain products 

from the warehouse (Gupta and Das,1988: Savenkov et 

al., 2019). Especially in recent years, estimation with 

artificial intelligence models is current. The reason for 

the great interest in neural networks is that they are 

called “universal function estimators” and can solve 

linear and nonlinear problems (Niedbała et al., 2022). 

Unfortunately, linear methods are characterized by much 

lower analysis results than artificial neural network 

(ANN) (Majkovič et al., 2016; Gorzelany et al., 2022; 

Sabzi-Nojadeh et al., 2021). In the literature, one can 

often come across the simultaneous use of multiple linear 

regression and artificial neural networks. So 

alternatively, soft computing methods (Shibata et al., 

1996), which deal with computation in uncertain 

environments, have grown in importance. The main 

components of soft computing have shown great ability 

in solving complex nonlinear system identification and 

control problems, such as fuzzy logic, neural network, 

group method of data handling, least-square support 

vector machine, multivariate adaptive regression splines 

and genetic algorithm (Ghazi et al., 2021; Mozaffari et al., 

2022; Poursaeid et al., 2022). 

Artificial neural networks operate on a “black box” 

principle; that is, they may not provide complete 

information about the method of obtaining certain 

responses or detailed relationships between input and 

output variables (Lu et al., 2001). For this, new models 

can be developed using different techniques such as 

adaptive neuro-fuzzy inference systems (ANFIS), group 

method of data handling (GMDH). Studies have 

increasingly emphasized the accuracy of modeling and 

prediction of artificial intelligent models by exploiting 

input and output data relationships without making any 

prior assumptions about physical data (Wu et al., 2017). 

ANN is a type of neural network that is widely used for 

classification purposes. The application of artificial 

neural networks (ANNs) has attracted significant 

attention in agricultural and environmental sciences in 

recent years. ANNs consist of interconnected processors 

known as neurons that Inspired by the information 

processing capabilities of the human brain (Mohammadi 

et al., 2019). These neurons interact cooperatively and 

adapt through a learning process to perform tasks that 

are evaluatedsuch as pattern recognition, information 

classification, prediction, and modeling (Taki et al., 

2016). 

ANFIS has the ability to create an input-output matching 

network based on human knowledge in the form of if-

then fuzzy rules and input-output dataset to train the 

neural network (Farzaneh et al., 2017). In one study, 

basic parameters for flaxseed were investigated, 

including emergence day, flowering day, plant height, 

branch number, number of capsules per plant, number of 

seeds per capsule, 1000 seed weight and seed yield per 

plant. Machine learning techniques, especially multilayer 

perceptron (MLP) and multiple linear regression (MLR), 

were used for seed yield. The results showed that MLP 

had better predictions than MLR according to RMSE and 

MAPE performance criteria. In addition, R2 values were 

calculated above 0.97 for training, validation and testing 

stages. As a result, MLP served as a value function in 

genetic algorithm (GA) aiming to determine optimum 

trait levels to maximize flaxseed yield (Mohammadi Mirik 

et al., 2023). ANNs have been much preferred in 

agriculture in recent years due to their fault tolerance 

and capacity to extrapolate directly from data, thus 

eliminating the need for statistical forecasts (Saeidirad 

and Zarifneshat, 2013; Taheri-Rad et al., 2017; 

Mohammadi Mirik et al., 2023). It has various 

applications in agriculture using artificial intelligent 

techniques and has been studied in areas such as image 

processing of different products (Jayas et al., 2000), 

distinguishing vegetation and weeds in remote sensing 

(Karimi et al., 2005), solar radiation prediction (Elizondo 

et al., 1994), evapotranspiration prediction (Yıldırım et 

al., 2023) food production prediction (Mukerji et al., 

2009), biomass prediction (Jin and Liu, 1997) and soil 

erosion prediction (Kim and Gilley, 2008; Mohammadi 

Mirik et al., 2023). The effectiveness of ANN models in 

predicting corn and soybean yields under Maryland's 

climatic conditions was investigated. In the study, it was 

compared with multiple linear regression models 

including various development parameters at different 

scales. ANN models outperformed regression models and 

predicted crop yields more accurately (Kaul et al., 2005). 

A composite edible film was developed by combining 

soybean aqueous extract with different materials and 

response surface methodology (RSM) using artificial 

neural network (ANN) models of physico-mechanical 

properties and barrier properties was used to predict the 

effect of independent variables on responses such as 

tensile strength, elongation at break, water vapor 

permeability, moisture content, water solubility and 

optical parameters. The best results were obtained in 

ANN model predictions (Kumar et al., 2022). Some 

research has been conducted to predict with a 

combination of ANN, ANFIS, GMDH methods using 

mechanical and physical properties in different plant 

seeds and there is no study in the literature comparing all 

these methods for the data sets used in the study for 

soybean seed. 

The aims of this study, the kinetic and static friction of 

soybean seeds are predicted that are compared different 

artificial intelligence techniques (ANN, ANFIS and GMDH) 

to evaluated the performances of these methods. 

Different models were created in ANN, ANFIS and GMDH 

techniques with different input combinations and the 

best model was selected according to different statistical 

parameters including coefficient of determination (R2), 

root mean square error (RMSE), and mean square error 

(MSE). 
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2. Materials and Methods 
In this study, five different friction surface features (steel, 

galvanized sheet, rubber, sheet and PVC) and three 

different moisture contents were measured and 

calculated for soybean seed varieties. Physical and 

mechanical properties such as width (W), length (L), 

sphericity (S), surface properties (SF), moisture (M), 

geometric mean diameter (GMD), arithmetic mean (MA) 

of intact seeds were evaluated. And the moisture content 

value for pumpkin seeds were obtained using the 

gravimetric method that specified with the method by 

(Wang et al., 2023). Dimension measurements of soybean 

seeds were measured with a digital caliper with a 

precision of 0.01 mm (Mitutoya brand, Absolute 

Digimatic model, Japan) (Mohsenin, 1970; Cevher et al., 

2016). 

The Lloyd Biologicals Test device was used to determine 

the friction coefficients of soybean seeds (Figure 1a). 

Data obtained from the compression test experiments 

were processed using the NEXYGEN Plus software 

(Figure 1b). A wooden box with dimensions of 

60x120x100 mm was connected to the load cell on the 

test device with a connection element. An opening was 

left between the box and the surface, ensuring that only 

the soybean seeds came into contact with the friction 

surfaces during the measurements (Figure1c). The 

experiments were carried out on stainless steel, 

galvanized sheet, PVC, rubber and sheet surfaces at a 

speed of 100 mm/min and with 10 repetitions. 
 

 
 

Figure 1. Biologicals Test device (a), computer and data 

collection (b) contact of soybean seed with friction 

surface (c). 

 

Must list the authority that provided approval and the 

corresponding ethical approval code. The initial moisture 

content of seed was determined by using the standard 

hot air oven method at 105±1 1C for 24 h. In the study, 

water was added in the amount calculated according to 

the following equation 1 to achieve different moisture 

levels of soybean seeds (Cevher, 2022): 
 

𝑄 =
𝑊𝑖(𝑀𝑓 −𝑀𝑖)

100 − 𝑀𝑓
 (1) 

 

Q : Mass of water to be added (kg),  

Wi : Initial mass (kg),  

Mi : Initial moisture content of the sample in % d.b 

percent and 

Mf : Final moisture content of the sample in % d.b 
 

In order for the soybean seeds to reach a homogeneous 

moisture distribution, the samples were placed in 

polyethylene bags (Figure 2) and kept in a refrigerator at 

5°C for 1 week. Humidity control was performed before 

starting the experiments. The experiments were carried 

out with soybean seeds with 4.22%, 6.27% and 8.31% 

d.b moisture content. 
 

 
 

Figure 2. Samples in polyethylene bags. 

 

2.1. Dataset pre-proceeding 

In this study, different artificial intelligence methods are 

applied to estimation of kinetic and static friction 

parameters under different friction features and 

moisture content, namely artificial neural networks 

(ANN) and adaptive neuro fuzzy inference system 

(ANFIS) and group data of handling (GMDH). The optimal 

structure of the models was determined using a trial-

and-error procedure. As a study strategy, a training-test 

analysis dataset that produces unbiased predictions was 

created. A model with 70% (n=105) from the training 

dataset, 30% (n=45) from the test dataset and all 

datasets having 150 data was used, respectively. 

The success of using models is directly related to factors 

variables such as input combination, model structure, 

basic parameters, and performance criteria. The first step 

in developing a prediction model is to identify the input 

variables. The first step in developing a prediction model 

is to determine the input variables, for which different 

input combinations are created to predict kinetic and 

static friction to achieve the best prediction. Many factors 

affect kinetic and static friction, including friction surface 

features, mechanical and physical parameters for 

different seeds features. In this study, all these features 

were used to create a simple and applicable approach. 

Different input combinations were evaluated to assess 

the degree of influence of each variable on the friction 

concentration values. Table 1 shows the different 

combinations (3 input in Model 1, 5 input in Model 2, 6 

input in Model 3 and 7 input in Model 4) used in the 

training, testing phases. Figure 3 shows the flow chart of 

the artificial intelligence models used to selected the best 

model that estimated for kinetic friction and static 

friction of soybean seeds. The methods used in the study 

are briefly described in the following sections. 
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Table 1. The conbination of input for models. 

Input name Input conbination           

Model 1 
Moisture 

(M) 
Width (W) Length (L) 

    

Model 2 
Surface 

feature(SF) 

Moisture 

(M) 
Width (W) Length (L) 

Surface area 

(SA)   

Model 3 
Moisture 

(M) 
Width (W) 

Geo. Mean 

diameter 

(GMD) 

Sphericity (S) 
Aritmetic mean 

(MA) 

Surface 

area (SA)  

Model 4 
Surface 

feature(SF) 

Moisture 

(M) 
Length (L) 

Geo. Mean 

diameter 

(GMD) 

Sphericity (S) 

Aritmetic 

mean 

(MA) 

Surface 

area (SA) 

 

 
 

Figure 3. The flow chart of artificial intelligant model to selected best model. 

 

2.1.1. Artificial neural network (ANN) 

An ANN is a computational method that mimics the 

functional behavior of a biological nerve cell in terms of 

information processing by linking inputs and outputs in 

an organized way (Hamad et al., 2020). The ANN 

approach is biologically inspired by the human brain 

(Patel et al., 2022). This the model approaches the brain 

in two stages: (a) information is acquired by the network 

from its environment as a result of a learning procedure 

and (b) interneuron connectivity strengths are used to 

collect the resulting knowledge (Haykin, 1994). The 

structure of a typical ANN consists of neurons 

(processing units), connection weights, biases and 

multiple layers. Traditional ANNs contain one or more 

hidden layers, where neurons in each layer are fully 

connected to every neuron in the next layer.  

An ANN procedure consists of five stages: selecting the 

inputs, choosing an appropriate architecture, the neural 

network construction, training and testing procedure and 

finally evaluation of the developed system model (Sahoo 

and Jha, 2013; Samani et al., 2022). Input data is fed into 

the input layer and travels through the network to all 

connected neurons in subsequent layers (Samani et al., 

2022). The ANN can have more than one hidden layer 

(Küçüktopcu and Cemek, 2021). ANNs offer several 

advantages over other models due to their robustness in 

interpreting complex structures, nonlinear data with high 

degrees of volatility. 

In this study, single layer and multilayer ANN networks 

were applied as modeling techniques. Matlab software 

was used to process model predictions and performance. 

Tansig and purelin as transfer functions were used in the 

input layer and the output layer, respectively. The 

estimation of friction coefficients for layer network 

structures using different input combinations with SCG 

training algorithm to train ANN was used. Separation of 

data into training and test datasets model 

can have significant effects on the results. Therefore, the 

measured dataset was divided into two subgroups: 70% 

of the data was used for training and 30% of the data was 

used for testing. The training and test data were 

randomly split. The MLP architecture created within the 

scope of this study is presented in Figure 4a. Four 

different models were created with the inputs (moisture, 

length, width, surface feature, geometric mean diameter, 

sphericity, arithmetic mean) used in the study. The 

inputs used for the models are given in Table 2. 

Estimations were made for 3, 5, 6 and 7 input on double-

layer networks as 7-7-1, 7-10-1, 7-15-1 model structure.  

 

Table 2. The combination of input number and model 

structure for ANN and GMDH. 
 

ANN model GMDH model Input Model Structure 

ANN 1 GMDH 1 3 7--7--1 

ANN 2 GMDH 2 3 7--10--1 

ANN 3 GMDH 3 3 7--15--1 

ANN 4 GMDH 4 5 7--7--1 

ANN 5 GMDH 5 5 7--10--1 

ANN 6 GMDH 6 5 7--15--1 

ANN 7 GMDH 7 6 7--7--1 

ANN 8 GMDH 8 6 7--10--1 

ANN 9 GMDH 9 6 7--15--1 

ANN 10 GMDH 10 7 7--7--1 

ANN 11 GMDH 11 7 7--10--1 

ANN 12 GMDH 12 7 7--15--1 
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Figure 4. Double hidden layer ANN architecture (a), Anfis structure (b) and GMDH structure. 

 

2.1.2. Adaptive neuro-fuzzy inference systems 

(ANFIS) 

Adaptive neuro-fuzzy inference system (ANFIS), 

introduced for the first time by Jang, (1993). And ANFIS 

is an artificial intelligence method that uses the parallel 

computation and learning ability of artificial neural 

networks and the inference feature of fuzzy logic. The 

ANFIS model uses the Sugeno type fuzzy inference 

system and the Hybrid learning algorithm. Adaptive 

networks consist of directly connected nodes and these 

nodes represent a processing unit (Jang, 1993). ANFIS 

uses a given input-output dataset and uses either a 

backpropagation algorithm alone or a combination of 

backpropagation algorithm and least squares method, 

where the membership functions are regularized to form 

an FIS (Abdulshahed et al., 2015). The ANFIS model has 

the advantage of having both numerical and linguistic 

knowledge. The Sugeno fuzzy structure of the ANFIS 

model consists of five layers and an ANFIS structure is 

given in Figure 4b. In the present study, different 

variables were used as input variables to estimate firictin 

coefficient parameters. The inputs used for four models 

are given in Table 3. Different data set were obtained for 

soybean and we used a training and testing analysis 

strategy. The chose our model with a training dataset 

that constituted 70% of the data (n =105) and a testing 

dataset of the remaining 30% (n = 45). In the ANFIS 

technique, the most appropriate outputs were tested for 

gaussmf, trapmf with varying numbers of membership 

founction (MFs) and different rural number that show in 

Table 3. 

Table 3. The conbination of input and membership 

founction for ANFIS. 
 

Model Input Membership founction type Rural 

ANFIS 1 3 gaussmf 
3*3*3*3 

ANFIS 2 3 trapmf 

ANFIS 3 3 gaussmf 
4*4*4*4 

ANFIS 4 3 trapmf 

ANFIS 5 5 gaussmf 
3*3*3*3 

ANFIS 6 5 trapmf 

ANFIS 7 5 gaussmf 
4*4*4*4 

ANFIS 8 5 trapmf 

ANFIS 9 6 gaussmf 
3*3*3*3 

ANFIS 10 6 trapmf 

ANFIS 11 6 gaussmf 
4*4*4*4 

ANFIS 12 6 trapmf 

ANFIS 13 7 gaussmf 
3*3*3*3 

ANFIS 14 7 trapmf 

ANFIS 15 7 gaussmf 
4*4*4*4 

ANFIS 16 7 trapmf 

 

2.1.3. Group method of data handling (GMDH) 

GMDH is similar to ANN as a polynomial neural network 

used to solve complex and nonlinear problems. It is 

considered that GMDH systems can be called 

“perceptron-type systems” since the differences between 

perception and GMDH are not fundamental (Ivakhnenko, 

1970). 

GMDH is considered a regression-based technique that 

combines the best of both neural networks and statistical 

analysis, with the additional feature of basic induction 

(Lemke, 1997). GMDH can overcome the shortcomings of 
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ANNs and statistical neural networks.  

Self-organizing classification generates models to solve 

prediction and other system questions. The number of 

neurons, hidden layers, influential input variables and 

network framework are necessarily defined in the model. 

All model structures for example number of neurons and 

layers are determined by default. In a classic GMDH 

algorithm, different pairs of neurons in each layer are 

connected via a quadratic polynomial and represented as 

a set of neurons with new neurons in the next layer. This 

type of representation can be used in modeling to map 

inputs to outputs (Nariman-Zadeh, 2002) and a simple 

GMDH model structure is given in Figure 4c. The inputs 

and model structures are given in Table 2 for GMDH 

model. 

2.2. Performance criteria of models to evaluation 

Tree different statistical parameters were used to assess 

the performance of ANN, ANFIS and GMDH models. 

These statistical parameters coefficient of determination 

(R2), root mean square error (RMSE), mean absolute 

error (MAE) and then using to determined by Eq, 2, 3 and 

4, respectively by Waller (2023). The best compliance 

between the estimated and calculated values is achieved 

at R2 = 1, RMSE = 0, MAE = 0. For this reason, using the 

equations given below, the best model was determined 

according to the highest R2 value and lowest RMSE, MSE 

values for testing data values (equations 2-4). 
 

 















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m

i
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OOiyyi

R

1

22

2

)()(

)()(
 

(2) 

n

Oiyi

RMSE

m

i






 1

2)(

 
(3) 

 
(4) 

Where; 

yi is the observed value, Oi is the estimated value,    is the 

mean of observed value,     is the mean of estimated value, 

n is the number of observations used in those models. 

The best compliance between the estimated and 

observed values is achieved at R2 = 1, RMSE = 0, MSE = 0 

(Taşan, 2023). 

 

3. Results 
The best model were evaluated ANN, ANFIS, GMDH 

models that were estimated in kinetic friction and static 

friction for soybean seeds using different combinations of 

data in average width (W), length (L), sphericity (S), 

surface features (SF), moisture (M), geometric mean 

diameter (GMD), arithmetic mean (MA). 

Summary statistical parameters of the data used in the 

study, such as the test and training data; the maximum, 

minimum, mean value, skewness and standard deviation 

values are given in Table 4. Mean values of randomly 

selected training and testing data were close to each 

other. As seen from the Table 4, surface feature (SF) 

values were ranged from 0.1 to 1.1 with an average value 

of 0.5 for the training and testing dataset. The moisture of 

soybean seeds samples are varied between 4.8 and 6.5. 

Average values of L, W, GMD, S, MA and SA values are 7.9, 

6.8, 6.7, 84.8, 6.7 and 140.5 for trining data and 7.8, 6.8, 

6.6, 84.6 6.7 and 137.6 for testing dataset, respectively. 

 

Table 4. Descriptive statistics of parameters 

  Parameters Max. Min. Mean S. Deviation Kutosis Skewnes CV 

Training  

SF 1.1 0.1 0.5 0.34 -1.04 0.48 63.3 

L 9.1 6.2 7.9 0.65 0.46 -0.31 8.3 

W 7.6 5.5 6.8 0.46 1.54 -1.09 6.8 

GMD 7.3 5.4 6.7 0.45 2.07 -1.45 6.8 

S 90.5 79.7 84.8 2.94 -0.82 -0.05 3.5 

MA 7.4 5.4 6.7 0.46 1.85 -1.31 6.9 

SA 165.7 90.0 140.5 18.05 1.53 -1.25 12.9 

Testing 

SF 1.1 0.1 0.5 0.34 -1.03 0.49 63.7 

L 8.9 7.3 7.8 0.52 -0.06 0.82 6.7 

W 7.7 6.4 6.8 0.39 1.36 1.34 5.8 

GMD 7.3 6.2 6.6 0.36 -0.66 0.58 5.5 

S 90.5 78.2 84.6 3.29 0.09 -0.21 3.9 

MA 7.5 6.3 6.7 0.37 -0.26 0.78 5.5 

SA 168.4 121.2 137.6 15.23 -0.50 0.66 11.1 
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4. Discussion 
Authors should discuss the results and how they can be 

interpreted from the perspective of previous studies and 

the working hypotheses. The findings and their 

implications should be discussed in the broadest context 

possible. Future research directions may also be 

highlighted. 

4.1. Results of ANN models 

In ANFIS, 3, 5, 6 and 7 inputs were used and kinetic and 

static friction in soybean seeds, which were estimated 

with different membership functions such as trapmf, 

gausmf to determine the optimum result as in ANN. In 

total, 16 models were established for prediction with 

ANFIS and the best model was determined by comparing 

model performance according to R2, RMSE and MSE 

values.  

The model performance results obtained for kinetic 

friction and static friction with different input 

combinations that are given in Table 5 for test and 

training dataset. In columns 2 and 4 are given of Table 5, 

model numbers and two different rule structures 

(3*3*3*3 and 4*4*4*4) used in the study. The best results 

were obtained in ANFIS models. It is clear taht from these 

figures, the ANFIS in 7. and 11. model result values 

measured more closely than do the other models for 

kinetic and static friction, respectively. Considering the 

test step, the model using the five combinations (SF, M, 

W, L, SA) as input and kinetic energy estimation as 

output presented the best results compared to the other 

combinations. For ANFIS-7 model results, R2 was 0.97, 

RMSE was 0.00013 and MSE was 0.00027 that using of 

membership function of gaussmf and 4*4*4*4 rural. The 

scatterplots of the measured and estimated kinetic 

friction for soybean seed by using the optimal ANFIS 

model that are given Figure 7. and figure 5 are shown 

distribution of all data that calculated 0.94, 0.0214 and 

0.00046 for R2, RMSE and MSE, respectively. 

 

Table 5. R2, RMSE, and MSE values of the ANFIS for kinetic and static friction estimates 

Kinetic friction 

        Testing Training 

Input Model Membership founction type Rural R2 RMSE MSE R2 RMSE MSE 

M, W, L 

1 gaussmf 
3*3*3*3 

0.899 0.00043 0.00086 0.88728 0.00040 0.00080 

2 trapmf 0.909 0.00039 0.00078 0.87808 0.00044 0.00087 

3 gaussmf 
4*4*4*4 

0.904 0.00036 0.00071 0.90589 0.00034 0.00067 

4 trapmf 0.858 0.00056 0.00113 0.87241 0.00046 0.00091 

SF, M, W, L, SA 

5 gaussmf 
3*3*3*3 

0.926 0.00017 0.00034 0.92547 0.00032 0.00064 

6 trapmf 0.932 0.00034 0.00069 0.90709 0.00044 0.00088 

7 gaussmf 
4*4*4*4 

0.966 0.00013 0.00027 0.93057 0.00027 0.00054 

8 trapmf 0.952 0.00017 0.00034 0.91407 0.00033 0.00066 

M, W, GMD, S, MA, SA 

9 gaussmf 3*3*3*3 0.930 0.00026 0.00052 0.94702 0.00019 0.00039 

10 trapmf 
 

0.922 0.00029 0.00058 0.93529 0.00024 0.00047 

11 gaussmf 4*4*4*4 0.936 0.00023 0.00047 0.95940 0.00015 0.00030 

12 trapmf 
 

0.920 0.00030 0.00059 0.92805 0.00027 0.00053 

SF, M, L, GMD, S, MA, SA 

13 gaussmf 
3*3*3*3 

0.921 0.00030 0.00060 0.93620 0.00024 0.00048 

14 trapmf 0.910 0.00035 0.00070 0.93325 0.00025 0.00050 

15 gaussmf 
4*4*4*4 

0.960 0.00016 0.00031 0.97514 0.00010 0.00019 

16 trapmf 0.928 0.00031 0.00061 0.93135 0.00026 0.00051 

Static friction 

M, W, L 

1 gaussmf 
3*3*3*3 

0.894 0.00041 0.00082 0.898 0.00040 0.00080 

2 trapmf 0.888 0.00044 0.00088 0.880 0.00047 0.00094 

3 gaussmf 
4*4*4*4 

0.915 0.00037 0.00074 0.896 0.00040 0.00081 

4 trapmf 0.900 0.00041 0.00083 0.897 0.00040 0.00081 

SF, M, W, L, SA 

5 gaussmf 
3*3*3*3 

0.922 0.0004 0.00084 0.930 0.0004 0.00074 

6 trapmf 0.901 0.0010 0.00203 0.928 0.0004 0.00081 

7 gaussmf 
4*4*4*4 

0.937 0.00028 0.00056 0.94 0.00039 0.00043 

8 trapmf 0.922 0.00046 0.00092 0.92 0.00078 0.00086 

M, W, GMD, S, MA, SA 

9 gaussmf 3*3*3*3 0.941 0.00026 0.00052 0.943 0.00021 0.00042 

10 trapmf 
 

0.924 0.00029 0.00058 0.912 0.00033 0.00065 

11 gaussmf 4*4*4*4 0.976 0.00009 0.00019 0.935 0.00024 0.00047 

12 trapmf 
 

0.907 0.00038 0.00075 0.928 0.00027 0.00053 

SF, M, L, GMD, S, MA, SA 

13 gaussmf 
3*3*3*3 

0.941 0.0002 0.00043 0.930 0.0004 0.00074 

14 trapmf 0.922 0.0003 0.00060 0.928 0.0004 0.00081 

15 gaussmf 
4*4*4*4 

0.972 0.00017 0.00033 0.939 0.00039 0.00078 

16 trapmf 0.964 0.00023 0.00046 0.918 0.00043 0.00086 
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Figure 5. The best model results to estimate kinetic friction. 

 
Table 6. Compares the calculated and predicted results of kinetic and static friction 

Kinetic friction 

Input   Testing Training 

  
 

7-1 10-1 15-1 7-7-1 7-10-1 7-15-1 7-1 10-1 15-1 7-7-1 7-10-1 7-15-1 

M, W, L 

R2 0.922 0.913 0.904 0.921 0.932 0.938 0.906 0.889 0.909 0.934 0.917 0.946 

RMSE 0.00028 0.00034 0.00035 0.00030 0.00025 0.00023 0.00035 0.00040 0.00036 0.00027 0.00031 0.00020 

MSE 0.00057 0.00068 0.00070 0.00060 0.00051 0.00045 0.00070 0.00080 0.00073 0.00055 0.00061 0.00041 

SF, M, W, L, 

SA 

R2 0.953 0.940 0.941 0.977 0.960 0.935 0.903 0.890 0.921 0.955 0.952 0.958 

RMSE 0.00017 0.00022 0.00022 0.00009 0.00015 0.00024 0.00038 0.00045 0.00028 0.00016 0.00017 0.00015 

MSE 0.00034 0.00045 0.00043 0.00018 0.00030 0.00047 0.00076 0.00090 0.00056 0.00032 0.00035 0.00030 

M, W, GMD, 

S, MA, SA 

R2 0.910 0.924 0.923 0.966 0.932 0.927 0.904 0.865 0.901 0.932 0.928 0.924 

RMSE 0.00035 0.00031 0.00028 0.00013 0.00027 0.00027 0.00036 0.00053 0.00035 0.00024 0.00026 0.00027 

MSE 0.00069 0.00062 0.00056 0.00026 0.00055 0.00054 0.00073 0.00106 0.00070 0.00048 0.00052 0.00055 

SF, M, L, 

GMD, S, 

MA, SA 

R2 0.939 0.946 0.953 0.988 0.964 0.952 0.927 0.900 0.933 0.938 0.925 0.925 

RMSE 0.00023 0.00020 0.00017 0.00004 0.00013 0.00018 0.00027 0.00038 0.00024 0.00024 0.00028 0.00028 

MSE 0.00045 0.00040 0.00035 0.00009 0.00027 0.00035 0.00054 0.00077 0.00048 0.00048 0.00055 0.00055 

Static friction 

M, W, L 

R2 0.881 0.929 0.903 0.924 0.923 0.932 0.907 0.897 0.919 0.922 0.934 0.932 

RMSE 0.00047 0.00035 0.00046 0.00036 0.00034 0.00032 0.00038 0.00042 0.00035 0.00031 0.00028 0.00029 

MSE 0.00093 0.00069 0.00093 0.00073 0.00069 0.00063 0.00076 0.00084 0.00070 0.00062 0.00056 0.00057 

SF, M, W, L, 

SA 

R2 0.952 0.947 0.953 0.962 0.954 0.985 0.839 0.925 0.931 0.949 0.951 0.977 

RMSE 0.00021 0.00026 0.00025 0.00018 0.00020 0.00006 0.00064 0.00027 0.00025 0.00019 0.00018 0.00008 

MSE 0.00042 0.00052 0.00049 0.00036 0.00040 0.00011 0.00129 0.00054 0.00050 0.00037 0.00036 0.00017 

M, W, GMD, 

S, MA, SA 

R2 0.9142 0.8611 0.9303 0.9678 0.9521 0.9346 0.894 0.915 0.956 0.961 0.965 0.971 

RMSE 0.00034 0.00055 0.00031 0.00016 0.00021 0.00027 0.00039 0.00032 0.00020 0.00017 0.00016 0.00013 

MSE 0.00069 0.00109 0.00062 0.00032 0.00041 0.00053 0.00078 0.00063 0.00039 0.00034 0.00031 0.00026 

SF, M, L, 

GMD, S, 

MA, SA 

R2 0.921 0.932 0.933 0.943 0.941 0.959 0.893 0.917 0.928 0.928 0.924 0.931 

RMSE 0.00031 0.00026 0.00024 0.00021 0.00022 0.00015 0.00039 0.00030 0.00026 0.00026 0.00028 0.00026 

MSE 0.00063 0.00052 0.00048 0.00042 0.00043 0.00029 0.00078 0.00060 0.00053 0.00052 0.00056 0.00051 

 

 
 

Figure 6. The best model results to estimate kinetic friction friction. 
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Figure 7. Performance chart of model with gausmf membership function estimated by ANFİS 7 model. 

 

The best models for different combinations of inputs in 

the test dataset were calculated for the static friction 

prediction with R2 of 0.98, RMSE of 0.00009 and MSE of 

0.00019. The graphical comparison of the obtained 

optimum model (ANFIS 11) is shown in Figure 8 that are 

estimated static friction. In the ANFIS 11 model, M, W, 

GMD, S, MA and SA of 6 input data were used and 

gaussmf and 4*4*4*4 rule were obtained as the 

membership function and rule respectively. For the 

model used in the estimation of static friction in the all 

data, R2, RMSE and MSE values were calculated as 0.95, 

0.0230 and 0.00053, respectively. 
 

 
 

Figure 8. Performance chart of model with gausmf membership function estimated by ANFİS 11 model. 

An artificial neural network was used that determine the 

mechanical properties of cumin seeds to estimate the 

rupture energy value. And It is seen that the 6-1 artifical 

neural network structure was chosen as the best model 

for the estimation of the force required to break the 

cumin seed (Saiedirad and Mirsalehi, 2010). The 

temperature and moisture content of the output seeds of 

the cooking pot were considered as inputs (independent 

variables) and the insoluble fine partial content of the 

extracted oil, moisture content of the extracted oil and 

obtained meals, as well as the oil content of the achieved 

meals and acidity value of the extracted oil were 

considered as output that were applied three different 

membership functions, including Gaussian and triangular 

and trapezoidal for ANFIS model (Farzaneh et al., 2017). 

4.2. Results of ANFIS models 

In ANFIS, 3, 5, 6 and 7 inputs were used and kinetic and 

static friction in soybean seeds, which were estimated 

with different membership functions such as trapmf, 

gausmf to determine the optimum result as in ANN. In 

total, 16 models were established for prediction with 

ANFIS and the best model was determined by comparing 

model performance according to R2, RMSE and MSE 

values.  

The model performance results obtained for kinetic 

friction and static friction with different input 

combinations that are given in Table 5 for test and 

training dataset. In columns 2 and 4 are given of Table 5, 

model numbers and two different rule structures 

(3*3*3*3 and 4*4*4*4) used in the study. The best results 

were obtained in ANFIS models. It is clear taht from these 

figures, the ANFIS in 7. and 11. model result values 

measured more closely than do the other models for 

kinetic and static friction, respectively. Considering the 

test step, the model using the five combinations (SF, M, 

W, L, SA) as input and kinetic energy estimation as 

output presented the best results compared to the other 

combinations. For ANFIS-7 model results, R2 was 0.97, 

RMSE was 0.00013 and MSE was 0.00027 that using of 

membership function of gaussmf and 4*4*4*4 rural. The 

scatterplots of the measured and estimated kinetic 

friction for soybean seed by using the optimal ANFIS 

model that are given Figure 7. and figure 5 are shown 

distribution of all data that calculated 0.94, 0.0214 and 

0.00046 for R2, RMSE and MSE, respectively. 

The best models for different combinations of inputs in 
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the test dataset were calculated for the static friction 

prediction with R2 of 0.98, RMSE of 0.00009 and MSE of 

0.00019. The graphical comparison of the obtained 

optimum model (ANFIS 11) is shown in Figure 8 that are 

estimated static friction. In the ANFIS 11 model, M, W, 

GMD, S, MA and SA of 6 input data were used and 

gaussmf and 4*4*4*4 rule were obtained as the 

membership function and rule respectively. For the 

model used in the estimation of static friction in the all 

data, R2, RMSE and MSE values were calculated as 0.95, 

0.0230 and 0.00053, respectively. 

An artificial neural network was used that determine the 

mechanical properties of cumin seeds to estimate the 

rupture energy value. And It is seen that the 6-1 artifical 

neural network structure was chosen as the best model 

for the estimation of the force required to break the 

cumin seed (Saiedirad and Mirsalehi, 2010). The 

temperature and moisture content of the output seeds of 

the cooking pot were considered as inputs (independent 

variables) and the insoluble fine partial content of the 

extracted oil, moisture content of the extracted oil and 

obtained meals, as well as the oil content of the achieved 

meals and acidity value of the extracted oil were 

considered as output that were applied three different 

membership functions, including Gaussian and triangular 

and trapezoidal for ANFIS model (Farzaneh et al., 2017). 

4.3. Results of GMDH models 

As an intelligent tool, the GMDH model showed 

promising results for predicting kinetic and satatic 

friction. A GMDH model structure including three and 

four layers as well as 7, 10, 15 different numbers of 

neurons was studied that are predicted kinetic and static 

friction in soybean seeds. Table 6 compares the 

calculated and predicted results of kinetic and static 

friction that are evaluated the performance criteria of the 

GMDH models built using different inputs. According to 

the GMDH model results, 7 inputs are shown as a suitable 

input dataset for the predicted kinetic friction. From 

Table 6, it is clear that the GMDH (7-7-1) model that 

includes the SF, M, L, GMD, S, MA, SA inputs and the other 

models during the testing period according to the 

criteria: R2 = 0.99, RMSE =0.00004 , MSE = 0.00009. 

The static friction values of GMDH best model were 

calculated as 0.98 for R2, 0.00006 for RMSE and 0.00011 

for MSE in the testing stage (Table 6). It is clear from the 

table that the GMDH (7-15-1) model with five input 

parameters as SF, M, W, L, SA provided the best accuracy 

according to the highest R2 and the lowest RMSE and 

MSE criteria in the testing period. Figure 10 displays 

calculated and estimated static friction results produced 

by the best GMDH model. 

 

 
 

Figure 9. The scatterplots of calculated and estimated kinetic friction by GMDH 7-7-1. 
 

 
 

Figure 10. The scatterplots of calculated and estimated kinetic friction by GMDH 7-15-1 model.  

 

Group data processing method (GMDH) type neural 

networks were used to model the explosive cutting 

process of plates with shaped loads and to show how the 

penetration depth changes with the change of important 
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parameters (Nariman-Zadeh, 2002). 

Recently, in different literatures studies were conducted 

on the variability of seed traits captured using imaging 

sensors for soybeans (Yuan et al., 2019; Baek et al., 2020; 

Yang et al., 2021; Lu et al., 2022). In a study for soybean, 

paraemtres such as area size (AS), perimeter length (PL), 

length (L), width (W), length-width ratio (LWR), 

intersection of length and width (IS), seed circularity (CS) 

and distance between IS and CG (DS) were used for 

digital image analysis of seed traits for estimation of 

hundred seed weight (HSW). Seven popular machine 

learning (ML) algorithms, namely Simple Linear 

Regression (SLR), Multiple Linear Regression (MLR), 

Random Forest (RF), Support Vector Regression (SVR), 

LASSO Regression (LR), Ridge Regression (RR) and 

Elastic Network Regression (EN), were used in the study, 

along with image-based models derived from Red-Green-

Blue (RGB)/visual images. Among the models, random 

forest and multiple linear regression models using 

multiple explanatory variables related to seed size traits 

(AS, L, W and DS) were identified as the best models to 

predict seed weight with the highest prediction accuracy 

(R2=0.98 and 0.94) and the lowest RMSE and MAE (Duc 

et al., 2023). Models such as imaging and machine 

learning, random forests, support vector machines and 

ANN are gaining popularity and importance for the 

prediction of genotypes relative to phenotypes, including 

yield, day of heading and thousand seed weight (Crossa 

et al., 2019; Khaki and Wang, 2019; Grinberg et al., 2020; 

Khaki et al., 2021). They used and compared models 

consisting of ANN, RF, SVM, SVM, KRR and KNN for grain 

size and weight prediction. They found that the 

normalized pixel area of the rice kernel predicted the 

single kernel weight with an accuracy of 0.95% (Singh et 

al., 2020). 

In this study, the suitability of ANN, ANIF and GMDH 

models were evaluated to predict kinetic and static drift 

of soybean seed. Furthermore, these models were 

compared with ANN to predict kinetic and static friction 

parameters using some physical and chemical properties 

as inputs. 

Three different statistical parameters (R2, RMSE, MSE) 

were used to compare the performance of ANN, ANFIS 

and GMDH models. In the estimation of kinetic and static 

friction parameters for seeds, very good results were 

obtained in the models used when comparing between 

models. The GMDH models almost outperformed the 

ANN and ANFIS models. 

Based on the R2, RMSE and MSE performance criterion 

values of the GMDH 7-7-1 and 7-15-1 model structures, it 

is observed that the models have better prediction 

capability for kinetic friction and static friction 

parameters, respectively.  

The inputs of SF, M, L, GMD, S, MA, SA and SF, M, W, L, SA 

were used the best models of chosen that were predicted 

kinetic and static friction, respectively. As a result, the 

predictions to be made in the soft computing methods 

actually used can be used as an effective tool in the 

current field of study.  

Overall, the results of this study revealed that artificial 

intelligent techniques can be used effectively to 

determine seed quality and make accurate predictions 

according to different environments and friction surfaces 

using mechanical and physical properties and can be 

recommended as an alternative approach. 
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